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Deformations of convex real projective structures on orbifolds

Introduction

Geometric structures

Geometric structures on manifolds and orbifolds

Aim
Basically, we wish gather the information about the manifold by constructing various

structures on it. We build some moduli spaces to understand these. We aim to

characterize the objects by the algebraic side.

Geometries
X a space and G a Lie group acting on it transitively.

(G,X )-structure on manifolds
Given a manifold or orbifold M, we cover it by open subsets of X pasted by elements of

G. The compatibility class of the atlas of charts is a (G,X)-structure on M.
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Deformations of convex real projective structures on orbifolds

Introduction

Geometric structures

Orbifolds

I By an n-dimensional orbifold is a

space modelled on finite quotients of

open sets (with some compatibility

conditions.)

I Let P be a convex polyhedron and we

silver each side where the angles are

of form π/n: Coxeter orbifolds.

I Examples: a square with silvered

edges, a triangular orbifold (Conway’s

picture)

I A good orbifold: M/Γ where Γ is a

discrete group with a properly

discontinuous action.
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Deformations of convex real projective structures on orbifolds

Introduction

Geometric structures

Projective, affine geometry

I RPn = P(Rn+1) = (Rn+1 − {O})/ ∼ where ~v ∼ ~w iff ~v = s~w for s ∈ R− {O}.

I The group of projective automorphisms is PGL(n + 1,R).

I RPn − RPn−1
∞ is an affine space An where the group of projective automorphisms

of An is exactly Aff (An).

An ↪→ RPn,Aff (An) ↪→ PGL(n + 1,R).

I Euclidean geometry (En, Isom(En)) is a sub-geometry of the affine geometry.

Figure: Wall-paper groups 16 and 17.
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Deformations of convex real projective structures on orbifolds

Introduction

Geometric structures

Hyperbolic geometry

I R1,n with Lorentzian metric q(~v) := −x2
0 + x1

1 + · · ·+ x2
n .

I The upper part of q = −1 is the model of the hyperbolic n-space Hn.

I The cone q < 0 corresponds to the convex open n-ball in Bn ↪→ An ⊂ RPn

correspond to Hn in a one-to-one manner.

I Isom(Hn) = Aut(Bn) = PO(1, n) ↪→ PGL(n + 1,R).

Figure: The triangle group D2(3, 3, 4) in the Poincare and Klein models by Bill Casselman.
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Deformations of convex real projective structures on orbifolds

Introduction

Geometric structures

Real projective structures on orbifolds

I We look at the convex domain D in an affine subspace An ⊂ RPn.

I The quotient D/Γ for a properly acting discrete group Γ ⊂ Aut(D) is called a

convex real projective orbifold.

I If D is properly convex, then D/Γ is called a properly convex real projective

orbifold.

Figure: The developing images of convex RPn -structures on 2-orbifolds deformed from hyperbolic ones: D(3, 3, 4), S2(3, 3, 5)
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Deformations of convex real projective structures on orbifolds

Coxeter 3-orbifolds

Coxeter 3-orbifolds

We will concentrate on 3-dimensional orbifolds whose base spaces are convex

polyhedra and whose sides are silvered and each edge is given an order.

For example: a hyperbolic polyhedron with edge angles of form π/m for positive

integers m.

The fundamental group of the orbifold will be a Coxeter group with a presentation

Ri , i = 1, 2, . . . , f , (Ri Rj )
nij = 1, nij ≥ 2

where Ri is associated with silvered sides and Ri Rj has order nij associated with the

edge formed by the i-th and j-th side meeting.
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Coxeter 3-orbifolds

Coxeter orbifold structure

Let P be a fixed 3-dimensional convex polyhedron. Let us assign orders at each edge.

We let e be the number of edges and e2 be the numbers of edges of order-two. Let f

be the number of sides.

We keep vertices of P of form (2, 2, n), n ≥ 2, (2, 3, 3), (2, 3, 4), (2, 3, 5), i.e., orders of

spherical triangular groups and remove others. This makes P into an open

3-dimensional orbifold with ends. (For higher-dimensional polyhedrons, we do similar

operations.)

Let P̂ denote the differentiable orbifold with sides silvered and the edge orders realized

as assigned from P with vertices removed. We say that P̂ has a Coxeter orbifold

structure.

