# The deformation spaces of convex real projective structures on manifolds or orbifolds with ends: openness and closedness

Suhyoung Choi

Department of Mathematical Science KAIST, Daejeon, South Korea mathsci.kaist.ac.kr/~schoi (Copies of my lectures are posted)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- Introduction

└─ Orbifolds and ℝP<sup>n</sup>-structures

### Orbifolds

#### Orbifold structure

By an *n*-dimensional orbifold, we mean a Hausdorff second countable topological space with a fine open cover  $\{U_i, i \in I\}$  with compatible models  $(\tilde{U}_i, G_i)$ .

Introduction

└─ Orbifolds and ℝP<sup>n</sup>-structures

# Orbifolds

#### Orbifold structure

By an *n*-dimensional orbifold, we mean a Hausdorff second countable topological space with a fine open cover  $\{U_i, i \in I\}$  with compatible models  $(\tilde{U}_i, G_i)$ .

#### Good orbifold

 $M/\Gamma$  where  $\Gamma$  is a discrete group with a properly discontinuous action.

Introduction

Orbifolds and RP<sup>n</sup>-structures

# Orbifolds

#### Orbifold structure

By an *n*-dimensional orbifold, we mean a Hausdorff second countable topological space with a fine open cover  $\{U_i, i \in I\}$  with compatible models  $(\tilde{U}_i, G_i)$ .

#### Good orbifold

 $M/\Gamma$  where  $\Gamma$  is a discrete group with a properly discontinuous action.

#### Real projective structure

A  $\mathbb{R}P^n$ -structure on an orbifold is given by having charts from  $U_i$ s to open subsets of  $\mathbb{R}P^n$  with transition maps in PGL $(n + 1, \mathbb{R})$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

└─ Orbifolds and ℝP<sup>n</sup>-structures

### Projective, affine, and hyperbolic geometry

- $\mathbb{R}P^n = P(\mathbb{R}^{n+1}) = (\mathbb{R}^{n+1} \{O\}) / \sim$  where  $\vec{v} \sim \vec{w}$  iff  $\vec{v} = s\vec{w}$  for  $s \in \mathbb{R} \{O\}$ .
- ▶ The group of projective automorphisms is  $PGL(n + 1, \mathbb{R})$ .

- Introduction

└─ Orbifolds and ℝP<sup>n</sup>-structures

### Projective, affine, and hyperbolic geometry

- $\mathbb{R}P^n = P(\mathbb{R}^{n+1}) = (\mathbb{R}^{n+1} \{O\})/ \sim$  where  $\vec{v} \sim \vec{w}$  iff  $\vec{v} = s\vec{w}$  for  $s \in \mathbb{R} \{O\}$ .
- The group of projective automorphisms is  $PGL(n + 1, \mathbb{R})$ .
- ▶  $\mathbb{R}P^n \mathbb{R}P_{\infty}^{n-1}$  is an affine space  $A^n$  where the group of projective automorphisms of  $A^n$  is exactly  $Aff(A^n)$ .

 $A^n \hookrightarrow \mathbb{R}P^n$ ,  $Aff(A^n) \hookrightarrow PGL(n+1,\mathbb{R})$ .

•  $\mathbb{R}^{1,n}$  with Lorentzian metric  $q(\vec{v}) := -x_0^2 + x_1^1 + \cdots + x_n^2$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

└─ Orbifolds and ℝP<sup>n</sup>-structures

### Projective, affine, and hyperbolic geometry

- $\mathbb{R}P^n = P(\mathbb{R}^{n+1}) = (\mathbb{R}^{n+1} \{O\})/ \sim$  where  $\vec{v} \sim \vec{w}$  iff  $\vec{v} = s\vec{w}$  for  $s \in \mathbb{R} \{O\}$ .
- The group of projective automorphisms is  $PGL(n + 1, \mathbb{R})$ .
- ▶  $\mathbb{R}P^n \mathbb{R}P_{\infty}^{n-1}$  is an affine space  $A^n$  where the group of projective automorphisms of  $A^n$  is exactly  $Aff(A^n)$ .

 $A^n \hookrightarrow \mathbb{R}P^n$ ,  $Aff(A^n) \hookrightarrow PGL(n+1,\mathbb{R})$ .

