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Abstract. Using PL-methods, we prove the Marden’s conjecture that a hyperbolic
3-manifold M with finitely generated fundamental group and with no parabolics are
topologically tame. Our approach is to form an exhaustion Mi of M and modify the
boundary to make them 2-convex. We use the induced path-metric, which makes the
submanifold Mi negatively curved and with Margulis constant independent of i. By
taking the convex hull in the cover of Mi corresponding to the core, we show that
there exists an exiting sequence of surfaces Σi. Some of the ideas follow those of Agol.
We drill out the covers of Mi by a core C again to make it negatively curved. Then
the boundary of the convex hull of Σi is shown to meet the core. By the compactness
argument of Souto, we show that infinitely many of Σi are homotopic in M −Co. Our
method should generalize to a more wider class of piecewise hyperbolic manifolds.
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Recently, Agol initiated a really interesting approach to proving Marden’s conjecture
by drilling out closed geodesics. In this paper, we use truncation of the hyperbolic
manifolds and drilling out compact cores of them to prove the tameness conjecture.
We do use the Agol’s idea of using covering spaces and taking convex hulls of the
cores. Our approach is somewhat different in that we do not use end-reductions and
pinched Riemannian hyperbolic metrics; however, we use the incomplete hyperbolic
metric itself. The hard geometric analysis and geometric convergence techniques can
be avoid using the techniques of this paper. By a negatively curved space, we mean
a metric space whose universal cover is CAT(−1). Except for developing a somewhat
complicated theory of deforming boundary to make the submanifolds of codimension
0 negatively curved, we do not need any other highly developed techniques. Also, we
might be able to generalize the techniques to negatively curved polyhedral 3-manifolds
and complexes obtained from groups.

Note also that there is a recent paper by Calegari and Gabai [6] using modified least
area surfaces and closed geodesics. The work here is independently developed from
their line of ideas. Also, we note that there were earlier attempts by Freedman [11],
Freedman-McMullen [13], which were very influential for the later success by Agol and
Calegari-Gabai, and another earlier unsuccessful attempt by Ohshika, using the least
area surfaces.
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In this paper, we let M be a hyperbolic 3-manifold with a Scott’s core homeomorphic
to a compression body. We suppose that M has a finitely generated fundamental group
and the holonomy is purely loxodromic and has ends E, E1, . . . , En. Let F1, . . . , Fn be
the incompressible surfaces in neighborhoods of the ends E1, . . . , En respectively. Let
N(E) be a neighborhood of an end E with no incompressible surface associated.

The Marden’s conjecture states that a hyperbolic 3-manifold with a finitely generated
fundamental group is homeomorphic to the interior of a compact 3-manifold. It will
be sufficient to prove for the above M to prove the complete conjecture.

The cases when the group contains parabolic elements are left out, which we will
work out on a later occasion.

Theorem A . Let M be as above with ends E, E1, . . . , En, and C be a compact core of
M . Then E has an exiting sequence of surfaces of genus equal to that of the boundary
component of ∂C corresponding to E.

Theorem B . M is tame; that is, M is homeomorphic to the interior of a compact
manifold.

This paper has three parts: In Part 1, let M be a codimension 0 submanifold of
a hyperbolic 3-manifold N of infinite volume with certain nice boundary conditions.
M is locally finitely triangulated. Suppose that M is 2-convex in N in the sense
that any tetrahedron T in N with three of its side in M must be inside M . Now
let L be a finitely triangulated, compact codimension 0-submanifold M so that ∂L
is incompressible in M with a number of closed geodesics c1, . . . , cn removed. Given
ǫ > 0, we show that ∂L can be isotopied to a hyperbolically triangulated surface so that
it bounds in M a 2-convex submanifold whose ǫ-neighborhood contains c1, . . . , cn. The
isotopy techniques will be based on PL-type arguments and deforming by crescents. An
important point to be used in the proof is that the crescents avoid closed geodesics and
geodesic laminations. Thus, the isotopy does not pass through the closed geodesics by
as small amount as we wish. (These will be the contents of Theorem C and Corollary
D.)

Part 2 is as follows: A general hyperbolic manifold is a manifold with boundary
modeled on subdomains in the hyperbolic space. A general hyperbolic manifold is 2-
convex if every isometry from a tetrahedron with an interior of one of its side removed
extends to the tetrahedron itself. We show that a 2-convex general hyperbolic manifold
is negatively curved. The proof is based on the analysis of the geometry of the vertices
of the boundary required by the 2-convexity. We will also define a hyperbolic surface as
a triangulated surface where each triangle gets mapped to a geodesic triangle and the
sum of the induced angles at each vertex is always greater than or equal to 2π. We show
the area bound of such surfaces. Finally, we show that the boundary of the convex hull
of a core in a general hyperbolic manifold with finitely generated fundamental group
can be deformed to a nearby hyperbolic-surface, which follows from the local analysis
of geometry.

In Part 3, we will give the proof of Theorems A and B using the results of Part 1
and 2. The outline is given in the abstract and in the beginning of Part 3. The proof
itself is rather short spanning 9-10 pages only.
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Part 1. 2-convex hulls of submanifolds of hyperbolic manifolds

1. Introduction to Part 1

The purpose of Part I is to deform a submanifold of codimension 0 of general hyper-
bolic manifold into a negatively curved one, i.e., Corollary D.

We will be working in a more general setting. A general hyperbolic manifold is a
Riemannian manifold M with corner and a geodesic metric that admits a geodesic
triangulation so that each 3-simplex is isometric with a compact hyperbolic simplex.
Let M̃ be a universal cover of M and π1(M) the group of deck transformations. M

admits a local isometry, so-called developing map, dev : M̃ → H3 for the hyperbolic
space H3 equivariant with respect to a homomorphism h : π1(M) → PSL(2, C). The
pair (dev, h) is only determined up to action

(dev, h) 7→ (g ◦ dev, g ◦ h()̇ ◦ g−1) for g ∈ PSL(2, C).

We remark that in Thurston’s notes [17] a locally convex general hyperbolic manifold
is shown to be covered by a convex domain in H3 or, equivalently, it can be extended to
a complete hyperbolic manifold. However, a general hyperbolic manifold can be much
worse although here we would be looking at mostly general hyperbolic manifolds that
are covered by coverings of some domains in the hyperbolic spaces.

A general hyperbolic manifold M is 2-convex if given a hyperbolic 3-simplex T , a
local-isometry f : T − F o → Mo for a face F of T extends to an isometry T → Mo.
(See [9] for more details. Actually projective version applies here by the Klein model
of the hyperbolic 3-space.)

• By a totally geodesic hypersurface, we mean the union of components of the
inverse image under a developing map of a totally geodesic plane in H3.

• A local totally geodesic hypersurface is an open neighborhood of a point in the
hypersurface.

• For a point, a local half-space is the closure in the ball of the component of an
open ball around it with a totally geodesic hypersurface passing through it.

• The local totally geodesic hypersurface intersected with the local-half space is
said to be the side of the local half-space.

• A local half-space with its side removed is said to be an open local half-space.

A surface f : S → M is said to be triangulated if S is triangulated and each triangle
is mapped to a totally geodesic triangle in M . (We will generalize this notion a bit.)

• An interior vertex of f is a saddle-vertex if every open local half-space associated
with the vertex does not contain the local image of f with the vertex removed.

• A strict saddle-vertex is a saddle-vertex where every associated closed local
half-space does not contain the local image.

• An interior vertex of f is a convex vertex if a local open half-space associated
with the vertex contains the local image of f removed with the vertex.
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(In these definitions, we take a slightly larger ambient open manifold of M to make
sense of open local half-space. Also, we can see these definitions better by looking at
the unit tangent bundle U at the vertex: Then the image of f corresponds to a path in
U .) If P is a local totally geodesic plane passing through the vertex whose one-sided
neighborhood contains the local image of f , then we say P is a supporting plane.

An interior vertex of f is an hyperbolic-vertex if the sum of angles of the triangles
around a vertex is ≥ 2π. A saddle-vertex is a hyperbolic-vertex by Lemma 7.4.

A map f : S → M is a saddle-map if each vertex is a saddle-vertex, and f is
a hyperbolic-map if each vertex is a hyperbolic-one. A saddle-map is a hyperbolic-
map but not conversely in general. For an imbedding f and an orientation, a convex
vertex is said to be a concave vertex if the local half-space is in the exterior direction.
Otherwise, the convex vertex is a convex vertex. We also know that if the boundary of
a general hyperbolic submanifold N of M is saddle-imbedded, then N is 2-convex (see
Proposition 2.5).

Theorem C . Let M be an orientable 2-convex general hyperbolic 3-manifold, and Σ
be a closed surface in M . Suppose that each component of Σ is incompressible in M if
we remove a finite number of the image c1, . . . , cn of the closed geodesics in the interior
Mo of M . Then for arbitrarily given small ǫ > 0, we can isotopy Σ so that Σ becomes
a saddle-imbedded surface. Finally, during the isotopy Σ might pass through some of
ci but with as small an amount as possible.

Corollary D . Let N be an orientable 2-convex general hyperbolic 3-manifold, and M
be a compact codimenion-zero submanifold of N with boundary ∂M . Suppose that each
component of ∂M is incompressible in M if we remove a finite number of the image
c1, . . . , cn of the closed geodesics in the interior Mo of M . Then for arbitrarily given
small ǫ > 0, we can isotopy M to a homeomorphic general hyperbolic 3-manifold M ′ in
N so that M ′ is 2-convex and an ǫ-neighborhood of M ′ contains the collection of closed
geodesics c1, . . . , cn.

We say that M ′ obtained from M by the above process is a 2-convex hull of M .
Although M ′ is not necessarily a subset of M , the curves c1, . . . , cn is a subset of an ǫ-
neighborhood of M ′ and hence we have certain amount of control. (Here the geodesics
are allowed to self-intersect.)

In section 2, we review some hyperbolic manifold theory and discuss saddle vertices
and relationship with 2-convexity.

In section 3, we introduce so-called crescents: Let M be a 2-convex general hyperbolic
manifold and Σ a closed subsurface, possibly with many components. We take the
inverse image Σ̃ in M̃ of Σ in M , incompressible in the ambient 2-convex general
hyperbolic manifold with a number of geodesics c1, . . . , cn removed. A crescent is a
connected domain bounded by a totally geodesic hypersurface and an open surface in
Σ̃. The portion of boundary in the totally geodesic hypersurface is said to be the I-part
and the portion in Σ̃ is said to be the α-part. A crescent may contain another crescents
and so on, and the folding number of a crescent is the maximum intersection number
of the generic path from the outer part in the surface to the innermost component of
the crescent with the surface removed. We show that for a given closed surface Σ, the
folding number is bounded above.
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A highest-level crescent is an innermost one that is contained in a crescent with
highest folding number which achieves the folding number. We show that a highest-
level crescent is always contained in an innermost crescent; i.e., so called the secondary
highest-level crescent. In a secondary highest level crescent, the closure of the α-part
and the I-part are isotopic. We also show that the secondary highest-level crescents
meet nicely extending their α-parts in Σ̃, following [9].

In section 4, we introduce the crescent-isotopy theory to isotopy a surface in a general
hyperbolic manifold so that all of its vertices become saddle-vertices: We form the union
of secondary highest-level crescents and can isotopy the union of their α-parts to the
complement I in the boundary of their union. This is essentially the crescent move. (In
this paper, by isotopies, we mean the deck-transformation group equivariant isotopies
unless we specify otherwise. At least, if the isotopy in each step is not equivariant, we
will make it so after the final isotopy is completed.)

However, there might be some parts of Σ̃ meeting I tangentially from above. We
need to first push these parts upward first using so-called convex truncations.

Also, after the move, there might be pleated parts which are not triangulated. We
present a method to perturb these parts to triangulated parts without increasing the
levels or the set of crescents by much.

Next, we use the crescent isotopy and perturbations to obtain saddle-imbedded sur-
face isotopic to Σ:

• We take the highest folding number and take all outer secondary highest-level
crescents,

– do some convex truncations,
– do the crescent isotopies and
– convex perturbations.

• Next, we take all inner highest-level crescents of the same level as above, do
some truncations, and do crescent moves and perturb as we did above. Now
the highest folding number decreases by one.

• We do the next step of the induction until we have no crescents any more.

In this case, all the vertices are saddle-vertices. This completes the proof of Theorem
C.

Finally, we prove Corollary D by applying our results to a codimension-zero subman-
ifold M with incompressible boundary in the ambient manifold with some geodesics
removed.

2. Preliminary

In this section, we review the hyperbolic space and the Kleinian groups briefly. We
discuss the relationship between the 2-convexity of general hyperbolic manifolds.

2.1. Hyperbolic manifolds. The hyperbolic n-space is a complete Riemannian met-
ric space (Hn, d) of constant curvature equal to −1. We will be concerned about
hyperbolic plane and hyperbolic spaces, i.e., n = 2, 3, in this paper.

The upper half space model for H
2 is the pair

(U2, PSL(2, R) ∪ PSL(2, R))
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where U2 is the upper half space.
The Klein model of H2 is the pair (B2, PO(1, 2)) where B2 is the unit disk and

PO(1, 2) is the group of projective transformations acting on B2.
A Fuchsian group is a discrete subgroup of the group of isometries of PO(1, 2) of the

group Isom(H2) of isometries of H2.
There are many models of the hyperbolic 3-space: The upper half-space model con-

sists of the upper half-space U of R3 and the group of isometries are identified as the
group of similarities of R3 preserving U , which is identified as the union of PSL(2, C)
and its conjugate PSL(2, C).

We shall use the Klein model mostly: The Klein model consists of the unit ball in R3

and the group of isometries are identified with the group of projective transformations
preserving the unit ball, which is identified as PO(1, 3).

A Kleinian group is a discrete subgroup of the group of isometries PO(1, 3), i.e., the
group Isom(H3) of isometries of H3.

A parabolic element γ of a Kleinian group is a nonidentity element such that (γ(x), x),
x ∈ H

3, has no lower bound other than 0. A loxodromic element of a Kleinian group
is an isometry with a unique invariant axis. A hyperbolic element is a loxodromic one
with invariant hyperplanes.

For Fuchsian groups, a similar terminology holds.
In this paper, we will restrict our Kleinian groups to be torsion-free and have no

parabolic elements and all elements are orientation-preserving.

2.2. Saddle-vertices. Let M be a general hyperbolic manifold. We now classify the
vertices of a triangulated map f : S → M where we do not yet require the general
position property of f but identify the vertex with its image.

By a straight geodesic in a general hyperbolic manifold, we mean a geodesic that
maps to geodesics in H3 under the developing maps.

Lemma 2.1. Let f : S → M be a triangulated map.

• An interior vertex of S is either a convex-vertex, a concave vertex, or a saddle-
vertex.

• A saddle-vertex which is not strict one has to be one of the following:
(i) a vertex with a totally geodesic local image.
(ii) a vertex on an edge in the intersection of two totally geodesic planes where

f locally maps into one sides of each plane.
(iii) A vertex which is contained in at least three edges in the image of f in

a local totally geodesic plane P and the edges are not contained in any
closed half-plane of P . The local half-space bounded by P is the unique one
containing the image of f .

• If f is a general position map, then a saddle-vertex is a strict saddle-vertex.

Proof. Suppose v is a saddle-vertex and not a strict one and not of form (i) or (ii). Since
v is not strict, there is a supporting plane. If there are more than three supporting
planes in general position, then v is a strict convex-vertex. If there are two supporting
plane, then an edge in the image of f is in the edge of intersection of the two planes
in order that v be a nonstrict saddle vertex, which is absurd.

7



Hence the supporting plane is unique. If there are no three edges as described in
(iii), we can easily find another supporting plane. �

Lemma 2.2. A saddle-vertex of type (ii) and (iii) of Lemma 2.1 can be deformed to
a strict saddle-vertex by an arbitrarily small amount by pushing if necessary the vertex
from the boundary of the closed local half-space containing the local image of f in the
direction of the open half-space.

Proof. If the saddle-vertex is a strict one, then we leave it alone. If the saddle-vertex
is not a strict one, a closed local half-space contains the local image of f . Let U
be the unit tangent bundle at the vertex. A closed hemisphere H contains the path
corresponding to the local image of f .

In case (ii) of Lemma 2.1, there are actually two closed hemispheres H1 and H2

whose intersection contains the local image of f in U . Therefore, we choose a direction
in the interior of the intersection of H1 and H2. Then by Lemma 2.3, the result of a
sufficiently small deformation is a strict saddle vertex.

In case (iii) of Lemma 2.1, let w1, w2, w3 be the points on the unit tangent bundle
at the vertex corresponding the three edges. Then by moving vertex in the direction,
the corresponding directions w′

1, w
′
2, w

′
3 of the perturbed edges form a strictly convex

triangle in an open hemisphere in U and the direction vector v of the movement not
in the hemisphere. v, w′

1, w
′
2, w

′
3 are vertices of a geodesic triangulation of U into a

2-skeleton of the topological tetrahedron and every triple of them form vertices of a
strictly convex triangle in an open hemisphere. Therefore, there is no closed hemisphere
in U containing all of them. Hence, we obtain a strict saddle vertex. �

We will need the following much later:

Lemma 2.3. Suppose that f : Σ → M is a triangulated imbedding. Let v be a vertex
of f and f ′ : Uv → UM

v be the induced map from the link of v in Σ to that of v in
M . Suppose that there exists a segment l of length > π in UM

v with endpoints in the
image of f ′ separating two points in the image of f ′ so that the minor arc xy meets l
transversely. Then v is a strict saddle vertex.

Proof. If a closed hemisphere contains l, then it must contain l in its boundary. There-
fore, x or y is not in the hemisphere, and there is no closed hemisphere containing l
and x and y. �

Given an oriented surface, a convex vertex is either a convex vertex or a concave
vertex depending on whether the supporting local half-space is in the outer normal
direction or in the inner normal direction.

Proposition 2.4. A vertex of an oriented imbedded triangulated surface is either a
saddle-vertex or a convex vertex or a concave vertex.

Proof. Straightforward. �

In this paper, we consider only metrically complete submanifolds, i.e., locally com-
pact ones.

Proposition 2.5. A general hyperbolic manifold M is 2-convex if and only if each
vertex of ∂M is a convex vertex or a saddle-vertex.
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Proof. Suppose M is 2-convex. If a vertex x of ∂M is a concave, we can find a local
half-open space in M with its side passing through x. The side meets ∂M only at
x. From this, we can find a 3-simplex inside with a face in the side. This contradicts
2-convexity of M .

Conversely, suppose that ∂M has only convex vertices or saddle-vertices. Let f :
T − F o → Mo be a local-isometry from a 3-simplex T and a face F of T . We may
lift this map to f̃ : T − F o → M̃o where M̃ is the universal cover of M where f̃ is an
imbedding.

Since M̃ is metrically complete, f̃ extends to f̃ ′ : T → M̃ . Suppose that f does not
extend to f ′ : T → Mo. This implies that f̃ ′(F ) meets ∂M̃ where f̃ ′(∂F ) does not

meet ∂M̃ . The subset K = ∂M̃ ∩ f̃ ′(F ) has a vertex x of ∂M̃ which is an extreme

point of the convex hull of K in the image of F . We can tilt f̃ ′(T ) by a supporting line
l at x a bit and the new 3-simplex meets ∂M̃ at x only. This implies that x is not a
saddle-vertex but a concave vertex, a contradiction. �

3. Crescents

Let M be a metrically complete 2-convex general hyperbolic manifold from now on
and M̃ its universal cover. Let Γ denote the deck transformation group of M̃ → M .