8/24



Deformations of convex real projective structures on orbifolds

Coxeter 3-orbifolds

Coxeter orbifold structure

Let P be a fixed 3-dimensional convex polyhedron. Let us assign orders at each edge.

We let e be the number of edges and e2 be the numbers of edges of order-two. Let f

be the number of sides.

We keep vertices of P of form (2, 2, n), n ≥ 2, (2, 3, 3), (2, 3, 4), (2, 3, 5), i.e., orders of

spherical triangular groups and remove others. This makes P into an open

3-dimensional orbifold with ends. (For higher-dimensional polyhedrons, we do similar

operations.)

Let P̂ denote the differentiable orbifold with sides silvered and the edge orders realized

as assigned from P with vertices removed. We say that P̂ has a Coxeter orbifold

structure.

8/24



Deformations of convex real projective structures on orbifolds

Coxeter 3-orbifolds

Coxeter orbifold structure

Let P be a fixed 3-dimensional convex polyhedron. Let us assign orders at each edge.

We let e be the number of edges and e2 be the numbers of edges of order-two. Let f

be the number of sides.

We keep vertices of P of form (2, 2, n), n ≥ 2, (2, 3, 3), (2, 3, 4), (2, 3, 5), i.e., orders of

spherical triangular groups and remove others. This makes P into an open

3-dimensional orbifold with ends. (For higher-dimensional polyhedrons, we do similar

operations.)

Let P̂ denote the differentiable orbifold with sides silvered and the edge orders realized

as assigned from P with vertices removed. We say that P̂ has a Coxeter orbifold

structure.

8/24



Deformations of convex real projective structures on orbifolds

Coxeter 3-orbifolds

Vinberg’s results...

His main results is that a closed RPn-orbifold P̂ is properly convex, i.e., P̂ is a quotient

of a precompact convex domain in an affine subspace of RPn.

A linear reflection group is determined by the polytope given by equations ai ≡ 0 for

i = 1, .., f and the reflection points bi , i = 1, .., f . Ri = I− bi ⊗ ai , ai (bi ) = 2 satisfying

R2
i = I, (Ri Rj )

nij = I.

Cartan matrix: (aij = ai (bj )) satisfies

I aij ≤ 0, i 6= j, and if aij = 0, then aji = 0.

I aii = 2, aij aji ≥ 4, or aij aji = 4 cos2(π/nij ).

I rank(aij ) = n + 1.
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Deformations of convex real projective structures on orbifolds

Coxeter 3-orbifolds

Vinberg continued...

I The Cartan matrices are symmetric for hyperbolic Coxeter groups.

I In general, symmetric Cartan matrices can be deformed to nonsymmetric Cartan

matrices (aij = ai (bj ))ij and they correspond to the deformations.

I The rank of the matrix equals one + the dimension of the Coxeter orbifold. The

cyclic invariants ai1 i2 ai2 i3 · · · aik i1 for distinct indices are complete invariants.

I Kac and Vinberg found first class of examples of convex RPn-orbifolds that are not

Riemannian hyperbolic based on hyperbolic reflection triangle groups and

deforming.
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Deformations of convex real projective structures on orbifolds

Coxeter 3-orbifolds

Orderable Coxeter 3-orbifolds and the deformation spaces

Deformation spaces

I The deformation space D(P̂) of projective structures on an orbifold P̂ is the space

of all projective structures on P̂ quotient by isotopy group actions of P̂.

I A point p of D(P̂) always determines a fundamental polyhedron P up to projective

automorphisms.

I We wish to understand the space where the fundamental polyhedron is always

projectively equivalent to P.

This is the restricted deformation space of P̂ and we denote it by DP(P̂).
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Coxeter 3-orbifolds

Orderable Coxeter 3-orbifolds and the deformation spaces

Benoist Theory of convex real projective structures on closed orbifolds

In papers "Divisibles I - IV":
Let O be a properly convex projective closed orbifold of dimension n.

I π1(O) is Gromov hyperbolic iff O is strictly convex.

I O = Ω/Γ where Cl(Ω) = Ω1 ∗ · · · ∗ Ωm and Γ is a cocompact subgroup of

Rm−1 × Aut(Ω1)× · · · × Aut(Ωm).