- ▶  $\mathbb{R}^{1,n}$  with Lorentzian metric  $q(\vec{v}) := -x_0^2 + x_1^1 + \cdots + x_n^2$ .
- The upper part of q = -1 is the model of the hyperbolic *n*-space  $H^n$ .
- The cone q < 0 corresponds to the convex open *n*-ball in B<sup>n</sup> → A<sup>n</sup> ⊂ ℝP<sup>n</sup> correspond to H<sup>n</sup> in a one-to-one manner.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

└─ Orbifolds and ℝP<sup>n</sup>-structures

## Projective, affine, and hyperbolic geometry

- $\mathbb{R}P^n = P(\mathbb{R}^{n+1}) = (\mathbb{R}^{n+1} \{O\})/ \sim$  where  $\vec{v} \sim \vec{w}$  iff  $\vec{v} = s\vec{w}$  for  $s \in \mathbb{R} \{O\}$ .
- The group of projective automorphisms is  $PGL(n + 1, \mathbb{R})$ .
- ▶  $\mathbb{R}P^n \mathbb{R}P_{\infty}^{n-1}$  is an affine space  $A^n$  where the group of projective automorphisms of  $A^n$  is exactly  $Aff(A^n)$ .

 $A^n \hookrightarrow \mathbb{R}P^n$ ,  $Aff(A^n) \hookrightarrow PGL(n+1,\mathbb{R})$ .

- ▶  $\mathbb{R}^{1,n}$  with Lorentzian metric  $q(\vec{v}) := -x_0^2 + x_1^1 + \cdots + x_n^2$ .
- The upper part of q = -1 is the model of the hyperbolic *n*-space  $H^n$ .
- The cone q < 0 corresponds to the convex open *n*-ball in B<sup>n</sup> → A<sup>n</sup> ⊂ ℝP<sup>n</sup> correspond to H<sup>n</sup> in a one-to-one manner.
- $Isom(H^n) = Aut(B^n) = PO(1, n) \hookrightarrow PGL(n + 1, \mathbb{R}).$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のへで

Crbifolds and RP<sup>n</sup>-structures

# Real projective structures on orbifolds

An  $\mathbb{R}P^n$ -structure on  $M/\Gamma$  with simply connected M is given by an immersion  $D: M \to \mathbb{R}P^n$  equivariant with respect to a homomorphism  $h: \Gamma \to PGL(n+1, \mathbb{R})$ where  $\Gamma$  is the fundamental group of  $M/\Gamma$ .

▶ The pair (*D*, *h*) is only determined up to the action by  $g \in PGL(n + 1, \mathbb{R})$  given by

$$g(D, h(\cdot)) = (g \circ D, gh(\cdot)g^{-1}).$$

• Conversely, [(D, h)] determines the  $\mathbb{R}P^n$ -structure.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のへで

Deformation spaces and holonomy maps

### Deformation spaces of convex $\mathbb{R}P^n$ -structures

- Given an orbifold S, a convex ℝP<sup>n</sup>-structure is given by a diffeomorphism
  f: S → Ω/Γ for a convex domain Ω in ℝP<sup>n</sup> and Γ a subgroup of PGL(n + 1, ℝ).
- This induces a diffeomorphism D : S̃ → Ω equivariant with respect to h : π<sub>1</sub>(S) → Γ.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のへで

Deformation spaces and holonomy maps

### Deformation spaces of convex $\mathbb{R}P^n$ -structures

- Given an orbifold *S*, a *convex*  $\mathbb{R}P^n$ -*structure* is given by a diffeomorphism
  - $f: S \to \Omega/\Gamma$  for a convex domain  $\Omega$  in  $\mathbb{R}P^n$  and  $\Gamma$  a subgroup of  $PGL(n+1, \mathbb{R})$ .
- This induces a diffeomorphism D : S̃ → Ω equivariant with respect to h : π<sub>1</sub>(S) → Γ.
- The deformation space CDef(S) of convex  $\mathbb{R}P^n$ -structures

is  $\{(D, h)\}/\sim$  where  $(D, h)\sim (D', h')$  if there is an isotopy  $\tilde{f}: \tilde{S} \to \tilde{S}$  such that  $D' = D \circ \tilde{f}$  and h'(g) = h(g) for each  $g \in \pi_1(S)$  or  $D' = k \circ D$  and  $h'(\cdot) = kh(\cdot)k^{-1}$  for  $k \in \text{PGL}(n+1, \mathbb{R})$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Deformation spaces and holonomy maps