Let Σ be a properly imbedded compact subsurface of an orientable general hyper-
bolic manifold M with more than one components in general. We denote by Σ̃ the
inverse image of Σ in the universal cover M̃ of M . (Σ̃ is not connected in general and
components may not be universal covers of Σ.) We assume that the triangulated M̃ is

in general position and so is Σ̃ under the developing maps.
For each component Σ0 of Σ and a component Σ′

0 of Σ̃ mapping to Σ0, there exists
a subgroup ΓΣ′

0
acting on Σ′

0 so that the quotient space is isometric to Σ0.

Hypothesis 3.1. We will now assume that Σ is incompressible in M with a number of
straight closed geodesics c1, . . . , cn removed.

First, we introduce crescents for Σ̃ which is the inverse image of a surface Σ in a
2-convex general hyperbolic manifold. We define the folding number of crescents and
show that they are bounded above.

We define the highest level crescents, i.e., the innermost crescents in the crescent
with the highest folding number incurring the highest folding number. We show that
closed geodesics avoid the interior of crescents. Given a highest level crescent, we show
that there is an innermost crescent that has a connected I-part to which the closure
of the α-part is isotopic in the crescent by the incompressibility of Σ. These are the
secondary highest-level crescents. We show that the secondary highest-level crescent is
homeomorphic to its I-part times the unit interval.

Next, we show that if two highest-level crescents meet each other in their I-parts
tangentially, then they both are included in a bigger secondary highest-level crescent.

Furthermore, if two secondary highest-level crescents meet in their interiors, then
they meet nicely extending their α-parts. This is the so-called transversal intersection
of two crescents.
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3.1. Definition of crescents. We list here key notions associated with crescents that
are used very often in this paper.

Definition 3.2. Clearly, we require Σ̃ to be a properly and tamely imbedded subsurface
disjoint from M̃ .

• If Σ̃ is not necessarily triangulated but each point of it has a convex 3-ball
neighborhood B where the closure of one of the component of B − Σ̃ is the
closure of a component of a convex 3-ball with a closed triangulated disk with
boundary in ∂B removed. In this case, Σ̃ is said to be nicely imbedded.

• If Σ̃ is a union of triangulated compact triangles but the vertices are not nec-
essarily in general position, we say that Σ̃ is triangulated.

• If Σ̃ is triangulated by compact triangles whose vertices are in general position,
we say that Σ̃ is well-triangulated.

Definition 3.3. We assume that Σ̃ is nicely imbedded at least. A crescent R for Σ̃ is

• a connected domain in M̃ which is a closure of a connected open domain in M̃ ,
• so that its boundary is a disjoint union of a (connected) open domain in Σ̃ and

the closed subset that is the disjoint union of totally geodesic 2-dimensional
domains in M̃ that develops into a common totally geodesic hypersurface in
H3 under dev.

We denote by αR the domain in Σ̃ and IR the union of totally geodesic domains. To
make the definition canonical, we require IR to be a maximal totally geodesic set in
the boundary of R. We say that IR and αR the I-part and the α-part of R.

As usual Σ is oriented so that there are outer and inner directions to normal vectors.

Definition 3.4. The subset Σ̃ ∩ R may have more than one components. For each
component of R − Σ̃, we can assign a folding number which is the minimal generic
intersection number of that a path in the interior of R from αR meeting Σ̃ to reach to
the component. The folding number of R is the maximum of the folding numbers for
all of the components.

Definition 3.5. A sub-crescent S of a crescent R is the closure of a component of
R−A where A is a union of components of Σ̃∩R where we define the I-part to be the
union of maximal domains in the intersection of the IR with S and αS to be ∂S − IS .
In these case R is a super-crescent of S.

Given a crescent S, an ambient folding number is the maximum of the folding number
of super-crescents of S.

A priori, a crescent may have an infinite folding number. However, we will soon
show that the folding number is finite.

Note that a proper sub-crescent has a strictly less folding number than the original
crescent and a strictly greater ambient folding number than the original one.

Definition 3.6. The I-part hypersurface is the inverse image in M̃ under the develop-
ing map of the totally geodesic plane P containing the developing image of the I-part
of the crescent.
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A closed subset K of M̃ is a geometric limit or just limit of a sequence of closed
subsets Ki if for each compact ball B in M̃ , Ki∩B converges to K∩B in the Hausdorff
metric sense.

Definition 3.7. A noncompact domain will be called a crescent if it is bounded by
a (connected) domain in Σ̃ and the union of totally geodesic domains developing into
a common totally geodesic plane in H

3 and is a geometric limit of compact crescents.
Again the I-part is the maximal totally geodesic subset of the boundary of the crescent.
The α-part is the complement in the boundary of the crescent and is a connected open
subset of Σ̃. Of course they need not be limits of the corresponding subsets of the
compact crescents. (See Proposition 3.12 for a related idea.)

Definition 3.8. A crescent is an outer one if its interior to the α-part is in the outer
normal direction of Σ̃. It is an inner one otherwise.

Definition 3.9. The boundary ∂IR of IR is the set of boundary points in the I-part
hypersurface of R. Also, for any subset A of IR, we define ∂A to be the set of boundary
points in the I-part hypersurface. We define Io

R to be the interior, i.e., IR − ∂IR.

Definition 3.10. A pinched simple closed curve is a simple curve pinched at most
three points or pinched at a connected arc. The boundary of the I-part is a disjoint
union of pinched simple curves.

3.2. Properties of crescents. The following is a really important property since this
shows we can use crescents in general hyperbolic manifolds without worrying about
whether the I-parts meet the boundary of the ambient manifold.

Proposition 3.11. Let R be a crescent in a 2-convex ambient general hyperbolic man-
ifold M . Then R is disjoint from ∂M̃ . In fact, if R is compact, then R is uniformly
bounded away from ∂M̃ .

Proof. Suppose that R meets ∂M̃ . Since the closure of αR being a subset of Σ̃ is
disjoint from ∂M̃ , it follows that IR meets ∂M̃ in its interior points and away from the
boundary points in the ambient totally geodesic subsurface P in M̃ .

We find the extreme point of IR ∩ ∂M and find the supporting line. This point has
a local half-space in R. By tilting the I-part a bit by the supporting line, we find a
local half-space in M and in it a local totally geodesic hypersurface meeting ∂M at a
point. This contradicts the 2-convexity of M̃ .

The second part follows from the disjointness of R to ∂M and the compactness of
R. �

The following shows the closedness of set of points of M̃ − Σ̃ in crescents.

Proposition 3.12. Let Ri be a sequence of crescents. Suppose that x is a point of
M̃ − Σ̃ which is a limit of a sequence of points in the union of Ri. Then x is contained
in a crescent.

Proof. Let xi ∈
⋃

j Rj be a sequence converging to x. We may assume that x is not an
element of any Rj .

11
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1
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Figure 1. A 2-dimensional section of crescents R1 and R2 where R2

is 1-nested and is innermost.

Using geometric convergence, there exists a totally geodesic hypersurface P through
x and a geometric limit of a sequence of IRj

converging to a subset D in P .

Then D is separating in M̃ − Σ̃. If not, there exists a simple closed curve γ in M̃
meeting D only once, which means IRj

for a sufficiently large j meets γ only once as
well.

Now, M̃ − D may have more than one components. Since x ∈ D, we take an open
domain L bounded by D and a subset of Σ̃ and whose closure contains x. The closure
of L is a crescent containing x since Rj is a geometric limit of a sequence of compact
crescents Rj,i, i = 1, 2, 3, . . . and we can choose a subsequence from these converging
to L. �

Definition 3.13. Let Σi be a sequence of nicely imbedded surfaces isotopic to Σ. By
the method of above Proposition 3.12, for any sequence of crescents Ri for surface Σi

with a geometric limit K with nonempty interior, it follows that there is a maximal
crescent R contained in K with IR in the geometric limit of a subsequence of totally ge-
odesic hypersurfaces Pi containing IRi

. R is said to be generalized limit of the sequence
Ri.

The definition is needed since we might have some parts of domain degenerating to
lower-dimensional objects. The generalized limit might not be unique. In fact, there
could be two with disjoint interiors.

Proposition 3.14. Suppose that a sequence of crescents Ri converges to a crescent R
in the generalized sense. Then αR is a subset of a limit of any subsequence of Cl(αRi

).

Proof. The union of a totally geodesic 2-dimensional domain and Cl(αRi
) is the bound-

ary of Ri. The limit of a subsequence of the boundary of Ri converges to a subset
containing the boundary of R. �

As usual, we assume that the holonomy group of Σ does not consist strictly of
parabolic or elliptic or identity elements.

A size of a crescent is the supremum of the distances d(x, αR) for x ∈ IR. We show
that this is globally bounded by a constant depending only on Σ.

First, a complementary result is proved:

12



Lemma 3.15. Every x ∈ αR satisfies

d(x, IR) ≤ N

for a uniform constant N depending on M and Σ only.

Proof. If not, since there is a compact fundamental domain in Σ̃, using deck trans-
formations acting on Σ̃, we obtain a sequence of bigger and bigger compact crescents
where the corresponding sequence of the I-parts leave any compact subset of M̃ and
the corresponding sequence of α-parts meets a fixed compact subset of M̃ . Therefore,
we form a subsequence of the developing images of the I-parts converging to a point
of the sphere at infinity of H3.

Let Ri be the corresponding crescents. Then αRi
is a subsurface with boundary in

the I-parts, and αRi
contains any compact subset of Σ̃ eventually.

Let c be a closed curve in Σ with nonidentity holonomy. Let c̃ be a component of
its inverse image in Σ̃. Since c̃ must escape any compact subset of Σ̃, c̃ escape αRi

.
Thus, c̃ must meet all IRi

for i sufficiently large. Since the developing image of c̃ has
two well-defined endpoints, this means that the limit of the sequence of I-parts must
contain at least two points, a contradiction. �

Proposition 3.16. Let M and Σ be as above. Then d(x, αR) for x ∈ IR is uniformly
bounded above by a constant depending only on M and Σ and, hence, there is an upper
bound to the size of a crescent. There is an upper bound to the folding number of
crescents depending only on Σ and M .

Proof. By above Lemma 3.15, αR is in the N -neighborhood A of IR. We draw perpen-
dicular geodesics to IR foliating a subset of M̃ . Each geodesic must meet αR eventually
in A since otherwise αR ∪ IR do not form a boundary of a domain. Therefore, the first
statement is proved.

The second statement follows from the fact that the perpendicular geodesic meets
Σ̃ ∩ A since Σ̃ is properly imbedded. �

Corollary 3.17. Suppose that R is an outer crescent. Then there exists a convex
vertex in αR. That is, the set of vertices of R cannot consist only of concave vertices
and saddle vertices.

Proof. We choose a function f so that IR is contained in the zero set and other level
sets are totally geodesic. f is bounded on αR by Proposition 3.16. Hence, there is a
maximum point. By tilting the totally geodesic plane by a little, we obtain a strictly
convex vertex. �

3.3. Highest-level crescents. Given Σ, there is an upper bound to the folding-
number of all crescents associated with Σ by Proposition 3.16. We call the maximum
the highest folding number of Σ. We perturb Σ to minimize the highest folding number
which can change only by ±1 under perturbations. After this, the folding number is
constant under small perturbations of Σ. If there are no crescents, then the folding
number of Σ is defined to be −1.

Also, the union of all crescents for Σ̃ is in a uniformly bounded neighborhood of Σ̃
with the bound depending only on Σ.
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We say that a 0-folded crescent R is a highest-level crescent if it is an innermost
crescent of an n-folded crescent R′ where n is the highest-folding number of Σ̃ and R
is the innermost one that achieves the highest-level.

Suppose that R is a compact highest-level crescent. Let A1, . . . , An be components of
IR with pinched points removed. Recall that IR lies in a totally geodesic hypersurface.
The outermost pinched simple closed curve αi in the boundary of Ai has a trivial
holonomy. Since R is of highest-level, αi is an innermost curve itself or bounds some
closed curves in Σ̃ ∩ ∂IR. If each αi is as in the former case, then R is said to be an
innermost ball-type crescent, which is homeomorphic to a 3-ball by the incompressibility
condition for Σ.

We have the following important definition:

Definition 3.18. The outer-folding number of Σ̃ is the maximum of the ambient folding
number of an outer highest-level crescents. The inner-folding number of Σ̃ is the
maximum of the ambient folding number of an inner highest-level crescents. The outer-
folding number is −1 if there are no highest-level outer crescents. The inner-folding
number is −1 if there are no highest-level inner crescents.

By Proposition 3.16, the numbers are finite. The maximum of the both of the
numbers are the folding number of Σ̃.

3.4. Outer- and inner-contact points. We can classify the points of Σ̃ ∩ IR when
Σ̃ is well-triangulated: A point of it is an outer-contact point if the point is not in ∂IR
and has a neighborhood in Σ̃ outside Ro ∪ αR; a point is an inner-contact point if the
point is not in ∂IR and has a neighborhood in Σ̃ contained in R. A point is either an
outer-point or an inner point or can be both.

The following classifies the set of outer-contact points. (A similar result holds for
the set of inner points except for (d).)

Proposition 3.19. Suppose that Σ̃ is well-triangulated. For a highest-level crescent
R, the intersection points of Io

R and Σ̃ are either outer-contact points or inner-contact
points. The set of outer-contact points of IR for a highest-level crescent R is one of
the following:

(a) a union of at most three isolated points.
(b) a union of at most one point and a segment or a segment with some endpoints

removed.
(c) a union of two segments with a common endpoint with some of the other end-

points removed.
(d) a triangle with some of the vertices or a boundary segments removed.

The same statement are true for inner-contact points.

Proof. The set of outer-contact points is obviously a union of open cells of dimension
0, 1, or 2. The vertices of the closure of each objects are the vertices of Σ̃.

This follows from the general position of vertices of Σ̃. If the set of outer-contact
points are union of 0- and 1-dimensional objects, then (a), (b), or (c) follows.

If there is a 2-dimensional object, then it contains an open triangle and there cannot
be any other objects not in the closure of it.
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Either the interior of an edge is in ∂IR or it is disjoint from ∂IR since otherwise we
might have four coplanar vertices. �

Definition 3.20. Given a crescent R, we define IO
R to be the IR with the pinched

points, boundary points in the I-part hypersurface, and the segments and triangles in
the outer-contact set as above removed. (We don’t remove the isolated points.)

Note that IO
R may not equal the topological interior Io

R of IR in the totally geodesic
hypersurface.

Remark 3.21. We remark that in cases (b), (c), (d), the set of outer-contact points
(inner-contact points) can separate IR. The set is a disconnecting set of outer-contact
points.

3.5. Closed geodesics and crescents.

Proposition 3.22. Suppose that c is a straight closed geodesic in M not meeting Σ.
Let R be a highest-level crescent. Then

• Each component c̃ of the inverse image of c in M̃ does not meet R in its interior
and the α-parts.

• c̃ could meet R in its I-part tangentially and hence be contained in the I-part.
In this case, R is not compact.

• If l is a geodesic in M̃ eventually leaving all compact subsets, then the above two
statements hold as well. In particular, this is true if M̃ is a special hyperbolic
manifold and l ends in the limit set of the holonomy group associated with M̃ .

Proof. If c̃ meets the α-part of R, then c̃ meets the interior of R.
If a portion of c̃ meets the interior of R, then c̃ ∩ R is a connected arc, say l since

R is a closure of a component cut out by a totally geodesic hyperplane in M̃ − Σ̃ –(*).

Since c̃ is disjoint from Σ̃, both endpoints of l must be in IO
R or in S2

∞ ∩ IR for the
closure IR of IR in the compactified H3 ∪S2

∞. If at most one point of l is in IR, then l
is transversal to IR and the other endpoints l must lie in αR by (*). This is absurd.

If at least two points of l are in IR, then l is a subset of IR. Since c̃ is disjoint from
Σ̃, it follows that c̃ is a subset of IR, and R is not compact.

The only remaining possibility for l is the third one that l ends in S2
∞, l is a subset

of Ro, c̃ = l, and R is noncompact. Suppose that l is a subset of Ro. A point of Ro is
a point of some compact crescent Ri in R since a noncompact crescent is a generalized
limit of compact ones. Therefore, l meets a compact crescent as above, which was
shown to be not possible above. This proves the first two items.

The third item follows similarly.
�

3.6. A highest-level crescent is included in a secondary highest-level cres-
cent.

Proposition 3.23. Let Σ̃ be well-triangulated and R be a highest-level crescent. Then
there exists an innermost crescent R′ containing R so that

• IR′ is connected and has no pinched points or a disconnecting set of outer-
contact points, i.e., IO

R′ is connected.
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• The closure of αR′ is homeomorphic to IR′ and is isotopic to IR′ in R′.
• R′ is homeomorphic to IR′ × [0, 1].
• R′ is inner-most.

Proof. We assume the hypothesis 3.1.
The basic idea is to add some domains by disks in Σ̃ obtained by incompressibility

of Σ̃.
By Proposition 3.22, the interior of R is disjoint from any lifts of c1, . . . , cn.
The first step is to cut off by the I-part hypersurface to simplify the starting crescent :

Suppose that R is compact to begin with. Then R is disjoint from the lifts of c1, . . . , cn

since Σ̃ is disjoint from these. We let S be a crescent obtained from R by cutting
through the I-part hypersurface P and taking the closure of a component of R−Σ̃−P .
We say that S is a cut-off crescent from R. (The ambient folding number and the
folding number may change by cutting off.)

Again S is innermost since otherwise we will have points in S in the other side of Σ̃
than those of R but S ⊂ R.

The ambient level of S is equal to that of R: To reach a point in R from any point
of αR′ for a super-crescent R′, one needs to traverse on a generic path at least the
highest-level times of Σ̂ in R′. S is a sub-crescent of the cut-off crescent S ′ of R′.
Since a path in S ′ is a path in R′ and the ambient level is a maximum value, the
ambient level may increase. However, since we are already at the highest-level, the
equality holds.

We introduce a height function h on S defined by introducing a parameter of hy-
perbolic hypersurfaces perpendicular to a common geodesic passing through IS in the
perpendicular manner. (It will not matter which parameter we choose). We may
assume that h is Morse in the combinatorial sense. (See Freedman-McMullen [13].)

Now, we fatten up S a bit so that we can work with surfaces instead of just topological
objects : If IS does not meet any lifts of c1, . . . , cn, let Nǫ(S) be the neighborhood of S
in the closure of the component of M̃ − Σ̃ containing the interior of S.

We let Nǫ(αS) to be the intersection of Σ̃ with Nǫ(S). Nǫ(S) can be chosen so that

Nǫ(αS) in Σ̃ becomes an open surface compactifying to a surface. There exists a part
I in of the boundary which is a complement in the boundary of Nǫ(S) of Nǫ(αS) and
lies on a properly imbedded surface P ′ perturbed away from the I-part hypersurface
P of S.