I CD(O) is a union of components of

Hom(π1(O), PGL(n + 1,R))/PGL(n + 1,R)

when π1(O) has trivial virtual center and no finite index nilpotent subgroup.
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Coxeter 3-orbifolds

Orderable Coxeter 3-orbifolds and the deformation spaces
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Coxeter 3-orbifolds

Orderable Coxeter 3-orbifolds and the deformation spaces

Orderable Coxeter 3-orbifolds

We say that the polytope P is orderable if we can order the sides of P so that each side

meets sides of higher index in less than or equal to 3 edges.

Definition

Let P̂ be the orbifold obtained from P by silvering sides and removing vertices as

above. We also say that the orbifold P̂ is orderable if the sides of P can be ordered so

that each side has no more than three edges which are either of order 2 or included in

a side of higher index.

Theorem

Let P be a convex polyhedron and P̂ be given a normal-type Coxeter orbifold structure.

Let k(P) = dim Aut(P). Suppose that P̂ is orderable. Then DP(P̂) is a smooth

manifold of dimension 3f − e − e2 − k(P) if it is not empty.

14/24
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Deformations of convex real projective structures on orbifolds

Coxeter 3-orbifolds

Iterated-truncation tetrahedron (ecimaedre combinatoire)

Iterated-truncation tetrahedron (ecimaedre combinatoire)

Theorem of L. Marquis
We start with a tetrahedron and cut off a vertex. We iterate this. This gives us a convex

polytope P with trivalent vertices. Let P̂ be a Coxeter 3-orbifold based on P satisfying

the Andreev conditions. Then D(P̂) is diffeomorphic to Re+−3.

The proof is basically very combinatorial and algebraic over R.

The orderbility is more general then truncation orbifold conditions; however, for

compact ones, they are the same.

15/24
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Deformations of convex real projective structures on orbifolds

Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

I Now we are interested in nonorderable cases and some overdetermined cases as

well.

Theorem (Choi-Hodgson-Lee)

For a ideal or hyperideal hyperbolic Coxeter 3-orbifold P̂ with all edge orders ≥ 3,

DP(P̂) is locally a smooth cell of dimension 6 at the hyperbolic point.

I The deformation space has dimension e − 3 and smooth at the hyperbolic point.

I The proof involves Weil-Prasad infinitesimal rigidity.

16/24
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Deformations of convex real projective structures on orbifolds

Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

Weakly orderble hyperbolic Coxeter orbifolds

A Coxeter 3-orbifold P̂ is weakly orderable if the facets of P can be ordered so that

each facet contains at most 3 edges of order 2 in a facet of higher index.

Theorem (Choi-Lee, Greene)

Let P̂ is a closed hyperbolic Coxeter 3-orbifold. If P̂ is weakly orderable, then at the

hyperbolic structure D(P̂) is smooth and of dimension e+ − 3.

The class is quite general.

Theorem (Choi-Lee)
Let P be a simple abstract polyhedron. Suppose that P has no prismatic 3-circuit and
has at most one prismatic 4-circuit. Then

lim
m→∞

|{weakly orderable, closed hyperbolic Coxeter 3-orbifolds P̂ with edge order ≤ m}|
|{closed hyperbolic Coxeter 3-orbifolds P̂ with edge order ≤ m}|

= 1

17/24
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Deformations of convex real projective structures on orbifolds

Convex projectie Dehn fillings of orbifolds and manifolds

Convex projective Dehn fillings of hyperbolic orbifolds

Let O∞ be a compact Coxeter d-orbifold with a boundary ∂O∞ that is a closed

Coxeter (d − 1)-orbifold admitting a Euclidean structure. A Dehn filling Om of O∞ is a

Coxeter d-orbifold such that O∞ is orbifold diffeomorphic to the complementary of an

open neighborhood of a face r of codimension 2 of Om, and each interior point of r has

a neighborhood modeled on (R2/Dm)× Rd−2.