### Deformation spaces of convex $\mathbb{R}P^n$ -structures

- Given an orbifold *S*, a *convex*  $\mathbb{R}P^n$ -*structure* is given by a diffeomorphism
  - $f: S \to \Omega/\Gamma$  for a convex domain  $\Omega$  in  $\mathbb{R}P^n$  and  $\Gamma$  a subgroup of  $PGL(n+1, \mathbb{R})$ .
- This induces a diffeomorphism D : S̃ → Ω equivariant with respect to h : π<sub>1</sub>(S) → Γ.
- The deformation space CDef(S) of convex  $\mathbb{R}P^n$ -structures

is  $\{(D, h)\}/\sim$  where  $(D, h)\sim (D', h')$  if there is an isotopy  $\tilde{f}: \tilde{S} \to \tilde{S}$  such that  $D' = D \circ \tilde{f}$  and h'(g) = h(g) for each  $g \in \pi_1(S)$  or  $D' = k \circ D$  and  $h'(\cdot) = kh(\cdot)k^{-1}$  for  $k \in \text{PGL}(n+1, \mathbb{R})$ .

• Alternatively,  $\text{CDef}(S) = \{f : S \to \Omega/\Gamma\}/\sim$  where  $f \sim g$  for  $f : S \to \Omega/\Gamma$  and  $g : S \to \Omega'/\Gamma'$  if there exists a projective diffeomorphism  $k : \Omega/\Gamma \to \Omega'/\Gamma'$  so that  $k \circ f$  is isotopic to g.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Deformation spaces and holonomy maps

### The hol map: The local homeomorphism property

#### Ehresmann, Thurston

The closed version is a classical theorem that the holonomy representations locally parametrize the geometric structures and vice versa. We state the radial end version.

- Deformation spaces and holonomy maps

# The hol map: The local homeomorphism property

#### Ehresmann, Thurston

The closed version is a classical theorem that the holonomy representations locally parametrize the geometric structures and vice versa. We state the radial end version.

#### Theorem A

Let  $\mathcal{O}$  be a closed n-orbifold or noncompact tame with radial or totally geodesic ends. Then the following map is a local homeomorphism:

#### hol : $\operatorname{Def}_{(E)}(\mathcal{O}) \to \operatorname{rep}_{(E)}(\pi_1(\mathcal{O}), \operatorname{PGL}(n+1, \mathbb{R}))$

in the stable subspace. (note: no convexity condition is needed for this.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Deformation spaces and holonomy maps

# The hol map: The local homeomorphism property

#### Ehresmann, Thurston

The closed version is a classical theorem that the holonomy representations locally parametrize the geometric structures and vice versa. We state the radial end version.

#### Theorem A

Let  $\mathcal{O}$  be a closed n-orbifold or noncompact tame with radial or totally geodesic ends. Then the following map is a local homeomorphism:

hol :  $\operatorname{Def}_{(E)}(\mathcal{O}) \to \operatorname{rep}_{(E)}(\pi_1(\mathcal{O}), \operatorname{PGL}(n+1, \mathbb{R}))$ 

in the stable subspace. (note: no convexity condition is needed for this.)

#### Proof.

This follows as in the compact cases using the bump functions. However, we may need the bump functions extending to the ends for radial ends. (comments: this would be hard to generalize for non-R- or T-ends)

Convexity and convex domains

### Convexity.

The openness in Theorem A for closed orbifolds with properly convex real projective structures was proved by Koszul in 1970s.

Convexity and convex domains

## Convexity.

The openness in Theorem A for closed orbifolds with properly convex real projective structures was proved by Koszul in 1970s.

#### Proposition (Basic Convexity)

- An ℝP<sup>n</sup>-orbifold is convex if and only if the developing map D sends the universal cover to a convex open domain in ℝP<sup>n</sup>.
- An ℝP<sup>n</sup>-orbifold is properly convex if and only if D sends the universal cover to a properly convex open domain in a compact domain in an affine patch of ℝP<sup>n</sup>.
- ► If a convex ℝP<sup>n</sup>-orbifold is not properly convex, then its holonomy is virtually reducible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Convexity and convex domains

### Benoist's "maximally complete" results

Benoist in his papers "Convexes divisibles I-IV":

#### Proposition (Benoist)

Suppose that a discrete subgroup  $\Gamma$  of PGL $(n + 1, \mathbb{R})$  acts properly on a properly convex n-dimensional open domain  $\Omega$  so that  $\Omega/\Gamma$  is a compact orbifold. Then the following statements are equivalent.