Topologically, Nǫ(αS) is homeomorphic to a surface possibly with 1-handles attached
from αS and I is obtained from IS by removing 1-handles corresponding to the pinched
points or the disconnecting set of outer-contact points.

Now we aim to show that Nǫ(S) is a compression body with Nǫ(αS) as the compress-
ible surface in the boundary :

We may extend h to an ǫ-neighborhood of S, which may introduce only saddle type
singularity in Nǫ(αS) − αR where there are only one handles. We modify h so that I
to be in the zero level of h and h < 0 in the interior of S.

We show that there are no critical points of positive type for h: If there is a critical
point of h with locally positive type where h < 0, then we see that in fact there exists a
crescent of higher level near the critical point. The critical point is actually below the
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original I-part hypersurface since only critical points above the I-part hypersurface are
of saddle type. The crescent is obtained by a totally geodesic hyperplane containing
the level set slightly above the critical point. The level of the new crescent is one more
than that of S, which is greater than the highest level, which is absurd.

Since there are no critical point of positive type, π1(Nǫ(αS)) → π1(Nǫ(S)) is surjec-
tive as shown by Freedman-McMullen [13]. There exists a compression body in Nǫ(S)
with a boundary Nǫ(αS)∪S ′ for an incompressible surface S ′ in the interior of S. Since
every closed path in Nǫ(S) is homotopic to one in Nǫ(αS), it follows that S ′ is parallel
to I. Hence, Nǫ(S) is a compression body homeomorphic to I times an interval and
1-handles attached at disks disjoint from I. (S is essentially obtained by pinching some
points of I together and pushing down a bit.)

Next, we reduce the number of components of I:
Suppose now that I is not connected. This means that there are 1-handles attached

to I times an interval joining the components below I. Then Nǫ(S) has a compressing

disk D for Nǫ(αS) dual to the 1-handles. Since ∂D bounds a disk D′ in Σ̃ by the
incompressibility of Σ̃, the closed curve ∂D is separating in Σ̃. Consequently also,
Nǫ(αS) is a planar surface.

The irreducibility of M̃ tells us that D and D′ bound a 3-ball B in the closure of a
component of M̃ − Σ̃. Then B contains at least one component of I.

Figure 2. The dashed arc indicates the tube from the bottom and the
dotted arcs indicated the disks to be attached to the α-parts

By taking a maximal family of compressing disks dual to the 1-handles and regarding
the components of the complements as vertices, we see that the 1-handles do not form
a cycle. Therefore, we choose the compressing disk D of Nǫ(αS) to be the one such that
D and corresponding disk D′ in Σ̃ bounds a 3-ball B containing a unique component
of I.

We take a union of B with Nǫ(S). Then it is an Nǫ-neighborhood of a crescent S ′,
which contains S and αS′ containing αS and IS′ , a subset of IS .
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In fact, S ′ is a union of S and B′ with some parts in I − I ′ removed. Also, clearly,
Nǫ(S ′) is a compression body since it is obtained by taking a union of a cell with a
compression body obtained from Nǫ(S) by splitting along D.

By induction, we obtain a crescent R′′ with IR′′ in IS and the surface I ′ corresponding
to I connected. We say that R′′ is derived from S. Since R′′ is homeomorphic to
a compression body, R′′ is homeomorphic to I times an interval since there are no
compressing disks.

If there are any pinched points in IR′′ or disconnecting outer-contact points, then I ′

would be disconnected. αR′′ has a closure that is a surface since there are no pinching
points.

Since R′′ is an I-bundle, it follows that the closure of αR′′ and IR′′ are homeomorphic
surfaces.

Also, R′′ is innermost: suppose not. Then there exists a component C of R′′ − Σ̃ so
that a generic path in R′′ from αR′′ may meet Σ̃ more than once. Then C ∩R is again
a component of R− Σ̃, which is a contradiction.

Now, we go to the final step. Recall that S was a cut-off crescent from the original
R. If there were more than one cut-off crescents S, then we obtain R′′ for each S.
Suppose that two cut-off crescents S and S ′ adjacent from opposite sides of some
of the components of IS . Since the corresponding R′′ and R′′′ containing S and S ′

respectively does not have any pinched points or separating outer-contact edges, the
unique components of IR′′ and IR′′′ either agree or are disjoint from each other. R′′

and R′′′ cannot be adjacent from opposite side since we can then form a compact
component of Σ̃ otherwise. It follows that one of R′′ and R′′′ is a subset of the other.

Hence, choosing maximal ones among such derived crescents, we see that the con-
clusions of the proposition hold if R is compact. The final result is a product of its
I-part since the final compression body has no 1-handles. This completes the proof in
case R is compact.

If R is noncompact, we follow as before but we choose Nǫ(R) to be tapered down
near infinity.

Recall that M̃ is 2-convex, i.e., the boundary ∂M̃ has only convex or saddle vertices.
Since M̃ can be considered a 2-convex affine manifold, recall the main result of [10]
that any disk with a boundary in a totally geodesic hypersurface P bounds a disk in
P .

Only one component of I maybe noncompact since the boundary of a compressing
disk must bound a compact disk in Σ̃: Otherwise, we have a simple closed curve c in
αR which separates the two noncompact components of I and bounds a compact disk
D in M̃ in one side of Σ̃. D can be pushed inside R by the above paragraph. Thus D
cannot meet any of the lift of c1, . . . , cn. Since Σ̃ is incompressible in the complement
of these lifts, it follows that c also bounds a compact disk in Σ̃. This is a contradiction
since c separates the two noncompact components of I.

Going a back to finding the ambient crescent with desired properties, components
of I involved in cell-attaching operation as above are compact. So the arguments for
noncompact R are the same as above. �
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3.7. Properties of secondary highest-level crescents. If a 0-folded crescent S
contains a highest-level crescent R so that IO

S
is connected and is included in IO

R
, then

we say that S is a highest-level crescent as well. (Actually, it may not be highest-level
since S may not necessarily be contained in an n-folded crescent but only a part of it.)
More precisely, it is a secondary highest-level crescent.

Corollary 3.24. Let R be a secondary highest-level crescent. Then the statements of
Proposition 3.22 hold for R as well.

Proof. The proof is exactly the same as that of Proposition 3.22. �

By taking a nearby crescent inside by changing the I-part hypersurface inwards, we
see that a highest-level crescent could be generically chosen so that the crescent is
compact, the I-part and the α-part are surfaces, and IO-part is truly the interior of
the I-part.

Corollary 3.25. Let R be the compact secondary highest-level outer ( resp. inner )
crescent that is generically chosen. Then R is homeomorphic to the closure of αR times
I, and IO

R is isotopic to αR by an isotopy inside R fixing the boundary of IR.

3.8. Intersection properties of highest-level crescents. We say two crescents R
and S face each other if IR and IS agree with each other in some 2-dimensional part
and have disjoint one-sided neighborhoods.

Proposition 3.26. Assume Σ̃ is well-triangulated as above. If two highest-level outer
(resp. inner) crescents R and S face each other, then there exists a (secondary) highest-
level outer (resp. inner) crescent T with connected IO

T containing both.

Proof. We replace R and S by secondary highest-level crescents with connected IO-
parts. The replacements still face each other or one becomes a subset of another since
I-parts are unique boundary sets. In the second case, we are done.

Since IO
R and IO

S meet in open subsets, either they are identical or we may assume
without loss of generality that the boundary ∂L of their intersection L in IO

R is not

empty. ∂L is a subset of Σ̃ and is a 1-complex consisting of pinched arcs. ∂L is a
set of outer-contact points of S since a neighborhood of ∂L in Σ̃ must be above S.
However, then ∂L must be disjoint from IO

S since IO
S is disjoint from outer-contact set

by definition. Therefore, IO
S

= IO
R

, and S ∪ R is bounded by a component subsurface

of Σ̃, which is absurd.
�

Definition 3.27. Two secondary highest-level outer (resp. inner) crescents R and S
are said to meet transversally if IR and IS meet in a union of disjoint geodesic segment
J , J 6= ∅, mapping into a common geodesic in H3, in a transversal manner such that

• The the closure νR of the union of the components of IR − J in one-side is a
subset of S and the closure νS of the union of those of IS − J is a subset of R.

• The intersection R ∩ S is the closure of S − νR and conversely the closure of
R− νS .

• The intersection αR ∩αS is a union of components of αR − νS in one-side of νS
and, conversely, is a union of components of αS − νR in one side of νR.
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• αR ∪ αS is an open surface in Σ̃.

Proposition 3.28. Given two secondary highest-level outer (resp. inner) crescents R
and S, there are the following mutually exclusive possibilities:

• R and S do not meet in M̃ − Σ̃.
• R ⊂ S or S ⊂ R.
• R and S meet transversally.

Proof. The reasoning is exactly the same as [8] and [9] in dimension two or three. �

4. The crescent-isotopy

The purpose of this section is to prove Theorem C and Corollary D: Assume that Σ
is a closed well-triangulated surface in M which is incompressible in M with a number
of closed geodesics removed. In this section, we will describe our crescent-isotopy steps
of Σ̃. Let Σ̃ have a folding number n achieved by outer and/or inner crescents. We may
assume without loss of generality that there is an outer highest level crescent coming
from an outer or inner crescent. Using such outer crescents, we move first to reduce
the outer level by 1.

Subsection 4.1: The first step is to truncate our surface Σ̃ along vertices, edges
or triangles in order to make highest-level crescents not have outer-contact
points. This may make Σ̃ only triangulated; however, we make small perturba-
tions of vertices to make it well-triangulated.

Subsection 4.2: We use the secondary highest-level crescents to move isotopy
Σ̃ by isotopying the closure of the α-parts to the I-parts. One of the outer or
inner levels strictly decreases.

Subsection 4.3: The result may have some parts which are pleated with infin-
itely many and/or infinitely long pleating geodesics. We perturb these parts so
that we end up with a triangulated surface but with levels not increasing

Subsection 4.4: We do the above for the level n for inner highest-level crescents.
This will decrease the inner level. (The steps are just the same if we reverse the
orientation of Σ̃.) We keep doing this until our outer and inner level become −1

and we have obtained an saddle-imbedded surface isotopic to Σ̃, which proves
Theorem C. Finally, we will prove Corollary D.

4.1. Small truncation moves.

4.1.1. Isotopies. First, we need:

Lemma 4.1. Suppose that Σ̃ has been isotopied in the outward direction by a suf-
ficiently small amount and R is an outer crescent. Then there exists a crescent R′

sharing the I-part hypersurface with R and differs from R by isotopying the α-part
only. Conversely, if Σ̃ has been isotopied in the inward direction and R is an inner
crescent, the same can be said.

Proof. Straightforward. �

We say that R′ is isotopied from R with the I-part preserved. (Of course, this is not
literally so.)
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4.1.2. Small truncations. We may “truncate” Σ at convex vertices and Σ̃ correspond-
ingly and perturb: Let v be a convex or concave vertex and H a local half-open ball
at v containing Σ̃ locally with the side F passing through v.

(a) We may move F inside by a very small amount and then truncate Σ̃ using the

displaced F and add the trace disk T of the truncation to the surface Σ̃.
(b) Then we introduce some equivariant triangulation of T of the truncation and

the truncated Σ̃ without introducing vertices in the interior of T .
(c) We will have to do this for each vertex which is in the orbit of v so that resulting

Σ̃ is still equivariant.
(d) Finally, we perturb all the vertices of Σ̃ by a sufficiently small amount. Here,

the perturbations must be so that the normal vectors to the totally geodesic
triangles also move by small amounts, i.e., the normal vectors move continuously
as well as the vertices themselves. Moreover, no triangle or edge degenerates to
a lower-dimensional object.

The three steps (a)-(c) together are called the small truncation move. Together with
the final step (d), the move is called the perturbed small-truncation move.

For an edge or a triangle e, let F be a neighborhood of e in totally geodesic plane
containing e where F − e lies outside Σ̃. We may move F inside by a sufficiently small
amount and truncate Σ̃. The rest is similar to the vertex case. They are also called
small truncation moves along edges or triangles. After the perturbation, we call the
move perturbed small-truncation move.

We denote by Σǫ the perturbed Σ where the trace disks are less than an ǫ-distance
away from the respective convex vertices and the normal vectors to the triangles are
also less than ǫ-distances from the original vertices. Here, we assume that during the
perturbations Σǫ is isotopied from Σ and the convexity of the dihedral angles do not
change under the isotopy. Thus, if an edge or a vertex is convex after being born, it
will continue to be so as t → 0 and as t grows from 0.

We may also assume that the convex vertex move is equivariant on Σ̃, i.e., the isotopy
is equivariant.

4.1.3. Small truncation moves and crescents. An isotopy of a crescent as we deform Σ is
a one-parameter family of crescents Rt with α-parts in Σ. The above small truncation
moves are isotopies.

We say that a crescent bursts if fixing the totally geodesic hypersurface containing
the I-part of it and isotopying the α-parts in the isotopied Σ cannot produce a crescent
isotopied from the original one.

Such an event happens when a parameter of vertices, edges, or triangles of Σ̃ go
below the fixed totally geodesic hypersurface from the point of view of the crescent. Of
course, a vertex could be a multivertex and all of the new vertices go down. The edge
should be on the face that meets the I-parts of the crescents and the vertex on the edge
that meets the I-part of the crescent. The event could happen simultaneously but the
generic nature of the move shows that at most four vertex submersions, at most three
edge submersions, at most two vertices and one edge submersions, or triangle-, edge-
or vertex-submersions can happen simultaneously. (Basically, at most four vertices can
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lie on a totally geodesic plane while deforming.) Moreover, at the event, the vertex and
the edge must be in the I-part of the crescent and the triangles of Σ must be placed
in certain way in order that the bursting to take place.

Proposition 4.2. Suppose that Σ̃ is well-triangulated. Under a small truncation move
in the outer direction, we can isotopy Σ̃ to triangulated Σ̃ǫ (equivariantly) so that

(i) each outer crescent moves into itself by moving the α-part in the outer direction
and preserving the I-part hypersurface.

(ii) each inner crescent moves into itself union the ǫ-neighborhood of Σ̃ by moving
the I-part hypersurface in the outer direction or preserving the I-part hypersur-
face.

Under a small truncation move in the inner direction, we can deform

(iii) each inner crescent into itself by moving the α-part in the inner direction and
preserving the I-part hypersurface.

(iv) each outer crescent into itself union the ǫ-neighborhood of Σ̃ by moving the
I-part hypersurface in the inner direction or preserving the I-part hypersurface.

All crescents of Σ̃ǫ can be obtained in this way. The highest folding number may de-
crease only under a convex vertex move, and the union of crescents of all levels strictly
decreases under the moves.

Proof. Essentially, the idea is that the move can only “decrease” the associated cres-
cents.

Let R be an outer crescent and Σ̃ moved in the outer direction. Lemma 4.1 implies
(i).

Let R be an inner crescent and Σ̃ be moved in the outer direction. Then again an
isolated submerging vertex is a convex vertex. In this case, we move the I-part inward
so that the submerging vertex stay on the boundary of the I-part. Other cases are
treated similarly. This proves (ii).

(iii) and (iv) correspond to (i) and (ii) respectively if we change the orientation of
Σ.

To show that all crescents of Σ̃ǫ can be obtained in this way: Given an outer crescent
for Σ̃ǫ, we reverse the truncation move. If the I-part of a crescent avoids the trace disks
of the truncation moves, then we simply isotopy the α-parts only.

The trace surface has only concave vertices and saddle-vertices.
Let us start by reversing a vertex truncation move: Let P ′ be a local totally geodesic

hypersurface truncating the stellar neighborhood of a convex vertex v of Σ̃ at some
small distance from v but large compare to our isotopy move distance. Suppose that
v were involved in the convex truncation move. We may assume that P ′ is parallel to
the truncating totally geodesic hyperplane near v used to obtain Σ̃ǫ.

Clearly, P ′ and a small stellar neighborhood of v in Σ̃ǫ bounds a small polyhedron
Rǫ. Let R be the small polyhedron bounded by P ′ and Σ̃.

Suppose that the I-part of a crescent R for Σ̃ǫ are contained in Rǫ. Then it is
contained in a crescent whose I-part meets what are outside the part truncated by P ′.
It is sufficient to show that the ambient crescent is obtained by the above methods.
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We thus assume without loss of generality that the I-part of a crescent R for Σ̃ǫ

meets what are outside the part truncated by P ′. If the I-part does not meet the trace
surface, then we only change the α-parts to obtain a crescent for Σ̃ as above. We may
assume that the I-part of R meets the trace surface without loss of generality.

Assuming that our isotopy was very small, since the I-part meets one of the trace
surface and P ′ is separating, the I-part meets P ′. P ′ intersected with the closure of
the exterior of Σ̃ǫ is a polygonal disk Dǫ. Then Dǫ intersected with the I-part is a
disjoint union of segments.

Extending the I-part of R in R until they meet unperturbed Σ̃, the set of points in
R extends in R into the polyhedrons bounded by P ′ and the stellar neighborhood of
Σ̃.

Since all vertex submersions of Σ̃ǫ can happen by vertices near the convex vertices
of Σ̃ masked off by totally geodesic hypersurfaces such as P ′, we obtain a crescent R′

for Σ̃ preserving the I-part hypersurface of R.
Therefore, R were obtained from R′ by the convex truncation isotopy preserving the

I-part.
For Σ̃ǫ obtained from Σ̃ by small truncations along edges and triangles, very similar

arguments using totally geodesic planes as P ′ parallel to those used in the truncation
process will show the desired results.

Therefore a crescent for Σ̃ǫ is one we obtained by the process in (i).
Let R be an inner crescent for Σ̃ǫ. Then since the vertices moved outward with

respect to Σ̃, they move inward when we reverse the process and we see that R is
isotopied to a crescent for Σ̃ by Lemma 4.1 by preserving the I-part hypersurface.

To show that the highest folding number can only decrease: For a crescent R to
increase the folding number, a vertex must move into IR during the isotopy. We see
that such a vertex must be a convex one. However, the convex vertex can only move in
the direction away from the interior of R. (Even ones after the births obey this rule.)

Also, we can do this construction for Σ̃ simplex by simplex so that the final result
is an equivariant isotopy. �

4.1.4. Perturbations.

Definition 4.3. By a perturbation of a triangulated surface, we mean the perturba-
tions of vertices and corresponding edges and faces accordingly.

By definition, there cannot be generations of edges and triangles to lower-dimensional
objects under perturbations. This applies the the proof of Proposition 4.4:

Proposition 4.4. Suppose that Σ̃ does not have outer-contact points for its outer
highest-level crescents. Then for sufficiently small perturbation, the level of the outer
highest-level crescents of Σ̃ does not increase. Moreover, the outer highest-level cres-
cents of the perturbed Σ̃ do not have outer-contact points.

Proof. The I-part of the crescent set has an image with a compact closure in the
quotient manifold M . Let Σ̃ǫ be an equivariantly perturbed surface parameterized by
ǫ > 0 where Σ̃ = Σ̃ǫ.
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Given δ > 0, we can find ǫ > 0 so that the union of all crescents of Σ̃ǫ is in a
δ-neighborhood of that of Σ̃: If not, there exists a sequence of Ri for Σ̃ǫi converging
geometrically to a crescent R for Σ̃ where R is not in the δ-neighborhood of the union
of all crescents. This is a contradiction.