Main question
Is there a compact manifold M of dimension d > 4 with toral boundaries such that the

interior of M admits a finite volume hyperbolic structure, and except finitely many Dehn

fillings on each boundary component, each Dehn filling of M admits a properly convex

real projective structure? (For Einstein metrics, Anderson Balmer answer)

18/24
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Convex projectie Dehn fillings of orbifolds and manifolds

Theorem

In dimension d = 4, 5, 6 (resp. d = 7), there exists a complete finite volume hyperbolic

Coxeter d-orbifold O∞ with holonomy representation

ρ∞ : π1(O∞)→ Od,1(R) ⊂ SL±d+1(R) such that there is a sequence

( ρm : π1(O∞)→ SL±d+1(R) )m>N

satisfying the following:

I The image ρm(W∞) is discrete and acts properly discontinuously and

cocompactly (with finite covolume) on the unique properly convex domain

Ωm ⊂ Sd .

I The induced representation π1(O∞)/ ker(ρm)→ SL±d+1(R) is the holonomy

representation of a properly convex real projective Dehn filling Om of O∞.
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topology.

19/24



Deformations of convex real projective structures on orbifolds

Convex projectie Dehn fillings of orbifolds and manifolds

Theorem

In dimension d = 4, 5, 6 (resp. d = 7), there exists a complete finite volume hyperbolic

Coxeter d-orbifold O∞ with holonomy representation

ρ∞ : π1(O∞)→ Od,1(R) ⊂ SL±d+1(R) such that there is a sequence

( ρm : π1(O∞)→ SL±d+1(R) )m>N

satisfying the following:

I The image ρm(W∞) is discrete and acts properly discontinuously and

cocompactly (with finite covolume) on the unique properly convex domain

Ωm ⊂ Sd .

I The induced representation π1(O∞)/ ker(ρm)→ SL±d+1(R) is the holonomy

representation of a properly convex real projective Dehn filling Om of O∞.

I The representations (ρm)m>N converge algebraically to ρ∞.

I The convex domains (Ωm)m>N converge to Ω∞ = Hd ⊂ Sd in the Hausdorff

topology.

19/24



Deformations of convex real projective structures on orbifolds

Convex projectie Dehn fillings of orbifolds and manifolds

Theorem

In dimension d = 4, 5, 6 (resp. d = 7), there exists a complete finite volume hyperbolic

Coxeter d-orbifold O∞ with holonomy representation

ρ∞ : π1(O∞)→ Od,1(R) ⊂ SL±d+1(R) such that there is a sequence

( ρm : π1(O∞)→ SL±d+1(R) )m>N

satisfying the following:

I The image ρm(W∞) is discrete and acts properly discontinuously and

cocompactly (with finite covolume) on the unique properly convex domain

Ωm ⊂ Sd .

I The induced representation π1(O∞)/ ker(ρm)→ SL±d+1(R) is the holonomy

representation of a properly convex real projective Dehn filling Om of O∞.

I The representations (ρm)m>N converge algebraically to ρ∞.

I The convex domains (Ωm)m>N converge to Ω∞ = Hd ⊂ Sd in the Hausdorff

topology.

19/24



Deformations of convex real projective structures on orbifolds

Convex projectie Dehn fillings of orbifolds and manifolds

Conjecture
Om → O∞ in the Gromov-Hausdorff topology.

k

m

k = 3, 4, 5.

k

m

l

k > l = 3, 4, 5.

m
j

j = 4, 5.

m
j

j = 4, 5.

Table: Thirteen prime examples in dimension 4.

k
m

k = 3, 4, 5.

l

k
m

k , l = 3, 4, 5. and k > l

Table: Nine prime examples in dimension 5
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m m

Table: Two prime examples in dimension 6

m m

Table: Two prime examples in dimension 7
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If m is finite, then the underlying polytope of Gi
m is the product of two triangles, and if

m =∞, then the underlying polytope of Gi
∞ is the pyramid over the prism (see Figure

4 for the Schlegel diagrams of these polytopes). We give labels on the ridges of Gi
m

using the Coxeter groups W i
m in Table 5.

Figure: The Schlegel diagram of the product of two triangles and of a pyramid over a prism.
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3

1

2

4

5

6

m 3

1

2

4

5

6

m
5

3

1

2

4

5

6

m

Table: W 1
m , W 2

m , W 3
m

We give dihedral angle between two prisms at the center triangle which appears at the

missing center vertex. The proof is the computation that the angle can be deformed.
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