- Every FI subgroup of Γ has a trivial center.
- Every FI subgroup of  $\Gamma$  is irreducible in PGL( $n + 1, \mathbb{R}$ ). (or strongly irreducible).
- The Zariski closure of Γ is semisimple.
- Γ does not contain a normal infinite nilpotent subgroup.
- Γ does not contain a normal infinite abelian subgroup.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Convexity and convex domains

### Benoist's result continued

> The group with the above property is said to be the group with *trivial virtual center*.

Convexity and convex domains

### Benoist's result continued

The group with the above property is said to be the group with *trivial virtual center*.

#### Theorem (Benoist's Closedness)

Let  $\Gamma$  be a discrete subgroup of PGL $(n + 1, \mathbb{R})$  with a trivial virtual center. Suppose that a discrete subgroup  $\Gamma$  of PGL $(n + 1, \mathbb{R})$  acts on a properly convex *n*-dimensional open domain  $\Omega$  so that  $\Omega/\Gamma$  is a compact orbifold. Then every representation of a component of Hom $(\Gamma, PGL(n + 1, \mathbb{R}))$  containing the inclusion representation also acts on a properly convex *n*-dimensional open domain cocompactly.

(日) (雪) (日) (日) (日)

Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

Tillman's example

### S. Tillman's example

- There is a census of small hyperbolic orbifolds with graph-singularity. (See the paper by D. Heard, C. Hodgson, B. Martelli, and C. Petronio [2])
- There is a complete hyperbolic structure on the orbifold based on S<sup>3</sup> with handcuff singularity with two points removed. The singularity orders are three.

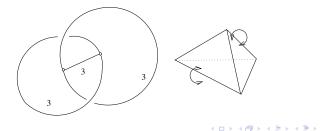


Figure: The handcuff graph

Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

Tillman's example

### S. Tillman's example

- There is a census of small hyperbolic orbifolds with graph-singularity. (See the paper by D. Heard, C. Hodgson, B. Martelli, and C. Petronio [2])
- There is a complete hyperbolic structure on the orbifold based on S<sup>3</sup> with handcuff singularity with two points removed. The singularity orders are three.
- ► There is a one-parameter space of deformations of the structures to ℝP<sup>3</sup>-structures as seen by simple matrix computations.
- More examples due to myself, Ballas, Danciger, Gye-Seon Lee, Greene: Some of these are properly and strictly convex and irreducible by our theory to be presented.

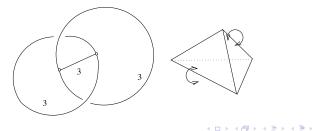


Figure: The handcuff graph

- Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

Tillman's example

## End orbifold

- ► An ℝP<sup>n</sup>-orbifold has radial ends if each end has an end neighborhood foliated by concurrent geodesics for each chart ending at the common point of concurrency.
- Each end has a neighborhood diffeomorphic to a closed orbifold times an open interval.

- Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

Tillman's example

## End orbifold

- ► An ℝP<sup>n</sup>-orbifold has radial ends if each end has an end neighborhood foliated by concurrent geodesics for each chart ending at the common point of concurrency.
- Each end has a neighborhood diffeomorphic to a closed orbifold times an open interval.
- ▶ Given an end, there is an *end orbifold* associated with the end. The radial foliation has a transversal  $\mathbb{R}P^{n-1}$ -structure and hence the end orbifold has an induced  $\mathbb{R}P^{n-1}$ -structure of one dimension lower.
- ► The end orbifold is convex if *O* is convex. If the end orbifold is properly convex, then we say that the end is a *transversely properly convex end*.

Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

Tillman's example

# End orbifold

- ► An ℝP<sup>n</sup>-orbifold has radial ends if each end has an end neighborhood foliated by concurrent geodesics for each chart ending at the common point of concurrency.
- Each end has a neighborhood diffeomorphic to a closed orbifold times an open interval.
- Given an end, there is an *end orbifold* associated with the end. The radial foliation has a transversal  $\mathbb{R}P^{n-1}$ -structure and hence the end orbifold has an induced  $\mathbb{R}P^{n-1}$ -structure of one dimension lower.
- ► The end orbifold is convex if *O* is convex. If the end orbifold is properly convex, then we say that the end is a *transversely properly convex end*.
- Crampon-Marquis arXiv:1202.5442 and Cooper-Long-Tillman arXiv:1109.0585 also studies finite-covolume cases: i.e.; "cusped cases".

- Convex  $\mathbb{R}P^n$ -orbifolds with radial or totally geodesic ends

Main results: Open and closed properties

### Open and closed properties

#### Theorem B

Let  $\mathcal{O}$  be a noncompact topologically tame n-orbifold with admissible ends satisfying (IE) and (NA). Then

In Def<sup>i</sup><sub>E,u,ce</sub>(𝔅), the subspace CDef<sub>E</sub>(𝔅) of SPC-structures is open. (SPC means "stable properly convex")

Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

Main results: Open and closed properties

### Open and closed properties

#### Theorem B

Let  $\mathcal{O}$  be a noncompact topologically tame n-orbifold with admissible ends satisfying (IE) and (NA). Then

- In Def<sup>i</sup><sub>E,u,ce</sub>(𝔅), the subspace CDef<sub>E</sub>(𝔅) of SPC-structures is open. (SPC means "stable properly convex")
- Suppose further that  $\pi_1(\mathcal{O})$  contains no nontrivial nilpotent normal subgroup. The deformation space  $\text{CDef}_{E,u,ce}(\mathcal{O})$  of SPC-structures on  $\mathcal{O}$  maps homeomorphic to a union of components of  $\text{rep}_{E,u,ce}^i(\pi_1(\mathcal{O}), \text{PGL}(n+1,\mathbb{R}))$ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Convex  $\mathbb{R}P^n$ -orbifolds with radial or totally geodesic ends

Main results: Open and closed properties

### Open and closed properties

#### Theorem B

Let  $\mathcal{O}$  be a noncompact topologically tame n-orbifold with admissible ends satisfying (IE) and (NA). Then

- In Def<sup>i</sup><sub>E,u,ce</sub>(𝔅), the subspace CDef<sub>E</sub>(𝔅) of SPC-structures is open. (SPC means "stable properly convex")
- Suppose further that  $\pi_1(\mathcal{O})$  contains no nontrivial nilpotent normal subgroup. The deformation space  $\text{CDef}_{E,u,ce}(\mathcal{O})$  of SPC-structures on  $\mathcal{O}$  maps homeomorphic to a union of components of  $\text{rep}_{E,u,ce}^i(\pi_1(\mathcal{O}), \text{PGL}(n+1, \mathbb{R}))$ .
- We can drop the superscript i(new result in May 2014)

- Convex  $\mathbb{R}P^n$ -orbifolds with radial or totally geodesic ends

Main results: Open and closed properties

### Open and closed properties

#### Theorem B

Let  $\mathcal{O}$  be a noncompact topologically tame n-orbifold with admissible ends satisfying (IE) and (NA). Then

- In Def<sup>i</sup><sub>E,u,ce</sub>(𝔅), the subspace CDef<sub>E</sub>(𝔅) of SPC-structures is open. (SPC means "stable properly convex")
- Suppose further that  $\pi_1(\mathcal{O})$  contains no nontrivial nilpotent normal subgroup. The deformation space  $\text{CDef}_{E,u,ce}(\mathcal{O})$  of SPC-structures on  $\mathcal{O}$  maps homeomorphic to a union of components of  $\text{rep}_{E,u,ce}^i(\pi_1(\mathcal{O}), \text{PGL}(n+1,\mathbb{R}))$ .
- We can drop the superscript i(new result in May 2014)

Here "u" indicates unique fixed point conditions. However it is not essential here. (Cooper-Long-Tillman are using "flag" condition.) "ce" means lens or horospherical condition.

・ロット (雪) ( 日) ( 日) ( 日)

Convex  $\mathbb{R}P^{n}$ -orbifolds with radial or totally geodesic ends

Main results: Open and closed properties

#### Theorem C

Let  $\mathcal{O}$  be a strict SPC noncompact topologically tame n-dimensional orbifold with admissible ends satisfying (IE) and (NA). Suppose that  $\pi_1(\mathcal{O})$  has no infinite nilpotent subgroup as a virtual normal subgroup. Then

•  $\pi_1(\mathcal{O})$  is relatively hyperbolic with respect to its end fundamental groups.

Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

Main results: Open and closed properties

#### Theorem C

Let  $\mathcal{O}$  be a strict SPC noncompact topologically tame n-dimensional orbifold with admissible ends satisfying (IE) and (NA). Suppose that  $\pi_1(\mathcal{O})$  has no infinite nilpotent subgroup as a virtual normal subgroup. Then

- $\pi_1(\mathcal{O})$  is relatively hyperbolic with respect to its end fundamental groups.
- In Def<sup>i</sup><sub>E,u,ce</sub>(𝔅), the subspace SDef<sub>E</sub>(𝔅) of strict SPC-structures with respect to the ends is open.

Convex  $\mathbb{R}P^{n}$ -orbifolds with radial or totally geodesic ends

Main results: Open and closed properties

#### Theorem C

Let  $\mathcal{O}$  be a strict SPC noncompact topologically tame n-dimensional orbifold with admissible ends satisfying (IE) and (NA). Suppose that  $\pi_1(\mathcal{O})$  has no infinite nilpotent subgroup as a virtual normal subgroup. Then

- $\pi_1(\mathcal{O})$  is relatively hyperbolic with respect to its end fundamental groups.
- In Def<sup>i</sup><sub>E,u,ce</sub>(𝔅), the subspace SDef<sub>E</sub>(𝔅) of strict SPC-structures with respect to the ends is open.
- ► The deformation space SDef<sub>E,u,ce</sub>(𝔅) of strict SPC-structures on 𝔅 with respect to the ends maps homeomorphic to a union of components of

 $\operatorname{rep}_{E,u,ce}^{i}(\pi_{1}(\mathcal{O}),\operatorname{PGL}(n+1,\mathbb{R})).$ 

We can drop the superscript i (new result in May 2014)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

- The SPC-structures and relative hyperbolicity

#### Hilbert metrics

- A *Hilbert metric* on an SPC-structure is defined as a distance metric given by cross ratios. (We do not assume strictness here.)
- Let Ω be a properly convex domain. Then d<sub>Ω</sub>(p, q) = log(o, s, q, p) where o and s are endpoints of the maximal segment in Ω containing p, q.

- Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

The SPC-structures and relative hyperbolicity

#### Hilbert metrics

- A *Hilbert metric* on an SPC-structure is defined as a distance metric given by cross ratios. (We do not assume strictness here.)
- Let Ω be a properly convex domain. Then d<sub>Ω</sub>(p, q) = log(o, s, q, p) where o and s are endpoints of the maximal segment in Ω containing p, q.
- This gives us a well-defined Finsler metric.
- ► Given an SPC-structure on O, there is a Hilbert metric d<sub>H</sub> on Õ and hence on Õ. This induces a metric on O.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

L The SPC-structures and relative hyperbolicity

## Relatively hyperbolicity and strict SPC-structures

#### We will use Bowditch's result to show

#### Theorem (D)

Let  $\mathcal{O}$  be a topologically tame strictly SPC-orbifold with admissible ends satisfying (IE) and (NA). Then  $\pi_1(\mathcal{O})$  is relatively hyperbolic with respect to the end groups  $\pi_1(E_1), ..., \pi_1(E_k)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

The SPC-structures and relative hyperbolicity

# Relatively hyperbolicity and strict SPC-structures

#### We will use Bowditch's result to show

#### Theorem (D)

Let  $\mathcal{O}$  be a topologically tame strictly SPC-orbifold with admissible ends satisfying (IE) and (NA). Then  $\pi_1(\mathcal{O})$  is relatively hyperbolic with respect to the end groups  $\pi_1(E_1), ..., \pi_1(E_k)$ .

Fact: Suppose that  $\pi_1(E_l), ..., \pi_1(E_k)$  are hyperbolic for some  $0 \le l < k, \pi_1(\mathcal{O})$  is relatively hyperbolic with respect to  $\pi_1(E_1), ..., \pi_1(E_{l-1})$  iff so it is with respect to  $\pi_1(E_1), ..., \pi_1(E_k)$ . (Drutu)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Convex  $\mathbb{R}P^{n}$ -orbifolds with radial or totally geodesic ends

L The SPC-structures and relative hyperbolicity

- ▶ Proof: We denote this quotient space  $bd\tilde{O}_1 / \sim by B$ , a compact metrizable space.
- We will use Theorem 0.1. of Yaman [5]: We show that π<sub>1</sub>(O) acts on the set B as a geometrically finite convergence group.