Suppose that a level increased, say to higher than or equal to n + 1, for a highest
level outer crescent at Σ̃ǫ for some ǫ > 0 if the level of Σ̃ were n for an integer n ≥ −1.
Then by acting by deck transformation to put the level (n+1)-crescents to intersect the

nearby fundamental domains of Σ̃ǫs, we can find a sequence of level n + 1 inner-most
crescent Ri for Σ̃ǫi converging to a some subset in M̃ as i → 0 where ǫi → 0.

We may assume without loss of generality that

• There exists a sequence of points pi ∈ Ri converging to a point p in M̃ where
Ris have level n + 1.

• Let Pi be the totally geodesic hyperplane containing IRi
. Pi has a geometric

limit in a totally geodesic hyperplane P and the normal vectors to Pi converges
to that of P .

• Ri converges geometrically to a closed subset in M̃ with no interior since oth-
erwise there is a generalized limit crescent of level n + 1.

A path γi from a point of αSi
for the largest ambient crescent Si to pi must pass at

least n+1 components of Σ̃ǫi . A subsequence of the closure of the component of Si−Σ̃ǫi

must converge to a closed subset with no interior and and hence a subset of Σ̃. There
is a point xi ∈ Σ̃ǫi on the path γi very close to pi and the path in γi between xi and pi

does not meet Σ̃ǫi. A neighborhood of xi in Σ̃ǫi

is a union of triangles and they must
all converge to triangles outside the interior of R at the end. Since our perturbation
is assumed to be very small, the distance on Σ̃ǫ from x and points of Cl(αRi

) does
not change much as ǫ → 0, the distance on M̃ from x to Cl(αRi

) is bounded above as
well. Since αR is a subset of the limit of a subsequence of Cl(αRi

) by Proposition 3.14,
xi converges to a point x in Io

R, away from the boundary of ∂IRi
. The triangles of Σ̃

containing x are outside the interior of R since otherwise we must have level increased.
Therefore, there is an outer-contact point x, a contradiction. (See figure 3.)

Σ~ε i

R i

Figure 3. Movements of crescents.

Finally, if Σ̃ǫ has outer-contact points for all small ǫ > 0, we have a sequence of
outer-contact points pi for highest-level, i.e., level n, crescents Ri for Σ̃ǫi where ǫi → 0.
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If Ri does not degenerate, then, similarly to above, we obtain an outer-contact point
for a crescent R of Σ̃.

If the sequence of Ri degenerates, then a sequence of triangles in the closure of
their α-part converges to a triangle which contains a limit point of pi as well. Since the
distance of pi to the triangle on Σ̃ǫi are bounded below as shown above, this contradicts
the imbedded property of Σ̃. �

The final result of Subsection 4.1 is:

State 4.5. As a consequence, we now perturb Σ̃ after the small truncation moves for
outer-contact points for highest-level outer crescents, and the result do not have outer-
contact points and have the outer-level kept same or decreased.

4.2. The crescent isotopy.

4.2.1. The crescent-sets. First, we suppose that there are highest-level crescents whose
innermost crescents are outer-direction ones. We will “move” Σ̃ in the outer direction
first to eliminate the outer highest-level crescents.

If the innermost ones are inner-direction, then we can simply change the orientation
of Σ̃ and the discussions become the same. Thus we assume the above without loss of
generality.

As we did in [8] and [9], we say that two highest-level crescents R and S are equivalent
if there exists a sequence of transversally intersecting crescents from R to S; that is,

R = R0,Ri ∩Ro
i+1 6= ∅,S = Rn for i = 1, 2, . . . , n.

• We define Λ(R) to be the union of all highest-level crescents equivalent to the
highest-level crescent R. As before, Λ(R) and Λ(S) do not meet in the interior
or they are the same.

• We define ∂IΛ(R) to be the boundary of Λ(R) removed with the closure of the
union of the α-parts of the crescents in it. Then ∂IΛ(R) is a convex surface.

• We define ∂αΛ(R) as the union of the α-parts of the crescents equivalent to R.

Recall that a pleated surface is a surface where through each point passes a geodesic.

Lemma 4.6. The set

∂IΛ(R) ∩ M̃ − Σ̃

is a properly imbedded pleated surface.

Proof. For each point of x belonging to the above set, x is an element of the interior of
M̃ by Proposition 3.11. Let B(x) be a small convex open ball with center at x. Then
the crescents equivalent to R meet B(x) in half-spaces. Therefore the complement of
their union is a convex subset of B(x) and x is a boundary point. There is a supporting
half-space H in x and H belongs to Λ(R).

If there were no straight geodesic passing through x in the boundary set ∂IΛ(R),
then there exists a totally geodesic disk D in B(x) with ∂D in Λ(R) but interior points
are not in it.

Since ∂D is in Λ(R), each point of ∂D is in some crescent. We can extend D to a
maximal totally geodesic hypersurface and we see that a portion of the hypersurface
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bounds a crescent T containing D in its I-part and overlapping with the other crescents.
Thus T is a subset of Λ(R) and so is D.

Therefore, ∂IΛ(R) − Σ̃ is a pleated surface. �

4.2.2. Outer-contact points of the crescent-sets. We may have some so-called outer-
contact points of Σ̃ at ∂IΛ(R), i.e, those points with neighborhoods in Σ̃ outside
Λ(R). We can classify outer-contact points.

Proposition 4.7. Assume Σ̃ is well-triangulated. The set of outer-contact points on
∂IΛ(R) is a union of the following components:

• isolated points,
• an arc passing through the pleating locus with at least one vertex.
• isolated triangles,
• union of triangles meeting each other at vertices or edges.

Proof. This essentially follows by Proposition 3.19. �

4.2.3. Crescent isotopy itself. Recall that the final resulting Σ̃ in State 4.5 is a well-
triangulated surface whose highest level outer crescents do not have any outer contact
points.

First,we show that

(1) ∂IΛ(R) ∪ (Σ̃ − ∂αΛ(R))

is a properly imbedded pleated surface.
We do this for Λ(R) for each highest-level crescent R obtaining as the end result a

properly imbedded surface Σ̃′. The deck transformation group acts on Σ̃′ since it acts
on the union of Λ(R). Thus, we obtain a new closed surface Σ′.

Since the union of Λ(R) for every highest-level crescent R is of bounded distance
from Σ̃ by the boundedness and the fact that M is locally-compact, Σ′ is a compact
surface.

4.2.4. The isotopy. We show that Σ and Σ′ are isotopic.
Let N be the ǫ-neighborhood of Σ̃′ in the closure of the outer component of M̃ −

Σ̃. There exists a boundary component ∂1N nearer to Σ̃ than the other boundary
component. The closure of a component K of M̃ − Σ̃ − Σ̃′ contains ∂1N . Then K
projects to a compact subset of M . We can find a finite collection of generic secondary
highest-level compact crescents R1, . . . ,Rn and whose images under Γ form a locally
finite cover of K.

We label the crescents by S1,S2, . . . . We know that replacing the closure of the α-
part of S1 by the I-part is an isotopy. After this move, S2,S3, . . . become new generic
highest-level crescents by Proposition 3.28 and appropriate truncations.

We define ∂I(S1 ∪S2 ∪ . . . ) as the boundary of S1 ∪S2 ∪ . . . removed with the union
of the α-parts of S1,S2, . . . . Again, this is a convex imbedded surface. Therefore,
replacing the union of the α-parts of S1,S2, . . . by ∂I(S1 ∪ S2 ∪ . . . ) is an isotopy as
above.

We obtain ΣR1,...,Rn
as the image in M , which is isotopic to Σ. If ǫ is sufficiently

small, then we see easily that ∂I(S1 ∪ S2 ∪ . . . ) in N can be isotopied to Σ̃′ using rays
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perpendicular to Σ̃′. Thus, ΣR1,...,Rn
is isotopic to Σ′. We showed that Σ′ is isotopic to

Σ. �

4.2.5. The strict decreasing of the levels. We show that our isotopy move decreases the
level strictly.

Proposition 4.8. If Σ′ is obtained from Σ by the highest-level outer crescent move
for level n for an integer n ≥ 0, then the union of the collection of crescents of Σ̃
contains the union of those of Σ̃′, and Σ̃′ has no outer highest-level crescent of level n
or higher for an integer n ≥ 0. The level of the highest level outer crescents of Σ̃′ is
now ≤ n − 1. The level for inner highest-level crescents stays the same or may drop.
The same statements hold if we replace the word “outer” by “inner”.

Proof. The outer highest-level crescents for Σ̃′ can be extended to ones for Σ̃ since their
I-part can be extended across.

The inner highest level crescents for Σ̃′ can be truncated to ones for Σ̃ by Lemma
4.1 since the move from Σ̃′ to Σ̃ is inward and supported by the outer crescents of Σ̃.
Thus the first statement holds.

If there were outer highest level crescent R of level n or higher, then we can extend
IR across the I∂-parts so that we can obtain a level-n or higher-level crescent. Such a
crescent would have been included in the crescent set and should have been isotopied
away.

If R were inner highest level one, Lemma 4.1 implies the result. �

We apply our methods of Subsection 4.2.3 to obtain Σ′ which we now let it be Σ.

State 4.9. Σ̃ now has no outer crescents of level n. However, it may not be triangulated.

4.3. Convex perturbations. In this subsection, we modify Σ̃, which now has partial
pleating, obtained above further. We discuss how a surface with a portion of itself
concavely pleated by infinitely long geodesics and the remainder triangulated can be
perturbed to a triangulated surface without introducing higher-level crescents. This is
done by approximating the union of pleating geodesics by train tracks and choosing
normals in the concave direction and finitely many vertices at the normal and pushing
the pleating geodesics to become geodesics broken at the vertices.

4.3.1. Pleated-triangulated surfaces. We will describe Σ̃ as a “pleated-triangulated”
surface. We will then perturb the crescent-isotopied Σ into a triangulated surface not
introducing any higher-level crescents.

Suppose that Σ′ is a closed imbedded surface in M . Σ′ is a pleated-triangulated
surface if

• Σ̃′ contains a closed 2-dimensional domain divided into locally finite collection of
closed totally geodesic convex domains meeting each other in geodesic segments,

• through each point of the complement in Σ̃′ passes a straight geodesic in the
complement.

We may also add finitely many straight geodesic segments in the surface ending at the
domain.
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• The domain union with the segments is said to be the triangulated part of Σ′.
The boundary of the domain is a union of finitely pinched simple closed curves.

• The complement of the domain is an open surface, which is said to be the
pleated part where through each point passes a straight geodesic.

• The pleated part has a locus where a unique straight geodesic passes through.
This part is said to be the pleating locus. It is a closed subset of the complement
and forms a lamination.

• If we remove the closure of the pleated part from Σ̃′, we obtain a locally finite
collection of totally geodesic convex domains meeting each other in edges and
vertices. The convex domains, edges, and vertices are in general position.

For later purposes, we say that Σ′ is truly pleated-triangulated if the triangulated
part is a union of totally geodesic domains that are convex polygons (i.e., finite-sided)
and geodesic segments ending in the domains.

While the triangulated parts and pleating parts are not uniquely determined, we
simply choose what seems natural. We also assume that the pleated part is locally
convex or locally concave. We usually choose a normal direction so that the surface is
locally concave at the pleated part.

If Σ′ satisfies all of the above conditions, we say that Σ′ is a concave pleated-
triangulated surface. If we choose the opposite normal-direction, then Σ′ is a convex
pleated, triangulated surface.

Proposition 4.10. Suppose that Σ is as in State 4.9 where n, n ≥ 0, is the highest-
level for the surface before the applications of methods in Subsection 4.2.3 which is
realized by outer-crescents. Then Σ is a concave pleated-triangulated surface in the
outer direction. The level of highest-level outer crescents of Σ̃ is ≤ n − 1 and the level
of highest-level inner crescent of Σ̃ is less than or equal to n. Moreover, the statements
are true if all “outer” were replaced by “inner” and vise-versa and the word “concave”
by “convex”.

Proof. The part ∂IΛ(R) − Σ̃ for crescents Rs are pleated by Lemma 4.6. These sets
for crescents R are either identical or disjoint from each other as the sets of form Λ(R)
satisfy this property. The union of sets of form ∂IΛ(R) comprise the pleated part and
the complement in Σ′ were in Σ originally and they are the union of totally geodesic
2-dimensional convex domains.

The rest is proved already in Proposition 4.8. �

4.3.2. The geometry and topology of pleating loci. Two leaves in a pleating locus are
converging if one is asymptotic to the other one (see Section 6.1 for definitions); i.e.,
the distance function from one leaf to the other converges to zero and conversely. By
an end of a leaf of a lamination wrapping around a closed set, we mean that the leaf
converges to a subset of the closed set in the direction of the end.

The main idea of classifying the pleating locus are from those of Thurston as written
up in Casson-Bleiler [7].

Lemma 4.11. Suppose that Σ′ is a closed concave pleated-triangulated surface with a
triangulated part and pleated part assigned. Suppose that l is a leaf. Then
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• l is either a leaf of a minimal geodesic lamination or a closed geodesic, or each
end of l wraps around a minimal geodesic lamination or a closed geodesic or
ends in the boundary of the triangulated part.

• if l is isolated from both sides, then l must be a closed geodesic, and
• pleating leaves in a neighborhood of l must diverge from l eventually.

Proof. Since the pleated open surface carries an intrinsic metric which identifies it to
a quotient of an open subset of the hyperbolic space, each geodesic in the pleating
lamination will satisfy the above properties like the geodesic laminations on the closed
hyperbolic surfaces. The first item is done.

For second item, if l is isolated from both sides, then there is a definite positive
angle between two totally geodesic hypersurfaces ending at l. Suppose that l is not a
simple closed geodesic. Then this angled pair of the hypersurfaces continues to wrap
around infinitely in M accumulating at a point of M and the sum of the angles violates
the imbeddedness of Σ′. (This is an argument in Thurston [17] to show the similar
argument for the boundary of the convex hulls.)

For the third item, if l is not isolated but has converging nearby pleating leaves, the
same reasoning will hold as in the second item. �

Proposition 4.12. Suppose that Σ′ is a closed concave pleated-triangulated surface.
Let Λ be the set of pleating locus of the pleated part in Σ′. Then Λ decomposes into
finitely many components Λ1, . . . , Λn so that each Λi is one of the following:

• a finite union of finite-length pleating leaves homeomorphic to a compact set
times a line with endpoints in the triangulated part. ( A discrete set times a
line if Σ′ is truly pleated-triangulated. )

• a simple closed geodesic.
• a minimal geodesic lamination, which is a closed subset of the pleated part

isolated away from the triangulated part.

Here each leaf is either bi-infinite or finite. The union of bi-infinite leaves is a finite
union of minimal geodesic laminations and is isolated away from the triangulated part
and the union of finite-length leaves.

Proof. Let l be an infinite leaf in the pleating locus. By Lemma 4.11, l is not isolated
from both sides and the leaves in its neighborhood is diverging from l. If l is not itself
a leaf of a minimal lamination, then an end of l must converge to a minimal lamination
or a simple closed geodesic. This means that leaves in a neighborhood also converges
to the same lamination in one of the directions. However, this means that they also
converges to l, a contradiction. Therefore, each leaf is a leaf of a minimal lamination
or a closed geodesic or a finite length line.

The union of all finite length lines in the pleating locus is a closed subset: Its
complement in Λ is a compact geodesic lamination in Σ′. If a sequence of a finite length
leaves li converges to an infinite length geodesic l, then li gets arbitrarily close to a
minimal lamination or a closed geodesic. If li gets into a sufficiently thin neighborhood
of one of these, then a neighborhood of an end of li must be in a sufficiently thin
neighborhood of one of these by the imbeddedness property of li, i.e., cannot turn
sharply away and go out of the neighborhood. As li ends in the triangulated part, the
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distance from the triangulated part to one of these goes to zero. Since the domains
in the triangulated part are in general position, the boundary of the triangulated
part cannot contain a closed geodesic or the straight geodesic lamination. This is a
contradiction.

Looking at an ǫ-thin neighborhood of Λ, we see that Λ decomposes as described.
(See Casson-Bleiler [7] for background informations). �

Remark 4.13. If Σ′ is truely pleated-triangulated, then there are only finitely many
finite length pleating leaves since their endpoints are on the vertices of the polygons in
the triangulated part.

Lemma 4.14. A line l in the pleating locus of a pleated-triangulated surface cannot
end in an interior of a segment s in the boundary of the pleated part.

Proof. First suppose l is isolated. Then the boundaries of totally geodesic planes in its
side must contain open segments in s, and the planes have to be identical, contradicting
that l is in the pleating locus.

Suppose that l is not isolated. Then the nearby leaves of the foliation must end
at the same place as l; otherwise, we get that the nearby totally geodesic planes are
identical. If they all end at the same place, again a similar reasoning shows that the
nearby geodesic planes are identical. These contradicts the fact that l is in the pleating
locus. �

4.3.3. The perturbation moves. Recall that our surface Σ̃ is pleated triangulated and
has level n, achieved by innermost inner-crescents, for an integer n ≥ 0. The outer
level is less than or equal to n − 1.

A train track is obtained by taking a thin neighborhood of the lamination. We can
think of the train track as a union of segment times an interval, so-called branches,
joined up at the end of each segment times the intervals so that the intervals stacks up
and matches. A point times the interval is said to be a tie and a tie where more than
one branches meet a switch. One can collapse the interval direction to obtain a union
of graphs and circles. For more details, consult Casson-Bleiler [7].

We will perturb the pleating locus to obtain our well-triangulated surface. We de-
scribe our results divided in Theorem 4.16.

The first step (I) of the perturbation move: Let l1, . . . , lk be the thin strips
containing all the finite length open leaves ending at the triangulated parts. We
find a thin totally geodesic hypersurface Pi near lis nearly parallel to lis. Then
we cut off the neighborhood of li in Σ by Pi and replace the lost part with
the portion in Pi. This introduces squares which are triangulated into pairs of
triangles.

We now remove the union of the squares from the pleated part and add the
union to the triangulated part. Now we retriangulate the triangulated part.
They will be immobile during the pertubations now.

This forms a generalization of a small truncation move. We still call it a
small truncation move. –(*)

As in Proposition 4.2, we don’t increase the level and we remove some of the
outer-contact points.
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Finally, we do remove all of the outer-contact points in the triangulated part,
i.e., the closed set consisting of the compact totally geodesic domains.

The step (II) of the perturbation move: Now, every component of the pleat-
ing locus is contained in a minimal lamination. The set of pleated locus is a
union of finitely many minimal laminations.

Definition 4.15. In the pleated part, we define the minimal pleated part as the
intrinsic convex hull in the closure of the pleated part of the union of bi-infinite
pleating geodesics with respect to the intrinsic metric obtained by piecing the
pleated parts together. The minimal pleated part is a subsurface of the pleated
part which is the closure of the union of totally geodesic subsurfaces bounded
by the bi-infinite pleating geodesics.

The boundary of the minimal pleated parts is a union of simple closed curve
which might be a broken geodesic or just a geodesic. We triangulate the closure
of the complement of the minimal pleated part, which will be added shortly to
the triangulated part. This may introduce vertices at the boundary of the
minimal pleated part.

We now add finite leaves of infinite length in the minimally pleated part
so that the components of the complement of the union of the pleating locus
and these leaves are all open triangles. These can start from the vertices at
the boundary of the minimal pleated part. This can be done even though the
boundary of the pleated part is not geodesic.

By choosing sufficiently small ǫ-thin-neighborhoods of the union for ǫ > 0,
we obtain a train track. We obtain a maximal train track.

We first choose switches for the endpoint of the finite length geodesics in the
squares and added infinite length finite leaves. (The switches are transverse
arcs.) We choose switches for the rest. We label them I1, . . . , Im. We may have
a uniform bound on m depending only on the Euler characteristic of the open
pleated part surface and a uniform lower bound to the distances between any
two of Ii. (Note here m is bounded above by a constant depending only on Σ
as Σ has CAT(−1) metric and Thurston’s theory of geodesic laminations hold
for such surfaces)

By choosing ǫ > 0 sufficiently small, we can assume that the outer-normal
vectors to totally geodesic hypersurfaces meeting Ii are δ-close for a small δ > 0
except the outer-normal vectors to the totally geodesic hypersurfaces corre-
sponding to the complementary regions of the train track. (Here the outer-
normal is in the concave directions.)

The union of Iis with the leaves of the train tracks divides the pleated part
into infinitely squares with two sides within Iis and polygons with some edges
in Iis. We regard the endpoints of Ii in edges of some polygons to be a vertex
and we retriangulated these accordingly. We can assume that there is a lower
bound to the length of each edges which are not in Iis. In fact, we can assume
that the ratios of the edges not in Ii to those in Ii are greater than 1000.
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Topologically, the train track collapses to a union of graphs with vertices
corresponding to I1, . . . , In and closed geodesics, and the complement becomes
a union of totally geodesic triangles.

We now do the collapsing geometrically: We choose one of the normal vectors
and a generically chosen point xi on the normal vector γ-close to Ii, where γ
is a small positive number. We push all the points of Ii to xi to obtain a train
track τǫ,δ,γ and the complementary regions move accordingly to disks divided
into compact totally geodesic geodesic triangles with vertices in the train track
τǫ,δ,γ and in triangulated part. (xis are said to be pleated part vertices.)

We claim that then the triangles are very close to the original triangles in their
normal directions as well as in the Hausdorff distance since the edge lengths
of the triangles are bounded below. Since there are no rapid turning of the
complementary geodesic triangles, we can be assured that the new surface is
imbedded by integrations. We can see this by looking at a cross-section, which
is a function of bounded variations.

The leaves of the laminations are moved to become a train track in the normal
direction which is a concave direction. Thus the leaf is bent against the concave
direction. The triangles meeting the endpoints of Ii of almost the same direction
as before and hence have angles < π by concavity. Lemma 2.3 shows that the
pleated part vertices are strict saddle vertices.

Figure 4. Making the boundary vertices of the pleated part into
saddle-vertices.

Of course, here there are many choices and the combinatorial structure of
the triangulations will change according to the choices.

There is a slight modification when n = 0: Since we started from well-
triagulated Σ̃. All vertices in the interior of the triangulated parts are strict
saddle vertices or convex vertices and the vertices in the boundary of the trian-
gulated part are saddle vertices as there are no outer crescents by Corollary 3.17.
By Lemma 2.2, we perturb the vertices in the boundary of the triangulated part
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to be strict saddle vertices. The adjacent component of the pleated part with
the pleating locus removed is totally geodesic. By introducing finite geodesic
leaves, we see that the pleating locus will become larger including these leaves.
By taking a sufficiently small perturbation at the boundary vertices, this will
not change the vertex type of all vertices in the triangulated part. Also, we
choose a train track for the pleating minimal lamination. The angles between
the adjacent totally geodesic planes across the switches square are less than π.
We further require that we perturb the boundary vertices by sufficiently small
amount so that the angles are still less than π. Finally, we perturb the pleated
parts as above introducing pleated part vertices.

(Clearly, we can do the above collapsing and the perturbations equivariantly).

Theorem 4.16. Let Σ′ be a closed concave pleated, triangulated surface where the
outer highest level crescents have level n − 1 for an integer n, n ≥ 0. Then one can
find an imbedded isotopic well-triangulated surface Σ′′ in any ǫ-neighborhood of Σ′ by
the above methods of perturbations so that the following hold.

(i) The union of the set of crescents for Σ̃′′ is in the ǫ-neighborhood of that of Σ̃′

and vice-versa for a small ǫ if we choose Σ̃′′ sufficiently close to Σ̃′.
(ii) The pleated part vertices are strict saddle-vertices.

(iii) The level of the outer highest-level crescents for the resulting surface Σ̃′′ is less
than or equal to n − 1 and the level of inner highest level crescents for Σ̃′′ is
less than or equal to that of Σ̃′.

(vi) In particular, if Σ̃′ has no outer (resp. inner) crescent, then Σ̃′′ contains no

outer (resp. inner) crescent. If there were no outer and inner crescents, Σ̃′′ is
saddle-shaped.

Proof. (i) This matters for crescents that are inner if the perturbations are inner and
ones that are outer if the perturbations are outer: In other cases, Lemma 4.1 shows
that reversing the perturbation process gives us back all of our old crescents preserving
the I-part hypersurface.

Suppose that we have the perturbed sequence Σ′
i closer and closer to Σ′, and there

exists a sequence of crescent Ri for Σ′
i not contained in a certain neighborhood of the

union of crescents for Σ′. Then the limit R of Ri is still a crescent for Σ′ and is not in
the neighborhood. This is absurd.

(ii) This is proved above.
(iii) Let n − 1 be the level of outer highest-level crescents of Σ′.
As stated earlier, the perturbation step (I) does not increase the level.
Let us discuss what are the outer-contact points of outer highest-level crescents,

where we are no longer assuming the general position property of Σ̃′:
Let R be a highest-level crescent with outer-contact points. There could be points

of the minimal sets pleated parts meeting tangentially the I-part of R. If not, then
they are on the triangulated part. In these cases, we do the small truncation move.
This will not increase the folding number.

The minimal sets in pleated part may meet the crescents only tangentially at the
I-part or meet the closures of the α-parts of the crescents: If not, then the minimal
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pleated part must pass through the interior of a crescent and this implies that a bi-
infinite pleating geodesic pass through the interior. By Proposition 3.22, this is a
contradiction.

If a minimal set in the pleated part meets the I-part of a crescent, then the closure of
a certain number of pleated leaves are in the I-part. Thus, it is clear that the complete
geodesic leaf or the closure of a complement of the pleating locus in the minimally
pleated part equals the set of outer-contact points of the I-part.

We now move vertices of the train tracks of the pleating laminations by a very
small amount according to the perturbation step (II). (The crescents do move in its
ǫ-neighborhood.)

We choose the ǫ-neighborhood sufficiently small so that any new component of Σ̃′

intersected with crescents may not arise as Σ̃′ is deformed: The small truncated places
may be avoided by taking ǫ-sufficiently small.

Since any crescent during the perturbation cannot meet the minimal pleated part
in its interior and its α-part by Proposition 3.22, the I-part of crescents and crescents
themselves close to the minimal pleated part lie below the minimal pleated part or may
meet the minimal pleated part but cannot pass through it.

Let us choose a sequence ǫi → 0 of positive real numbers ǫi and a sequence of
approximating isotopic surfaces Σǫi → Σ′. We assume that they all have the same
number of vertices by introducing finer triangulations if necessary. We can complete
the sequence Σǫi to a one-parameter family since any two triangulation with same
number of vertices on a closed surfaces are related by elementary moves. (Of course,
there is a skipping around a tetrahedron during the elementary move. See Figure 5)

Figure 5. An elementary move and a skipping a tetrahedron.

Suppose that the outer-level became n or higher for Σǫi for every i. Choose an index
i. Then there is a vertex v of Σ̃ǫi in the interior of a crescent R of Σ̃ǫi of level n so
that a component C of Σ̃ǫi ∩Ro containing v is in the α-part of an innermost crescent
realizing the level n.

If v is from the triangulated part and n ≥ 1, then by letting i → ∞, we obtain an
outer-contact point as in Proposition 4.4. This was ruled out by the perturbation step
(I).
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Suppose that n = 0. Then all vertices in the interior of the triangulated parts
are strict saddle vertices or convex vertices and the vertices in the boundary of the
triangulated part are saddle vertices after the perturbation step (II) by construction.

The vertex v cannot come from the triangulated part.
Since the vertex v is from the pleated part of Σ̃′, it follows that v is a saddle-type

vertex. Moreover each vertex of C are saddle-type by the same reason. Corollary 3.17
gives us a contradiction.

Since our move is toward outside only, we see that the set of inner crescents decrease
only and hence the inner level do not increase.

(iv) The first part follows from (iii).
If Σ̃′ has no inner or outer crescents, the first part of (iv) shows that we can construct

Σ̃′′ with no crescents. This implies that Σ̃′′ is saddle-imbedded.
�

We now do small truncation moves to Σ̃ so that outer highest-level crescent of level
now n− 1 has no outer-contact points. We now perturb the triangles so that resulting
Σ̃′′ is well-triangulated. As in Application 4.5, we see that the outer level of Σ̃′′ is still
n − 1.

State 4.17. Applying the method of this section, we obtain a well-triangulated Σ̃ with
outer level n − 1 and the inner level ≤ n.

4.4. The proof of Theorem C and Corollary D.

4.4.1. Isotopy sequences. We review the outer level n crescent moves. We temporarily
denote the result of the move after each move —(*):

(i) the small truncation moves for outer highest-level crescents: Σ̃(i).

(ii) the crescent-isotopy for outer highest-level crescents: Σ̃(ii).
(iii) the convex perturbations which involves small truncation moves: Σ̃(iii).

Let n be the highest level for Σ̃. First, we do the above outer highest-level crescent
moves of level n.

We should worry about one issue here with regards to c1, . . .cn: After the step (ii),
we may find Σ̃(ii) meeting a lift of one of these. In which case, a lift li for some i is
contained in the I-part of a secondary highest level crescent. In this case, ci1

, . . . , cik

is a subset of the image surface Σ(ii) for some integer k ≥ 1.
Choose an arbitrary j. The deck transformation acting on lij preserves the I-part

of the secondary highest level crescent since otherwise we get more secondary highest
level crescent around lij completing the 2π-angle and hence lij can’t be in Σ̃(ii). Thus
the holonomy of cij

is hyperbolic, i.e., loxodromic without rotational part.
Let P1, . . . , Pm be the 1-complexes which are components of the union of ci1

, . . . , cik
,

which could just be the disjoint union of the closed curves themselves.
After the convex perturbation (iii), we find the 1-complex P ′

i in Σ(iii) approximating
Pi: What happens actually is that in case Pi is a simple closed geodesic, then P ′

i is
perturbed to have saddle vertices only, and in case Pi is a true 1-complex with singu-
larities, then there is a totally geodesic subsurface Si with boundary, and the boundary
vertices are perturbed to become saddle vertices and Si is isotoped accordingly to S ′

i
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without introducing any interior vertices and Pi is isotopied to P ′
i on S ′

i accordingly.
Since the holonomies of closed curves on Si are without rotational parts, we assume
without loss of generality that we moved Pi to P ′

i in a fixed angle to the Σ(ii) (perpen-
dicularly in the second case). Let P̃i be the inverse image of Pi in Σ̃(ii), and P̃ ′

i be that

of P ′
i . Thus P̃i and P̃ ′

i lie on a union of totally geodesic planes Li in a fixed angle to
the I-part of a crescent for Σ̃(ii), where a 2-complex Di is bounded by P̃i and P̃ ′

i . (Di

maps to a compact 2-complex in M .)
Recall that our isotopies are in the outer-direction and the convex perturbation was

also in the outer-direction.

Lemma 4.18. • If P ′
i is a closed geodesic, then a highest level crescent R of Σ̃(iii)

may meet a lift of P ′
i in M̃ only in an α-part by a connected subarc.

• If P ′
i is a true 1-complex with singularities, then a highest level crescent R of

Σ̃(iii) may meet a component of the inverse image of S ′
i in M̃ in a connected

surface.
• In both case, when meeting, the I-part of a crescent for the isotopied Σ̃ passes

Di and hence the I-part is in the inner direction of the isotopied Σ̃.

Proof. If P ′
i is a simple closed curve, then P ′

i is an arc bent in the inner-direction. Also,
S ′

i is bent in the inner-direction since the deck transformations corresponding to S ′
i acts

on a totally geodesic hypersurface Hi containing lijs and hence is a Fuchsian subgroup.
The result follows from this. �

Finally, we let Σ = Σ(iii). During the isotopy, Σ may pass through these cij
s. Thus,

Σ may no longer be incompressible.
The next step is that we do the inner highest-level crescent moves of level n.
Here, the incompressibility may not hold: however, the only place we need incom-

pressibility is when we show that there is a secondary highest-level crescent containing
a given highest-level crescent: We need to show that each boundary curve c of the
perturbed I-part of a highest-level crescent which is an innermost component in the
perturbed I-part bounds a disk in Σ̃. If c does not meet P̃ ′

i , then the argument is the

same since Σ̃ − P̃ ′
i is incompressible. If c does meet P̃ ′

i , then we reverse the convex
perturbation move and the isotopied c′ from c is a closed curve in M̃ and hence bounds
a disk D in Σ̃(ii) before the convex perturbations (regarding the cij

to be pushed out-

ward from Σ̃(ii) by a small amount). D meets the the corresponding inverse images of
Pi and Hi in regions. Since Pi and Hi are isotopied by a very small amount, we can
isotopy D to D′. Thus, c bounds a disk in the convex perturbed Σ̃(iii).

If Σ̃(iii) passed over Pi, then Lemma 4.18 shows that the inner level n crescent move
can only move P ′

i closer to Pi since the direction of the crescent is now reversed but

cannot pass Pi. Since the perturbation can be controlled, we see that the result Σ̃′ of
the inner level n crescent move, there is P ′′

i very close to Pi also.
We go to the level n−1 and so on. We see that the inner and outer level strictly de-

creases until there are no more crescents. Therefore, the final result is saddle-imbedded.
Moreover the union of the set of crescents is contained in the ǫ-neighborhood of the

union of the set of crescents in the previous step.
This completes the proof of Theorem C. �
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We now prove Corollary D: Assume as in the premise of the corollary that M is a
codimension 0 compact submanifold of a general hyperbolic manifold N .

We modify the boundary surface ∂M according to Theorem C. The final result is
an imbedded closed surface Σ bounding a compact region by our construction. We let
this region to be our isotopied manifold M ′. �

Remark 4.19. The vertices of the boundary of M ′ are strict saddle-vertices: We start
from general position ∂M so that each saddle-vertex is a strict saddle-vertex (see
Theorem 4.16). Newly created vertices in the interior of the pleated part after the
crescent isotopies are all strict saddle-vertices. The boundary vertices of the pleated
part at level 0 are perturbed to be strict saddle-vertices. Finally, we no longer have
any convex or concave vertex left at M ′.

Part 2. General hyperbolic 3-manifolds and convex hulls of their cores

5. Introduction to Part 2

A hyperbolic triangle is a subset of a metric space isometric with a geodesic triangle
in the hyperbolic plane H2. If the ambient space is a 3-dimensional metric space, then
we require it to be totally geodesic as well and develop into a totally geodesic plane in
the hyperbolic space H

3.
A general hyperbolic manifold M is a metric space with a locally isometric immersion

dev : M̃ → H3 from its universal cover M̃ . dev has an associated homomorphism
h : π1(M) → Isom(H3) given by dev ◦ γ = h(γ) ◦ dev for each deck transformation
γ ∈ π1(M). We require that the boundary of M triangulated by totally geodesic
hyperbolic triangles.

A 2-convex general hyperbolic manifold is a general hyperbolic manifold so that a
isometric imbedding from T o ∪ F1 ∪ F2 ∪ F3 where T o is a hyperbolic tetrahedron in
the standard hyperbolic space H3 and F1, F2, F3 its faces extend to an imbedding from
T .

The main result of Part 2 is:

Theorem 5.1. The universal cover of a 2-convex general hyperbolic manifold is CAT(−1).

A hyperbolic-map from a triangulated hyperbolic surface is a map sending hyperbolic
triangles to hyperbolic triangles and the sum of angles of image triangles around a
vertex is greater than or equal to 2π.

Theorem 5.2. Let Σ be a compact hyperbolically-mapped surface relative to v1, . . . , vn

into a general hyperbolic manifold and suppose that each arc in ∂Σ − {v1, . . . , vn} is
geodesic. Let θi be the exterior angle of vi with respect to geodesics in the boundary of
Σ. Then

(2) Area(Σ) ≤
∑

i

θi − 2πχ(Σ).

Note that in this part, by a geodesic we mean the geodesic with respect to the
ambient manifold M unless we state otherwise that it is a geodesic in an submanifold,
say of codimension-one.
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The convex hull of a homotopy-equivalent closed subset of a general hyperbolic
manifold M is the image in M of the smallest closed convex subset of containing the
inverse image of the closed subset in the universal cover M̃ of M . We can always choose
the core C to be a subset of Mo.

Theorem 5.3. Let convh(C) be the convex hull of the core C of a 2-convex general
hyperbolic manifold. We assume that C is chosen to be a subset of Mo and ∂C is saddle-
imbedded. Suppose that convh(C) is compact. Then convh(C) is homotopy equivalent
to the core and the boundary is a truly pleated-triangulated hyperbolic-surface.

In the preliminary, Section 6, we recall the definition of CAT(κ)-spaces for κ ∈ R

using geodesics and triangles. We also define Mκ-spaces, the simplicial metric spaces
needed in this paper. We discuss the link conditions to check when Mκ-space is CAT(κ)-
space, the Cartan-Hadamard theorem, and Gromov boundaries of these spaces. Next,
we discuss the 2-dimensional versions of these spaces. Define the interior angles, and
prove the Gauss-Bonnet theorem. Finally, we discuss general hyperbolic manifolds.

In Section 7, we show that the universal cover of a 2-convex general hyperbolic man-
ifold, which we used a lot in Part 1, is a M−1-simplicial metric space and a CAT(−1)-
space and a visibility manifold. Next, we define hyperbolic-maps of surfaces. These are
similar to hyperbolic surfaces as defined by Bonahon, Canary, and Minsky. We define
Alexandrov nets and A-nets as generalized triangles. We show that maps from surfaces
can be homotopied to hyperbolic-maps relative to a collection of boundary points in
2-convex general hyperbolic manifolds. We prove the Gauss-Bonnet theorem for such
surfaces and find area bounds for polygons.

In Section 8, we discuss the convex hull of the core C in a general hyperbolic manifold.
First, we show that the convex hull and C is homotopy equivalent. We finally show
that the boundary of the convex hull can be deformed to a nearby hyperbolic-imbedded
surface, which is truly pleated-triangulated. We show this by finding a geodesic in the
boundary of the convex hull through each point of the boundary.

6. Hyperbolic metric spaces

6.1. Metric spaces, geodesic spaces, and cat(-1)-spaces. We will follow Bridson-
Haefliger [5].

Let (X, d) be a metric space. A geodesic path from a point x to y, x, y ∈ X is a
map c : [0, l] → X such that c(0) = x and c(l) = y and d(c(t), c(t′)) = |t − t′| for all
t, t′ ∈ [0, l].