- Convex  $\mathbb{R}P^{n}$ -orbifolds with radial or totally geodesic ends

L The SPC-structures and relative hyperbolicity

- ▶ Proof: We denote this quotient space  $bd\tilde{O}_1 / \sim by B$ , a compact metrizable space.
- We will use Theorem 0.1. of Yaman [5]: We show that π<sub>1</sub>(O) acts on the set B as a geometrically finite convergence group.
- ► The group acts properly discontinuously on the set of triples in *B*.

Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

The SPC-structures and relative hyperbolicity

- ▶ Proof: We denote this quotient space  $bd\tilde{O}_1 / \sim by B$ , a compact metrizable space.
- We will use Theorem 0.1. of Yaman [5]: We show that π<sub>1</sub>(O) acts on the set B as a geometrically finite convergence group.
- ► The group acts properly discontinuously on the set of triples in *B*.
- An end group Γ<sub>x</sub> for end vertex x is a parabolic subgroup fixing x since the elements in Γ<sub>x</sub> fixes only the contracted set in B and since there are no essential annuli.

- Convex  $\mathbb{R}P^n$ -orbifolds with radial or totally geodesic ends

L The SPC-structures and relative hyperbolicity

Proof continued: Let p be a point that is not a horospherical endpoint or a singleton corresponding an lens-shaped end. We show that p is a conical limit point.

- Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

L The SPC-structures and relative hyperbolicity

- Proof continued: Let p be a point that is not a horospherical endpoint or a singleton corresponding an lens-shaped end. We show that p is a conical limit point.
- ▶ We find a sequence of holonomy transformations  $\gamma_i$  and distinct points  $a, b \in \partial X$ so that  $\gamma_i(p) \to a$  and  $\gamma_i(q) \to b$  for all  $q \in \partial X - \{p\}$ . To do this, we draw a line l(t) from a point of the fundamental domain to p where as  $t \to \infty$ ,  $l(t) \to p$  in the compactification.

- Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

The SPC-structures and relative hyperbolicity

- Proof continued: Let p be a point that is not a horospherical endpoint or a singleton corresponding an lens-shaped end. We show that p is a conical limit point.
- We find a sequence of holonomy transformations *γ<sub>i</sub>* and distinct points *a*, *b* ∈ ∂*X* so that *γ<sub>i</sub>(p)* → *a* and *γ<sub>i</sub>(q)* → *b* for all *q* ∈ ∂*X* − {*p*}. To do this, we draw a line *l(t)* from a point of the fundamental domain to *p* where as *t* → ∞, *l(t)* → *p* in the compactification.

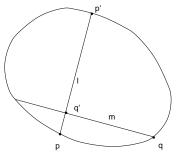


Figure: A shortest geodesic *m* to a geodesic  $h < \square > < \blacksquare > = - \neg \land \bigcirc$ 

Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

- The SPC-structures and relative hyperbolicity

## Converse

We will prove the partial converse to the above Theorem D:

## Theorem (E)

Let  $\mathcal{O}$  be a topologically tame SPC-orbifold with admissible ends satisfying (IE) and (NA). Suppose that  $\pi_1(\mathcal{O})$  is relatively hyperbolic group with respect to the admissible end groups  $\pi_1(E_1), ..., \pi_1(E_k)$  where  $E_i$  are horospherical for i = 1, ..., m and lens-shaped for i = m + 1, ..., k for  $0 \le m \le k$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

- The SPC-structures and relative hyperbolicity

## Converse

We will prove the partial converse to the above Theorem D:

## Theorem (E)

Let  $\mathcal{O}$  be a topologically tame SPC-orbifold with admissible ends satisfying (IE) and (NA). Suppose that  $\pi_1(\mathcal{O})$  is relatively hyperbolic group with respect to the admissible end groups  $\pi_1(E_1), ..., \pi_1(E_k)$  where  $E_i$  are horospherical for i = 1, ..., m and lens-shaped for i = m + 1, ..., k for  $0 \le m \le k$ .