A local geodesic is a map c : I → X from an interval I with the property that
for every t ∈ I there exists ǫ > 0 such that d(c(t′), c(t′′)) = |t′ − t′′| for t′, t′′ in the
ǫ-neighborhood of t in I.

(X, d) is a geodesic metric space if every pair of points of X is joined by a geodesic.
We denote by E2 the plan R2 with the standard Euclidean metric. A comparison

triangle in E2 of a triple of points (p, q, r) in X is a triangle in E2 with vertices p̄, q̄, r̄
such that d(p, q) = d(p̄, q̄), d(q, r) = d(q̄, r̄), and d(r, p) = d(r̄, p̄), which is unique up
to isometries of E2.

The interior angle of the comparison triangle at p̄ is called the comparison angle
between q and r at p and is denoted ∠̄p(q, r).
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Let c : [0, a] → X and c′ : [0, b] → X be two geodesics with c(0) = c′(0). We define
the upper angle ∠c,c′ ∈ [0, π] between c and c′ to be

(3) ∠(c, c′) := lim sup
t,t′→0

∠̄c(0)(c(t), c
′(t′))

The angle exists in strict sense if the limsup equals the limit.
The angles are always less than or equal to π by our construction. We define angles

greater than π in two-dimensional spaces by specifying sides and dividing the side into
many parts (see Subsection 6.2).

We say that a sequence of closed subsets {Ki} converge to a closed subset K if for
any compact subset A of X, {A ∩ Ki} converges to A ∩ K in Hausdorff sense.

Let (X, d) be a metric. We can define a length-metric d̄ so that d̄(x, y) for x, y ∈ X
is defined as the infimum of the lengths of all rectifiable curves joining x and y. We
note that d ≤ d̄ and (X, d) is said to be a length space if d̄ = d.

Proposition 6.1 (Hopf-Rinow Theorem). Let (X, d) be a length space. If X is com-
plete and locally compact, then every closed bounded subset of X is compact and X is
a geodesic space.

As an example, a Riemannian space with path-metric is a geodesic metric space. A
covering space of a length space has an obvious induced length metric

We define Mκ to be the 3-sphere of constant curvature k, Euclidean space, or the
hyperbolic 3-space of constant curvature k depending on whether κ > 0, = 0, < 0
respectively.

Let Dκ denote the diameter of Mκ if κ > 0 and let Dκ = ∞ otherwise.
Let (X, d) be a metric space. Let △ be a geodesic triangle in X with parameter less

than 2Dκ and △̄ the comparison triangle in Mκ. Then △ is said to satisfy CAT(κ)-
inequality if d(x, y) ≤ d(x̄, ȳ) for all x, y in the edges of △ and their comparison points
x̄, ȳ, i.e., of same distance from the vertices, in △̄. If κ < 0, a CAT(κ)-space is a
geodesic space all of whose triangles bounded by geodesics satisfy CAT(κ)-inequality.
If κ > 0, then X is called a CAT(κ)-space if X is Dκ geodesic and all geodesic triangles
in X of perimeter less than 2Dκ satisfy the CAT(κ)-inequality.

Angles exists in the strict sense for CAT(κ)-spaces if κ ≤ 0.
A CAT(κ)-space is a CAT(κ′)-space if κ ≤ κ′.
A CAT(0)-space X has a metric d : X × X → R that is convex; i.e., given any two

geodesics c : [0, 1] → X and c′ : [0, 1] → X parameterized proportional to length, we
have

(4) d(c(t), c′(t)) ≤ (1 − t)d(c(0), c′(0)) + td(c(1), c′(1)).

A geodesic n-simplex in Mκ is the convex hull of n + 1 points in general position.
An Mκ-simplicial complex K is defined to be the quotient space of the disjoint union

X of a family of geodesic n-simplicies so that the projection q : X → K induces the
injective projection pλ for each simplex λ and if pλ(λ) ∩ pλ′(λ′) 6= ∅, there exists an
isometry hλ,λ′ from a face of λ to λ′ such that pλ(x) = pλ′(x′) if and only if x′ = hλ,λ′(x).

In this paper, we will restrict to the case when locally there are only finitely many
simplicies, i.e., X is locally convex. We do not assume that we have a finite isometry
types of simplicies as Bridson does in [4].
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A geodesic link of x in K, denoted by L(x, K) is the set of directions into the union
of simplicies containing x. The metric on it is defined in terms of angles. (For details,
see Chapter I.7 of [5].)

Definition 6.2. An Mκ-simplicial complex satisfies the link condition if for every
vertex v in K, the link complex L(v, K) is a CAT(1)-space.

The following theorem can be found in Bridson-Haefliger [5]:

Theorem 6.3 (Ballman). Let K be a locally compact Mκ-simplicial complex. If κ ≤ 0,
then the following conditions are equivalent:

(i) K is a CAT(κ)-space.
(ii) K is uniquely geodesic.
(iii) K satisfies the link condition and contains no isometrically imbedded circle.
(iv) K is simply connected and satisfies the link condition.

If κ > 0, then the following conditions are equivalent :

(v) K is a CAT(κ)-space.
(vi) K is π/

√
κ-uniquely geodesic.

(vii) K satisfies the link condition and contains no isometrically embedded circles of
length less than 2π/

√
κ.

Proof. See Ballmann [2] or Bridson-Haefliger [5]. �

Lemma 6.4. A 2-dimensional Mκ-complex K satisfies the link condition if and only
if for each vertex v ∈ K, every injective loop in Lk(v, K) has length at least 2π.

Definition 6.5. A metric space X is said to be of curvature ≤ κ if it is locally isometric
to a CAT(κ)-space, i.e., for each point x of X, there exists a ball which is a CAT(κ)-
space.

Theorem 6.6 (Cartan-Hadamard). Let X be a complete metric space.

(i) If the metric on X is locally convex, then the induced length metric on the

universal cover X̃ is globally convex. (In particular, there is a unique geodesic
connecting two points of X̃, and geodesic segments in X̃ vary continuously with
respect to their endpoints.)

(ii) If X is of curvature ≤ κ where κ ≤ 0, then X̃ is a CAT(κ)-space.

Let δ be a positive real number. A geodesic triangle in a metric space X is said to be
δ-slim if each of its sides is contained in the δ-neighborhood of the union of the other
two sides.

For κ < 0, CAT(κ)-space is δ-hyperbolic.
For positive real numbers λ, ǫ, (λ, ǫ)-quasi-geodesic in X is a map c : I → X such

that

(5) 1/λ|t− t′| − ǫ ≤ d(c(t), c(t′)) ≤ λ|t − t′| + ǫ for any pairt, t′ ∈ R

Let X be a δ-hyperbolic space. Two quasi-geodesic rays c, c′ are equivalent or asymp-
totic if their Hausdorff distance is finite, or, equivalently supt>0 d(c(t), c′(t)) is finite.
We define the Gromov boundary ∂X as the space of equivalence classes of quasi-geodesic
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rays in X. One can show that ∂X is the space of equivalence classes of geodesics rays
as well.

If X is a proper metric space, then X is a visibility space: For each pair of points
x and y in ∂X, there exists a geodesic limiting to x and y. Topology and metrics are
given on ∂X to compactify X ∪ ∂X. The group of isometry acts as homeomorphisms
on ∂X.

6.2. Sigular hyperbolic surfaces. A hyperbolic triangle in a metric space is a subset
isometric to a triangle in H

2 bounded by geodesics. Sometimes, we need a degenerate
hyperbolic triangle. It is defined to be a straight geodesic segment or a point where the
vertices are defined to be the two endpoints and a point, which may coincide.

A hyperbolic tetrahedron in a metric space is a subset isometric to a tetrahedron in
H

3 bounded by four totally geodesic planes with six edges geodesic segments and four
vertices. Again degenerate ones can obviously be defined on a hyperbolic triangle, a
segment, and a point with various vertex and edge structures.

A hyperbolic cone-neighborhood of a point x in a surface Σ with a metric is a neighbor-
hood of x which divides into hyperbolic triangles with vertices at x. The cone-angle is
the sum of angles of the triangles at x. The set of singular points is denoted by sing(Σ)
and the cone-angle at x by θ(x).

By a singular hyperbolic surface, we mean a complete metric space X locally isomor-
phic to a hyperbolic plane or a hyperbolic cone-neighborhood with cone-angle ≥ 2π
so that the set of singular points are discrete. We will also require that X is triangu-
lated by hyperbolic triangles in this paper (i.e., is a metric simplicial complex in the
terminology of [5]).

By Lemma 6.4, the universal cover X̃ of X is a CAT(−1)-space.

Definition 6.7. Let X be a singular hyperbolic surface. Clearly, X has an induced
length metric and is a geodesic space.

• We say that a geodesic in X is straight if it is a continuation of geodesics in
hyperbolic triangles meeting each other at π-angles in the intrinsic sense.

• We can measure angles greater than π in singular hyperbolic surface by dividing
the angle into smaller ones. In this case, we need to specify which side you are
working on. In general a path is geodesic if it is a continuation of straight
geodesic meeting each other at greater than or equal to π-angles from both
sides.

• We also say that a boundary point x is bent if the two straight geodesics end
at the point not at π-angle in the interior.

• For x ∈ ∂X, we define the interior angle to be the sum of angles of triangles
with vertices at x and the exterior angle θ(x) to be π minus the interior angle.
It could be negative.

• We will denote by sing(X) the set of singular points in the interior of X and
sing(∂X) the set of bending points of ∂X.
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Proposition 6.8 (Gauss-Bonnet Theorem). Let Σ be a compact singular hyperbolic
surface with piecewise straight geodesic boundary. Then

(6) −Area(Σ) +
∑

v∈sing(Σ)

(2π − θ(v)) +
∑

v∈sing(∂Σ)

θ(v) = 2πχ(Σ).

From the Gauss-Bonnet theorem, we can show that there exists no disk bounded by
two geodesics. This follows since if such a disk exists, then θ(v) ≥ 2π for all singular,
the exterior angles at virtual vertices ≤ 0, the exterior angles at common end points
< π, and the area is less than 0.

This implies: Given a compact singular hyperbolic space and a closed curve, we can
homotopy the curve into a closed geodesic, and the closed geodesic is unique in its
homotopy class.

Moreover, two closed geodesics meet in a minimal number of times up to arbitrarily
small perturbations: that is, the minimum of geometric intersection number under
small perturbation is the true minimum under all perturbations. (We may have two
geodesics agreeing on an interval and diverging afterward unlike the hyperbolic plane.)

6.3. General hyperbolic 3-manifolds. By a general hyperbolic manifold, we mean
a manifold M with an atlas of charts to H3 with transition maps in Isom(H3). The
metric on it will be the length metric given by the induced Riemannian metric. We
require the metric to be complete. As a consequence, this is a geodesic space by local
compactness [5]. In general we assume that ∂M is not empty. If it is not geodesically
complete, M need not be a quotient of H3 which are the usual subject of the study in
3-manifold theory.

Also, we will require general hyperbolic manifolds to have hyperbolic triangulations,
i.e., it has a triangulation so that each tetrahedron is isometric with a hyperbolic tetra-
hedron in H3. Moreover, we assume that the vertices of the triangulations are discrete
and the induced triangulation on the universal cover map under dev to a collection
of tetrahedra in general position in H3. We also require the following mild condition:
Every boundary point of a general hyperbolic manifold has a neighborhood isometric
with a subspace of a metric-ball in H3. By subdivisions and small modifications, we
can always achieve this condition.

We will say that M is locally convex if there is an atlas of charts where chart images
are convex subsets of H3. Thus, M is locally convex if ∂M is empty. (In this paper,
we will be interested in the non-locally-convex manifolds.)

Given a general hyperbolic manifold M , its universal cover M̃ has an immersion
dev : M̃ → H3, which is not in general an imbedding or a covering map, and a
homomorphism h from the deck transformation group π1(M) to Isom(H3) satisfying

(7) dev ◦ ϑ = h(ϑ) ◦ dev, ϑ ∈ π1(M).

dev is said to be a developing map and h a holonomy homomorphism.

Theorem 6.9 (Thurston). Let M be a metrically complete general hyperbolic 3-manifold
and is locally convex. Then its developing map dev is an imbedding onto a convex do-
main, and M is isometric with a quotient of a convex domain in H3 by an action of a
Kleinian group.
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Proof. See [17]. �

In this paper, we will often meet drilled hyperbolic manifolds obtained by removing
the interior of a codimenion-zero submanifold of a general hyperbolic manifolds. They
are of course general hyperbolic manifolds.

Of course, special hyperbolic manifolds are general hyperbolic manifolds and drilled
hyperbolic manifolds.

Since a general hyperbolic manifold has a geodesic metric, we can define geodesics. A
straight geodesic is a geodesic which maps to geodesic in H3 under the charts. Geodesics
are in general a union of straight geodesics. Thus, it has many bent points in general.
The bent points in the interior of the geodesic segments are said to be virtual vertices.

We define angles as above for metric spaces. Then at a virtual vertex, the angle is
equal to π since if not, then we can shorten the geodesics.

Proposition 6.10. Let l be a geodesic with a bent point x in its interior. Let S be a
simplicially immersed surface containing l in its boundary. Then for S with an induced
length metric, the interior angle at x in S is always greater than or equal to π.

Proof. If the angle is less than π, we can shorten the geodesic. �

Given an oriented geodesic l1 ending at a point x and an oriented geodesic l2 starting
from x, we define an exterior angle between l1 and l2 to be π minus the angle between
the geodesic l′1 with reversed orientation and the other one l2.

7. 2-convex general hyperbolic manifolds and h-maps of surfaces

7.1. 2-convexity and general hyperbolic manifolds. In Part 1, we showed that a
general hyperbolic manifold was 2-convex if the vertices of the boundary were either
saddle-vertices or convex vertices.

We recall the definition of 2-convexity:

Definition 7.1. A general hyperbolic manifold is 2-convex if given a compact subset
K mapping to a union of three sides and the interior T o of a tetrahedron T in H3 under
a chart φ of the atlas, there exists a subset T ′ mapping to T by a chart extending φ.

Proposition 7.2. If M is a 2-convex general hyperbolic manifold, then M is a K(π1(M)),
i.e., its universal cover is contractible.

Proof. Since the universal cover M̃ has an affine structure with trivial holonomy in-
duced from the affine space containing H3 from the Klein model, this follows from [10].
Also, this follows from Theorem 7.3. �

Theorem 7.3. Let M be a 2-convex general hyperbolic manifold. Then its universal
cover M̃ is a M−1-simplicial complex and a CAT(−1)-space. (M has a curvature
≤ −1.)

Proof. Using Theorem 6.3 (iv), we need to show that for each vertex x of M̃ , the link
P = L(x, M̃) is a CAT(1)-space.

To show P is a CAT(1)-space, we use (vii) of Theorem 6.3; i.e., we show that P
satisfies the link condition and contains no isometric circle of length < 2π. By the
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boundary condition on M , P is isometric to the unit sphere if x is the interior point
or is isometric to a subspace of the unit sphere if x is the boundary point. Clearly the
former satisfy the 2-dimensional link condition.

Let P be a proper subspace of a unit sphere S2 and c an isometrically imbedded
circle of length < 2π. By Lemma 7.4, c is disjoint from a closed hemisphere H in S2.

The closed curve c meets ∂P since otherwise c has to be a great circle of length 2π
being a geodesic. As c may never cross-over the circle ∂P , let D1

c and D2
c denote the

disks in S2 bounded by c. Then ∂P is a subset of D1
c or D2

c . Assume without loss of
generality that the former is true.

Since c is disjoint from the hemisphere H , it follows that H is a subset of D1
c or D2

c .
In the second case, H ⊂ P . Looking at this situation, from the vertex x ∈ M again,
we see that 2-convexity is violated since we can find a triangle in M containing x in
its interior whose one-sided neighborhood with x removed is in the interior of M .

Suppose that H is a subset of D1
c . Let H ′ be the complementary open hemisphere.

Then c ⊂ H ′ and ∂P is outside the disk D2
c in H ′ bounded by c. Since H ′ has a

natural affine structure, and c is compact, it follows that the convex hull K ′ of c in H ′

is compact. Let y be an extreme point of K, where y ∈ c as well. In the one-sided
neighborhood of y inside c, there are no points of ∂P implying that we can shorten c
in P contrary to the fact that c is isometrically imbedded. �

Lemma 7.4. Let γ be a broken geodesic loop in the sphere S2 of radius 1. If the length
of γ is less than 2π, then there exists an open hemisphere containing it (and hence a
disjoint closed hemisphere).

Proof. We can shorten the loop without increasing the number of broken points to a
loop as short as we want. A sufficiently short loop is contained in an open hemisphere.

Let lt, t ∈ [0, 1] be a homotopy so that l1 is the original loop and l0 is a constant
loop. Then let A be the maximal connected set containing 0 so that lt for t ∈ A is
contained in an open hemisphere, say Ht.

The set A is an open set since the small change in lt does not violate the condition.
Suppose that the complement of A is not empty, and let t0 be the greatest lower bound
of the complement of A. Then lt0 is contained in a closed hemisphere, say H ′, since we
can find a geometric limit of the closure of Hts.

Suppose that ∂H ′ ∩ lt0 is contained in a subset of length strictly less than π. Then
we can rotate H ′ along a pivoting antipodal pair of points on ∂H ′ outside the subset.
Then the new hemisphere contains lt0 in its interior, a contradiction.

Suppose that ∂H ′ ∩ lt0 contains a pair of antipodal points. Let s1 and s2 be the
corresponding points of [0, 1] and suppose 0 < s1 < s2 < 1 without loss of generality.
Then two arcs lt0 |[s1, s2] and lt0 |[s2, 1]∪ [0, s1], must have length greater than or equal
to π, a contradiction. Therefore, no subsegment in δH ′ of length ≤ π contains ∂H ′∩lt0 .

Suppose now that there are three points p1, p2, p3 in δH ′ ∩ lt0 are not contained in a
subsegment in δH ′ of length ≤ π and no pair of them are antipodal.

The sum of lengths of segments p1p2, p2p3, p3p1 equals 2π. This is clearly less than or
equal to that of lt0 since the shortest arcs connecting the pairs (p1, p2), (p2, p3), (p3, p1)
are these segments respectively. This is again a contradiction.

Thus A must be all of [0, 1]. �
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The following proves Theorem 5.1 in detail.

Proposition 7.5. Let M̃ be a universal cover of a compact 2-convex general hyperbolic
manifold M . Then the following hold:

• M̃ is uniquely geodesic.
• Geodesic segments of M̃ depend continuously on their endpoints.
• The metric is locally convex.
• M̃ is δ-hyperbolic and hence it is a visibility manifold.
• M has curvature ≤ −1.
• Given any path class on M , there exists a unique geodesic segment, which de-

pends continuously on endpoints.

Proof. These are direct consequences of the fact that M̃ is a CAT(−1)-space. �

7.2. Hyperbolic-maps of surfaces into 2-convex general hyperbolic manifolds.
A triangulated hyperbolic surface is a metric surface with or without boundary triangu-
lated and each triangle is isometric with a hyperbolic triangle or a degenerate hyperbolic
triangle in H2. A half-space of H3 is a subset bounded by a totally geodesic plane.

Definition 7.6. Let Σ be a compact triangulated hyperbolic surface, M a general
hyperbolic 3-manifold, and f : Σ → M a map which sends each triangle to a hyperbolic
triangle in M . Let ∂Σ have distinguished vertices v1, . . . , vn. Then f is a hyperbolic-
map relative to {v1, . . . , vn} if the sum of the angles of the image triangles of the stellar
neighborhood of each interior vertex v is greater than or equal to 2π and the sum of
angles of the image triangles of the stellar neighborhood of the boundary vertex v,
v 6= vi, is greater than or equal to π.

A hyperbolic-map is a completely analogous concept to a hyperbolic-map by Bona-
hon [3], Canary and Minsky and so on. Note that if the boundary portion between vi

and vi+1 is geodesic for each i, then the boundary angle conditions are satisfied also.

Definition 7.7. Given an arc or a point α and an arc β in M , an Alexandrov net with
ends α and β is a map f : I × I → M so that s ∈ I 7→ f(t, s) is geodesic for each s
and t 7→ f(t, 0) is α and t 7→ f(t, 1) ∈ β.

Lemma 7.8. Let M be a 2-convex general hyperbolic manifold. Let γ be a geodesic
in M . Then for any geodesic γ′ sufficiently close to γ, there exists a homotopy H :
I × I → M so that the following hold :

• s 7→ H(0, s) is γ and s 7→ H(1, s) is γ′.
• H is a simplicial map with a triangulation of I×I with all vertices at {0, 1}×I.

Proof. For each virtual vertex of γ, we choose a real number ǫ > 0 such that the ǫ-
neighborhood of the vertex is a stellar neighborhood. If γ′ is in an ǫ-neighborhood of
γ for ǫ > 0 for any such ǫs, then we can find the desired H . �

Given a point or an arc α and another arc β, an A-net f : I × I → M with ends α
and β is a map such that

• s 7→ f(ti, s) for a finite subset {t1 = 0, t2, . . . , tn = 1} of I is a geodesic for each
i,
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• t 7→ f(t, 0) is α and t 7→ f(t, 1) is β.
• f is a hyperbolic-map relative to vertices of the arcs α and β with a triangulation

of I × I with all the vertices in {t1, . . . , tn} × I.

Proposition 7.9. Given a point or an arc α and another arc β, there exists an A-net
with ends α and β.

Proof. We find an Alexandrov net f : I × I → M with ends α and β. We take
sufficiently many ti’s so that geodesics s 7→ f(ti, s) are very close. By Lemma 7.8, we
can find a simplicial map F : I × I → M . Since s 7→ F (ti, s) = f(ti, s) are geodesics,
the sum of angles at each of the sides of a vertex on this geodesic is greater than π.
Hence, the sum of angles at an interior vertex is greater than or equal to 2π. At the
vertices of s 7→ F (0, s) or s 7→ F (1, s), the sum of angles are greater than π. Therefore,
F is a hyperbolic-map. �

Proposition 7.10. Let Σ be a compact triangulated surface, M a general hyperbolic
3-manifold, and let f : Σ → M be a map with an injective induced homomorphism
f∗ : π1(Σ) → π1(M).

• Let v1, . . . , vn be the distinguished vertices in ∂Σ and l be a union of disjoint
simple closed curve in Σ which is disjoint from {v1, . . . , vn} and is a component
of ∂Σ or is disjoint from ∂Σ.

• We suppose that {v1, . . . , vn} ∪ l is not empty. Suppose that f maps each arc
in ∂Σ connecting two distinguished vertices to a geodesic and each component
of l or ∂Σ without any of v1, . . . , vn to a closed geodesic.

Then in the relative homotopy class of f with f |∂Σ fixed, there exists a hyperbolic-map
f ′ : Σ′ → M relative to v1, . . . , vn where Σ′ is Σ with a different triangulation in general
and f ′ agrees with f on ∂Σ ∪ l.

From now on, we will just use vi for f(vi) and so on since the reader can easily
recognize the difference. By the angle of a triangle, we mean the corresponding angle
measured in the image triangle of f .

Proof. First, we find a topological triangulation Σ so that all the vertices are in the
union of {v1, . . . , vn} ∪ l ∪ ∂Σ. We find a geodesic in the right path-class for each of
the edges of the triangulations. For each triangle, we extend by choosing a vertex and
the opposite geodesic edges and finding A-nets with these ends.

At each interior point of an edge, we see that the sum of angles of any of its side is
greater than or equal to π since the edge is geodesic. Since A-nets are hyperbolic-maps,
we see that the whole map is a hyperbolic-map. �

7.3. Gauss-Bonnet theorem for hyperbolic-maps.

Proposition 7.11. Let Σ be a compact hyperbolically-mapped surface relative to v1, . . . , vn.
Let θi be the exterior angle of vi with respect to geodesics in the boundary of Σ. Then

(8) Area(Σ) ≤
∑

i

θi − 2πχ(Σ).
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Proof. The interior angle with respect to Σ is larger than the angle in M itself. Thus
the exterior angle with respect to Σ is smaller than the exterior angle in M .

Since the interior vertices have the angle sums greater than or equal to 2π and the
boundary virtual vertices have the angle sum greater than or equal to π, the proposition
follows from the Gauss-Bonnet theorem. �

An n-gon is a disk with boundary a union of geodesic segments between n vertices.

Corollary 7.12. Let S be a hyperbolically-mapped n-gon. Then Area(S) ≤ (n − 2)π.

Proof. The exterior angle of a bent virtual vertex on a geodesic is always less than
π. �

8. Convex hulls in 2-convex general hyperbolic manifolds

Let M be a 2-convex general hyperbolic manifold with finitely generated fundamental
group, and C denote a core of M .

Let M̃ be the universal cover of M . Since C → M is a homotopy equivalence the
subset C̃ in M̃ which is the inverse image of C is connected and is a universal cover of
C. A subset of M̃ is convex if any two points can be connected by a geodesic in the
subset.

The convex hull convh(K) of a subset K of M̃ is the smallest closed convex subset

containing K. Since C̃ is deck-transformation group invariant, and the convex hull is the
smallest convex subset, convh(C̃) is deck-transformation group invariant. Therefore,
convh(C̃) covers its image. We define the image as convh(C), i.e., convh(C̃) quotient
by the deck-transformation group action.

Since C is a 3-dimensional domain, convh(C) is a 3-dimensional closed set.

Proposition 8.1. The convex hull convh(C) of the compact core C of M is homotopy
equivalent to C.

Proof. Let C̃ be the inverse image of C in the universal cover M̃ of M . Then C̃ and M̃
are both contractible as M and C are irreducible 3-manifolds.

A closed curve in the convex hull convh(C̃) of C̃ bounds a disk in convh(C̃) since a
distinguished point on the curve can be connected by a geodesic in any other point of the
curve. Similarly, a sphere always bounds a 3-ball. Therefore, convh(C̃) is contractible.

�

A surface is pleated if through each point of it passes a straight geodesic.
Recall that the pleated-triangulated surface is an imbedded surface where a closed

subdomain is a union of a locally finite collection of totally geodesic convex domains
meeting each other in geodesic segments and the complementary open surface is pleated.

A pleated-triangulated surface is truly pleated-triangulated if the triangulated part
are union of totally geodesic polygons in general position.

A truly pleated-triangulated hyperbolic-surface is a truly pleated-triangulated surface
where each vertex of the triangles is a hyperbolic-vertex.

Lemma 8.2. If a geodesic in M contained in S passes through a vertex in the trian-
gulated part of S, then the vertex is a hyperbolic-vertex.

47



Proof. A neighborhood of a point of the triangulated part is stellar. If a geodesic passes
through, the angles in both sides are greater than or equal to π: otherwise, we can
shorten the geodesic. Hence, the sum of the angles is greater than or equal to 2π. �

The following proves Theorem 5.3:

Proposition 8.3. Let K be a deck-transformation-group invariant codimension 0 sub-
manifold of M̃ with ∂K saddle-imbedded. Also, suppose K is a subset of M̃o. The
boundary of convh(K) can be given the structure of a convex truly pleated-triangulated
hyperbolic-surface.

Proof. We will show that

• through each point of ∂convh(K) a geodesic in ∂convh(K) passes or
• the point is in the triangulated part and is a saddle-vertex or a hyperbolic-

vertex.

Let x be a boundary point of convh(K): Suppose that x is a point of the manifold-

interior of M̃ . Take a ball Bǫ(x) in the interior for a sufficiently small ǫ. Then
convh(K) ∩ Bǫ is the convex hull of itself. Since Bǫ is isometric with a small open
subset of H3, the ordinary convex hull theory shows that there exists a geodesic in
the boundary of the convex hull through x: If not, we can find a small half-open ball
to decrease the convex hull as the side of the half-open ball cannot meet ∂K by the
saddle-imbeddedness of ∂K.

Suppose that x is in the topological interior of convh(K) but in ∂M̃ . There exists a
neighborhood of x in convh(K) with manifold-boundary in ∂M̃ . If x is in the interior

of an edge or a face of ∂M̃ , then there is a geodesic through x obviously. Suppose that
x is a vertex of ∂M̃ . x can be a saddle-vertex or a convex vertex (see Proposition 2.5).

• If x is a convex vertex of ∂M̃ , we can find a truncating totally geodesic hyper-
plane and a sufficiently small disk in it bounding a neighborhood of x in M̃ .
Since K is disjoint from the disk, we see that x is not in the convex hull. This
is absurd.

• If x is a saddle-vertex of ∂M̃ , then x is a saddle-vertex of ∂convh(K).

Assume from now on that x is a point in the topological boundary of convh(K) and
on ∂M̃ . This means that x is in the frontier of the open surface C = ∂convh(K)−∂M̃.

(a) Suppose x is a point of the interior of a triangle T in ∂M̃ . The set T ∩ convh(K)
is a convex subset and x lies in the boundary. The boundary must be a geodesic since
we can use a small half-open ball to decrease the convex hull otherwise. Hence there
is a geodesic through x.

(b) Suppose that x is a point of the interior of an edge in ∂M̃ . We take a small ball
Bǫ(x) around x, which is isometric with a ball in H3 of the same radius and a wedge
removed. The line l of the wedge passes through x.

Let P1 and P2 be the totally geodesic plane extended in Bǫ(x) from the sides of the
wedge. We denote by P ′

1 the set ∂Bǫ(x) ∩ P1 and P ′
2 the set ∂Bǫ(x) ∩ P2. We can

form two convex subsets L1 and L2 in Bǫ(x) that are the closures of the components
of Bǫ(x) − P1 − P2 and adjacent to P ′

1 and P ′
2 respectively.
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The set L1 ∩ convh(K) is a convex subset of L1 and L2 ∩ convh(K) one of L2. The
open surface C may intersect L1 or L2 or both.

If C is disjoint from L1, then it maybe that a one-sided neighborhood of x in a triangle
in ∂M̃ is a subset of convh(K) and an edge of the triangle is a geodesic through x.
(The side P1 − P ′,o

1 of Bǫ(x) is in convh(K).) Otherwise, convh(K) is contained in a
convex subset of Bǫ(x) bounded by P1. In this case, the ordinary convexity in H3 holds
and there is a geodesic in ∂convh(K) through x.

Since the same argument holds with L2 as well, we assume that C ∩ L1 and C ∩ L2

are both not empty.
If C ∩ L1 or C ∩ L2 are totally geodesic surfaces, then x is on a pleating locus that

is the edge of the wedge.
We may assume without loss of generality that C ∩ L1 is not totally geodesic in a

ball of radius ǫ about x for every sufficiently small ǫ > 0. Then there exists a sequence
of points {xi ∈ L1 ∩ M̃o} converging to x and a sequence of pleating lines

{li ⊂ ∂convh(K) ∩ M̃o}
so that xi ∈ li. By Lemma 8.4, we only have to worry about the case when all lis end
at x. In this case there exists a small neighborhood B(x) of x such that C ∩L1 ∩B(x)
is a stellar set with vertex at x.

By a same argument, C∩L2∩B(x) is a stellar set also with a vertex at x. Considering
C ∩L1 ∩B(x) and C ∩L2 ∩B(x) at the same time, in order that at x, the convexity to
hold true and x to be in ∂convh(K), we see that C ∩ L1 ∩ B(x) has to have a unique
pleating geodesic with a convex dihedral angle as seen from convh(K) and so does
C ∩ L2 ∩ B(x). Furthermore, their unique pleating geodesics must extend each other
as geodesics passing through x.

(c) Now assume that x in ∂convh(K) is a vertex of ∂M̃ .
Let Bǫ(x) be a small neighborhood of x so that Bǫ(x) ∩ M̃ is a stellar set from x.

As before x is in the boundary of C.
Suppose first that there are no pleating lines with a sequence of points on them

converging to x. We can choose a small ǫ so that Bǫ(x) ∩ convh(K) is a stellar set.
Let M ′ be an ambient general hyperbolic manifold containing M in its interior which

is homeomorphic to the interior of M as there are always such a manifold. We claim
that x is a saddle-vertex of Bǫ(x) ∩ ∂convh(K): If not, we can find a small half-open
ball B in M̃ ′ with a totally-geodesic side passing through x with Bo disjoint from
∂convh(K). By stellarity, Bo is disjoint from convh(K) and we can decrease convh(K)
if x 6∈ K, which is a contradiction. If x ∈ K, then there is no such B as x is a saddle
vertex of K itself. Therefore, x is a saddle-vertex.

We assume that Bǫ(x)∩ convh(K) is not a stellar set. Suppose now that there exists
a sequence of points {xi ∈ li} converging to x where li is a distinct pleating line for
each i and does not end at x. Here, li are infinitely many. Lemma 8.4 shows that the
endpoints of li are bounded away from x. Therefore, a subsequence of li converges to
a geodesic l passing through x.

We proved the two items above, and ∂convh(K) is a pleated-triangulated surface.
As a final step, we show that ∂convh(K) is a truly pleated-triangulated surface: Let

A be the closure of the set of all points in ∂convh(K) intersected with the interiors
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of triangles in ∂M̃ . Then A is a locally finite union of totally geodesic polygons and
segments. The complement of A in ∂K is pleated since it lies in the interior of M̃ . Any
pleated lines in M̃o must end at A or is infinite. By Remark 4.13, the set of pleating
lines ending at A is isolated.

By Lemma 8.2, it is a hyperbolic-surface as well. The convexity is obvious. �

Lemma 8.4. Let li, i ∈ I, be a collection of mutually distinct straight pleating lines
∂convh(K)−∂M̃ for a convex hull convh(K) of a closed subset K of M̃ and a countably-
infinite index set I. Suppose xi ∈ li form a sequence converging to x but x is not on lis.
Then the endpoints of lis are bounded away from x and a subsequence of li converges
to a line segment in the pleating locus containing x in its interior.

Proof. Suppose that the endpoints of li are bounded away from x. Then the second
statement holds obviously.

Suppose that the endpoints qi of li form a sequence converging to x. Then we may
assume without loss of generality that qi lies in an arc or a point α in a triangle in
∂M̃ . If the arc α is a convex curve, we can decrease convh(K) further, a contradiction.
Thus α is a geodesic or a point.

By Lemma 4.14, α cannot be a line. If α is a point, then α 6= x, and the conclusion
holds. �

Part 3. The proof of the tameness of hyperbolic 3-manifolds

9. Outline of the proofs

We will prove Theorems A and B in this part: The strategy is as follows. Suppose
that the unique end E of M not associated with incompressible surface is not geo-
metrically finite and is not tame. We find an exhausting sequence M ′

i in M so that
M ′

i contains neighborhoods of all tame and geometrically finite ends and meets the
neighborhood of the infinite end in a compact subset.

Step 1: Using the work of Freedman-Freedman [12], we can modify M ′
is to be

compression bodies: Since E is not geometrically finite, we can choose a se-
quence of closed geodesics ci → ∞. We fix a sufficiently small Margulis con-
stant ǫ. We assume without loss of generality that ci ⊂ M′

i
. Let µi be the union

of closed geodesics that are in the Margulis tubes in Mi. We further modify M ′
i

so that ∂M ′
i is incompressible in M − c1 − · · · ci − µi with the compact core C

removed.
The manifold Ni is obtained from compressing disks for M ′

i in M −c1−· · ·−
ci − µi − C. Let Ai be a homotopy in M between ci and the closed curve in C,
which can be homotopied to be in Ni.

Now we modify Ni to M ′′
i so that ci ⊂ M′′

i
and M ′′

i are compression bodies
and the boundary component of M ′′

i corresponding to E is incompressible in M
removed with the closed geodesics c1 . . . , ci and C and contains any Margulis
tubes that M ′′

i meets. (See Subsection 10.1.)
Step 2: As the boundary is incompressible, we take a 2-convex hull Mi of M ′′

i

using crescents (see Part 1). This implies that Mi is a polyhedral hyperbolic
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space and hence is CAT(−1). Since Mi is isotopic to M ′′
i , the homotopy Ai

between ci and a closed curve in C still exists.
We show that we can choose a Margulis constant independent of i and the

thin part of Mi are contained in the original Margulis tubes of M and are
homeomorphic to solid tori with nontrivial homotopy class in the original tubes.
(See Subsection 10.2.)

Step 3: We take the cover Li of Mi corresponding to the fundamental group of
the fixed compact core C of M . Since Mi is tame, the cover Li is shown to be
tame (this is from ideas of Agol).

The core C lifts to the cover Li and can be considered a subset. We take a
convex hull Ki of C in Li, which is shown to be compact. Since Ki is homotopy
equivalent to C by Proposition 8.1 in Part 2, the boundary component Σi of Ki

corresponding to E has the same genus as that of a boundary component of C.
Σi is a “hyperbolic surface” (see Part 2). Since ci is an exiting sequence, and
an ǫ-neighborhood of Mi contains ci, it follows that pi|Σi is an exiting sequence
of surfaces. This proves Theorem A. (See Subsection 10.3.)

Step 4: We push C inside itself so that C does not meet ∂Ki. We now remove
the core from Ki to obtain Ki − Co. We can find a simple closed curve α in Σi

compressible in Ki. We realize α by a closed geodesic α∗ in Ki − Co. Using it,
as Bonahon does [3], we obtain a simplicial hyperbolic surface Ti meeting ∂C.

Then by compactness of bounded simplicial hyperbolic surfaces of Souto [16],
infinitely many immersed Tis are isotopic in M−Co and hence infinitely many of
pi|Σi are isotopic. Since pi|Σi are exiting and are isotopic in M−Co, this implies
that the end E is topologically tame, proving Theorem B. (See Subsection 10.4.)

10. The Proof of Theorem A

10.1. Choosing the right exhausting sequence.

10.1.1. Choosing the core. As a preliminary step, we choose the compact core more
carefully so that ∂C is saddle-imbedded: We choose incompressible closed surfaces Fi

associated with incompressible ends Ei to be strictly saddle-imbedded by Theorem
C and disjoint from one another (see Remark 4.19). We choose a number of closed
geodesics in Ei and choose a mutually disjoint submanifold homeomorphic to Fi × I
disjoint and between these curves for each i. Then by Theorem C, we find a mutually
disjoint collection of manifolds in the respective neighborhoods of Ei between these
curves whose boundary components are strictly saddle-imbedded.

Essentially ∂C is considered as a regular neighborhood of the union of the essential
surfaces F1, . . . , Fn and a number of arcs connecting them in some manner.

We choose each of the arcs to be the shortest path in M among the arcs connecting
the surfaces Fis with the respectively given homotopy classes. Their endpoints must be
in the interior of an edge of a triangle. By perturbing Fi if necessary, we may assume
that they are all disjoint geodesics. We first take thin regular neighborhoods of Fis
which are triangulated. We take thin regular neighborhoods of the geodesics which are
triangulated and all of whose vertices lie in Fis.
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We take the union of the regular neighborhood of these geodesics with those of Fis
to be our core C. We may assume that ∂C is strictly saddle-imbedded as well. (We
may need to modify a bit where the neighborhoods meet.) As stated above, we choose
C to be in the interior Mo. Obviously, if necessary, we push C inward itself without
violating strict saddle-imbeddedness of ∂C.

10.1.2. Choosing a compression body exhaustion. Let M be as in the introduction, and
let U1, . . . , Un be mutually disjoint neighborhoods of incompressible ends E1, . . . , En.
Suppose that the end E is a geometrically infinite but not geometrically tame.

Let M̂ be the 2-convex hull of M with U1, . . . , Un removed. The boundary compo-
nents F1, . . . , Fn corresponding to U1, . . . , Un of M̂ are saddle-imbedded respectively.

Let M ′
i be an exhaustion of M by compact submanifolds containing M̂ . We extend

M ′
i by taking a union with U1, . . . , Un so that M ′

i meets neighborhoods of E in compact
subsets or in the empty set. We assume that M ′

i contains the boundary components
F1, . . . , Fn and contains the core C of M always.

Lemma 10.1. A disk with boundary outside the union of Margulis tubes may be iso-
topied with the boundary of the disk fixed so that the intersection is the union of merid-
ian disks.

Proof. First, we perturb the disk to obtain transversal intersection. A disk may meet
the Margulis tubes in a union of planar surfaces. The boundary of the Margulis tube
meets the disk in a union C of circles. If an innermost component is outside the tube,
then since the boundary tube is incompressible in M with the interior of the Margulis
tubes removed, it follows that we can isotopy it inside. This means that the innermost
components are disks.

If an innermost component of C is a circle bounding a disk in the boundary of the
Margulis tube, then we can isotopy the bounded disk away from the tube. Now, each
component of C is a meridian circle. �

We fix a small Margulis constant ǫM > 0.

Proposition 10.2 (Freedman-Freedman, Ohshika). We obtain a new exhaustion M ′
i

so that each M ′
i is homeomorphic to a compression-body with incompressible boundary

components removed. M ′
i contains the Margulis tubes that M ′

i meets by taking union
with these.

Proof. We essentially follow Theorem 2 of Freedman-Freedman [12]. We assume that
each M ′

i includes any Margulis tubes it meets. ∂M has no incompressible closed surface
other than ones parallel to F1, . . . , Fn. Hence, we compress the boundary component
∂M ′

i until we obtain a union of balls and manifolds homeomorphic to Fi times an
interval. An exterior disk compression adds a disk times I to the compressed manifold
from M ′

i but an interior disk compression removes a disk times I from the manifold.
The exterior disk may meet Margulis tubes outside M ′

i . By Lemma 10.1, if the disk
meets a Margulis tube at an essential disk, then we include the Margulis tube. If not,
we push the disk off the Margulis tube. This operation amounts to adding 1-handles
to the manifolds.
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We recover our loss to M ′
i by interior disk compressions by attaching 1-handles each

time we do interior compressions. The core arcs of 1-handles may meet the exterior
compression disk many times. We add a small neighborhood of the cores first. Then we
isotopy to make it larger and larger to recover the loss due to interior disk compression
while fixing the Margulis tubes outside Mi. (This may push the exterior compression
disks.) We also recover all the Margulis tubes originally in M ′

i .
From the surface times the interval components, we add all the 1-handles to obtain

the desired compression body.
�

Remark 10.3. We do interior compressions first and then exterior compressions. This
is sufficient to obtain the union of 3-balls and Fi times the intervals. The reason is
that we can isotopy any interior compressing curve away from the traces of exterior
compression disks.

Since E is geometrically infinite, there exists a sequence of closed geodesics ci tending
to E by Bonahon [3]. We assume that ci ⊂ M′

i
for each i since M ′

i is exhausting. Let
Ci denote the union of c1, . . . , ci. We assume without loss of generality that M ′

i has
a free-homotopy Ai between ci and a closed curve in C since M ′

is form an exhausting
sequence. Let µi be the union of the simple closed geodesics in the Margulis tubes that
M ′

i contains.

Remark 10.4. We know that given a surface there exists a finite maximal collection
of exterior essential compressing disk so that any other exterior essential compressing
disks can be pushed inside the regular neighborhood of their union and some arcs on
the surface connecting them. This is from the uniqueness of the compression body.
(See Theorem 1 in Chapter 5 of McCullough [14].)

10.1.3. Compression bodies M ′′
i with “incompressible” boundaries.

Ni with “incompressible” boundaries: If we remove the interior Co of the
core from M ′

i , and compress the boundary ∂M ′
i in M −Co −Ci −µi and remove

resulting cells to obtain a manifold with incompressible boundary containing
∂C. Then we join the result with C, Ci and µi. Let us call the resulting 3-
manifold Ni. Note that Ni need not be a compression body and may not form
an exhausting sequence. However, Ni contains C, Ci, µi for each i.

The exterior compressing disk of M ′
i may meet the Margulis tubes outside

M ′
i . We may assume that Ni meets these Margulis tubes in meridian disks

times intervals by Lemma 10.1.
The manifold Ni is obtained from compressing disks for M ′

i . Let Ai be a
homotopy in M ′

i between ci and a closed curve in C. Then a compressing
disk for the sequence of manifolds obtained from M ′

i by disk-compressions in
M − Co − Ci − µi may meet Ai in immersed circles. Since the circles bound
immersed disks in the compressing disk, and ci is not null-homotopic in M , we
can modify Ai so that Ai has one less number of components where Ai meets
the compressing disk. In this manner, we can find Ai in Ni.

N III
i : We do the following steps:
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• We find a maximal collection of essential interior compressing disks for Ni

and do disk compressions. By incompressibility, the disk must meet one of
C, Ci, µi essentially. We call N I

i the component of the result containing ∂C.
• We find a maximal collection of essential exterior compressing disk for

the result of the first step and do disk compressions. We call N II
i the

component containing ∂C.
• We add 1-handles lost in the first step. We call the result N III

i .
Clearly N III

i includes Ni.

Proposition 10.5. The submanifold N III
i is homeomorphic to a compression body and

is contained in a compression body M ′′
i whose boundary component is incompressible

in M − Co − Ci − µi. A Margulis tube is either contained in M ′′
i or the tube meets M ′′

i

in meridian disk times intervals.

Proof. The fact that N III
i is a compression body follows as before. Using the fact that

N III
i is contained in some compression body M ′

j for a large j, we will now show that

N III
i is contained in a compression body M ′′

i with the above property.
By construction of N III

i , it follows that an interior compression disk can be isotopied
inside the regular neighborhood of the union the disks of the 1-handles and arcs in the
boundary. Therefore, each interior compressing disk must intersect at least one of
C, Ci, µi essentially. Hence ∂N III

i has no interior compression disk in M −Co −Ci −µi.
There could be an exterior compression disk for N III

i . We take a maximal mutually
disjoint family D1, . . . , Dn of them where no two of ∂Di are parallel. We choose j
sufficiently large so that a compression body M ′

j includes all of them as M ′
is form an

exhausting sequence.
We find a 3-manifold X isotopic to N III

i in M ′
j : M ′

j decomposes into a union of cells
or submanifolds homeomorphic to Fl times intervals by a maximal family of interior
compression disks. We suppose that no two of the disks are parallel and call D the
union of these disks.

We consider X to be a thin regular neighborhood of a 1-complex with the unique
vertex in a fixed base cell B of M ′

j , fix a handle decomposition of X corresponding
to the 1-complex structure, define the complexity of the imbedding of X in M ′

j by
the number of components of X ∩ D, choose X with minimal complexity, and put all
things in general positions. For each disk Dk, we first get rid of any closed circles by the
innermost circle arguments. We may find an edgemost arc if ∂Dk meets D bounding
a component of Dk − D. Then there must be a handle of X following the arc in ∂Dk.
This handle can be isotopied away, and then using the innermost circle argument again
if necessary, we can reduce the complexity. Therefore, it follows that each Dk is in the
fixed base cell of M ′

j . Also, a handle where Dk passes essentially must lie in the base
cell also.

We look at the handles in the base cell B and the disks. The union of the handles
and the ball around the basepoint is a handle body. Our disks D1, . . . , Dn are in the
cell.

From Corollary 3.5 or 3.6 of Scharlemann-Thomson [15], we see that there exists
an unknotted cycle in the 1-complex or the 1-complex has a separating sphere. In
the first case, we cancel the corresponding cycle by an exterior compression. In the
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later case, a sphere bounds a ball which we add to X, i.e., we engulf it. We do the
corresponding topological operations to N III

i while X and N III
i are still compression

bodies. In both cases, we can reduce the genus of the boundary of the handle body
X or N III

i . We do this operations until there are no more exterior compressing disks.
(The genus complexity shows that the process terminates.) We let the final result to
be M ′′

i .
The imbedding ∂M ′′

i → M − M ′′,o
i is incompressible since the boundary of any

exterior compressing disk for ∂M ′′
i can be made to avoid the traces of handle-canceling

exterior compressions which are pairs of disks or the disks from the 3-ball engulfing.
Therefore these must be exterior compressing disks for N III

i .
The imbedding ∂M ′′

i → M ′′,o
i − Co − Ci − µi is incompressible since the boundary

of any interior compressing disk can be made to avoid the traces of handle-canceling
exterior compressions.

The statement about Margulis tubes follows by Lemma 10.1. �

10.2. Crescent-isotopy. We will now modify M ′′
i by crescent-isotopy.

Lemma 10.6. A secondary highest-level crescent of Σ̃ does not meet the interior of C̃.

Proof. If not, then C̃o meets IR for a secondary highest-level crescent R. We may
assume that R is compact by an approximation inside. Again find a Morse function
by totally geodesic planes parallel to IR. C ∩ R has a maximum inside as C ∩ R is
compact. But at the maximum point, a totally geodesic plane bounds a local half open
ball disjoint from Co. This contradicts the saddle-imbeddedness of ∂C̃. �

We define Mi to be the 2-convex hull of M ′′
i . The boundary components of Mi are

saddle-imbedded. Let C′ be the core obtained from C by pushing ∂C inside C by an
ǫ-amount. Note that during the crescent-isotopy C′ is not touched by the interior of
secondary highest level crescents since ∂C is saddle-imbedded by Lemma 10.6.

Define M ǫ
i be the regular ǫ-neighborhood of Mi. Ci, µi ⊂ M ǫ

i by Proposition 3.22 in
Part 1. We may assume Ai is in M ǫ

i since we isotopied M ′′
i to obtained Mi.

The universal cover M̃i of Mi with the universal covering map pi is an M−1-space
and is δ-hyperbolic.

We define the thin part of Mi as the subset of Mi where the injectivity radius is ≤ ǫ.
Since M̃i is a uniquely geodesic, through each point of the thin part of Mi there exists
a closed curve of length ≤ ǫ which is not null-homotopic in Mi.

Proposition 10.7. The ǫ-thin part of Mi is homeomorphic to a disjoint union of solid
tori in Margulis tubes in M parallel to a multiples of the shortest geodesics in the
respective tubes. Furthermore, we can choose ǫ > 0 independent of i.

Proof. Let γ be a closed curve of length ≤ ǫ which is not null-homotopic in Mi. Then
if γ has nontrivial holonomy, then γ lies in a Margulis tube of M which either is in Mi

or disjoint from Mi.
Suppose that γ is null-homotopic in M . Then γ bounds an immersed disk D in M .

The diameter of D is ≤ ǫ.
Suppose that D cannot be isotopied into Mi. By incompressibility of ∂Mi, D must

meet ci or µi or C. Also, D/Mi must be nonempty. There must be an innermost disk
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D′ such that ∂D′ maps to ∂Mi and D′ maps into Mi and meets µi, C or Ci and a
component of D/∂Mi adjacent to D′ lies outside Mi.

If D′ meets C, then the diameter of ∂D′ is not so small, and hence that of D. If
D′ meets Ci, then since Ai is in Mi D′ cannot be bounded outside by a component in
M/Mo

i .
Suppose that an innermost disk D′ meet µi. Since ∂D′ is very close to µi due to its

size, and the distance from µi to ∂M ′′
i is bounded below by a certain constant, it follows

that the boundary of D′ lies in the union of I-parts of some crescents or its perturbed
images obtained during the crescent-isotopies. Since the length of components of µi

is short, we see that the the I-parts meeting ∂D′ would extend for long lengths along
the geodesics near a component of µ̃i. Therefore, we see that at the last stage of
the isotopies, we have the inverse image of torus bounding a component of µi. Since
our crescent moves are isotopies and ∂M ′

i is not homeomorphic to a torus, this is a
contradiction.

We conclude that γ bounds a disk in Mi. Since γ is not null-homotopic in Mi, this
is a contradiction. Therefore, the thin part of Mi is in the intersection of the Margulis
tubes of M with Mi.

Note here that the Margulis constant ǫ > 0 could be chosen independent of i as the
above argument passes through once ǫ is sufficiently small regardless of i. �

By above discussions, it follows that any ǫ-short closed curve in Mi is a multiple of
the simple closed geodesic in a Margulis tube. We may assume that given a component
of the thin part of Mi, an ǫ-short closed curve of a fixed homotopy class passes through
each point of the component. Therefore, components of thin parts are solid tori in
Margulis tubes.

During the crescent move, the shortest closed geodesic in the Margulis tube may go
outside particularly during the convex perturbations. But there are short closed curves
in the result homotopic to the closed geodesic. Therefore the thin part are union of
solid tori parallel to some multiples of the shortest geodesics.

10.3. Covers Lis. Assume without loss of generality that we have an inclusion map
i : C → Mi for each i. Let Li be M̃i/i∗π1(C) with the covering map pi : Li → Mi.
Li has ends corresponding to F1, . . . Fn, and another end E corresponding to E. (We
abused notation a little here.)

Proposition 10.8. The convex hull Ki of C in Li is compact.

Proof. Since Mi is tame, its cover Li is tame. For any compact set, we can find a
compact core of Li containing it. By choosing a large compact subset of Mi, we obtain
a compact core C′ of Li containing it which is obtained as the closure of the appropriate
component of Li with a finite number of disks removed.

Certainly C is a subset of it. The disks lifts to disks in the universal cover L̃i of Li.
They bound the universal cover C̃′ of C′.

The convex hull of a disk is a compact subset of L̃i since the convex hull of a compact
subset is compact in the universal cover. Since the convex hull of C̃′ is in the union of
C̃′ and convex hulls of the boundary disks, the convex hull of C itself is compact being
a subset of the union of a compact set C′ and finitely many compact sets. �
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Since C is homotopy equivalent to Li, there exists a convex hull Ki of C in Li homo-
topy equivalent to C by Proposition 8.1 in Part 2. Obviously, Ki contains F1, . . . , Fn.
Let Σi be the unique boundary component of ∂Ki associated with E.

Any closed geodesic homotopic to a closed curve in C in Li is contained in Ki: If not,
we can find a hyperbolic-imbedded annulus Bi with boundary consisting of the closed
geodesic and a closed curve on ∂K, intrinsically geodesic, where the interior angles in
Bi are always greater than or equal to π. Such an annulus clearly cannot exist.

We can find a quasi-geodesic c′i ǫ-close to ci in Mi. Since c′i is homotopic to a closed
curve in C by a homotopy A′

i in Mi modified from Ai, we have that c′i ⊂ Li. Choose a
geodesic representative c′′i in Li which is again arbitrarily close to c′i and hence to ci.
Therefore c′′i ⊂ Ki for each i.

Since Σi is a truly pleated-triangulated convex hyperbolic-surface, the intrinsic met-
ric in the pleated part is a Riemannian hyperbolic ones. Thus, Σi carries a triangu-
lated hyperbolic-surface structure intrinsically. Since Σi is intrinsically a hyperbolic-
imbedded surface and c′′i forms an exiting sequence, p|Σi is one also and hence form an
exiting sequence in E.

More precisely, the parts of boundary of the image of Ki form an exiting sequence
in E. Any part of the boundary of the image of Ki is in the image of Σi. Hence, there
exists an exiting sequence of parts of Σi. By the uniform boundedness of Σi, it follows
that Σi form an exiting sequence in E.

Remark 10.9. The uniform nature of the Margulis constant plays a role here. Any
ǫ-thin part of a hyperbolic-immersed surface must be inside a Margulis tube in Li and
by incompressibility the thin parts are homeomorphic to essential annuli. Since Σi is
incompressible in Li −Co, we see that the thin part of Σi is a union of essential annuli
which are not homotopic to each other. Thus, outside the Margulis tubes, Σis have
bounded diameter independent of i.

10.4. The Proof of Theorem B. We recall that C was pushed inside itself somewhat
so that Σi and ∂Ki does not meet C. In Ki, we may remove Co and we obtain a compact
submanifold Qi of codimension 0 bounded by saddle-surfaces including Σi since ∂C is
saddle-imbedded. Qi is a 2-convex CAT(−1)-space. Finally, Σi is incompressible in Qi

since any compressing disk of Σi not meeting the core would reduce the genus of Σi

but the genus of Σi is the same as that of the component of ∂C corresponding to the
end E since Ki is homotopy equivalent to C.

As Ki is homeomorphic to a compression body, we choose a compressing curve α in
Σi. Then α bounds a disk D in Ki and the core C must meet D in its interior. Let α̂
be the geodesic realization of α in Ki − Co, which must be in Ki.

If α̂ does not meet ∂C, then it maps to a geodesic in M , which is absurd since the
holonomy of α is the identity. Therefore, α̂ meets ∂C.

We form a triangulation of Σi with the only vertex p at a point of α and including
α as an edge. Then choosing a vertex p̂ in α̂ and a path from p to p̂, we isotopy each
edge of the triangulation to a geodesic loop in Ki − Co based at p̂. Each triangle is
isotopied to an A-net spanned by new geodesic edges. The resulting surface Ti is a
hyperbolic-surface since each of the triangles is an A-net and a geodesic passes through
each point of the 1-complex.
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Each surface qi : Ti → M − Co has the same genus and is homotopic to pi|Σi in
M − Co. Since they are hyperbolic-imbedded, and meet ∂C, they are in a bounded
neighborhood of C by the boundedness of hyperbolic-imbedded surfaces. They form a
pre-compact sequence. Thus infinitely many of qi|Ti are isotopic in M −Co. Therefore,
infinitely many of pi|Σi are isotopic in M − Co. Since Σi bounds larger and larger
domains in a cover of M and Σi projects to a surface far from C, the above fact shows
that our end E is tame as shown by Thurston [17]. (This is essentially the argument
of Souto [16] simplifiable in our setup.)
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