Assume that O is SPC. Then O is strictly SPC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

- The SPC-structures and relative hyperbolicity

## Converse

We will prove the partial converse to the above Theorem D:

## Theorem (E)

Let  $\mathcal{O}$  be a topologically tame SPC-orbifold with admissible ends satisfying (IE) and (NA). Suppose that  $\pi_1(\mathcal{O})$  is relatively hyperbolic group with respect to the admissible end groups  $\pi_1(E_1), ..., \pi_1(E_k)$  where  $E_i$  are horospherical for i = 1, ..., m and lens-shaped for i = m + 1, ..., k for  $0 \le m \le k$ .

- Assume that O is SPC. Then O is strictly SPC.
- Let O<sub>1</sub> be obtained by removing the concave neighborhoods of hyperbolic ends. Then if O is SPC, then O<sub>1</sub> is strictly SPC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Convex  $\mathbb{R}P^n$ -orbifolds with radial or totally geodesic ends

L-The SPC-structures and relative hyperbolicity

## Proof.

Suppose not. We obtain a triangle T with  $\partial T$  in  $\partial \tilde{\mathcal{O}}_1$ .

Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

- The SPC-structures and relative hyperbolicity

### Proof.

Suppose not. We obtain a triangle T with  $\partial T$  in  $\partial \tilde{\mathcal{O}}_1$ .

#### Lemma

Suppose that  $\mathcal{O}$  is a topologically tame properly convex n-orbifold with admissible ends and  $\pi_1(\mathcal{O})$  is relatively hyperbolic with respect to its ends.  $\mathcal{O}$  has no essential tori or essential annuli. Then every triangle T in  $\tilde{\mathcal{O}}$  with  $\partial T \subset \partial \tilde{\mathcal{O}}$  is contained in the closure of a convex hull of one of its ends.

- Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

The SPC-structures and relative hyperbolicity

### Proof.

Suppose not. We obtain a triangle T with  $\partial T$  in  $\partial \tilde{\mathcal{O}}_1$ .

#### Lemma

Suppose that  $\mathcal{O}$  is a topologically tame properly convex n-orbifold with admissible ends and  $\pi_1(\mathcal{O})$  is relatively hyperbolic with respect to its ends.  $\mathcal{O}$  has no essential tori or essential annuli. Then every triangle T in  $\tilde{\mathcal{O}}$  with  $\partial T \subset \partial \tilde{\mathcal{O}}$  is contained in the closure of a convex hull of one of its ends.

### Proof.

Uses asymptotic cones in Drutu-Sapir's work.

Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

L The SPC-structures and relative hyperbolicity

# Proofs of Theorem B and C

- ▶ By Theorem A, we at least have a real projective structures on orbifolds.
- We show that a small change of the structure implies the small change of the universal covers of the end orbifolds in the Hausdorff metrics.— We can control the ends.

- Convex  $\mathbb{R}P^n$ -orbifolds with radial or totally geodesic ends

The SPC-structures and relative hyperbolicity

# Proofs of Theorem B and C

- ▶ By Theorem A, we at least have a real projective structures on orbifolds.
- We show that a small change of the structure implies the small change of the universal covers of the end orbifolds in the Hausdorff metrics.— We can control the ends.
- We show that the Koszul-Vinberg function can be perturbed to positive definite functions in the affine suspensions by controlling the ends.– This proves the openness part of Theorem B.
- ► For theorem C, we use "Strict SPC iff rel. hyperbolic".

- Convex  $\mathbb{R}P^n$ -orbifolds with radial or totally geodesic ends

The SPC-structures and relative hyperbolicity

## Proofs of Theorem B and C

- ▶ By Theorem A, we at least have a real projective structures on orbifolds.
- We show that a small change of the structure implies the small change of the universal covers of the end orbifolds in the Hausdorff metrics.— We can control the ends.
- We show that the Koszul-Vinberg function can be perturbed to positive definite functions in the affine suspensions by controlling the ends.– This proves the openness part of Theorem B.
- For theorem C, we use "Strict SPC iff rel. hyperbolic".
- As we deform a strict SPC structure, we do not change the rel. hyperbolicity. Thus, strict SPC property is preserved. The openness part of Theorem C is done.

- Convex IMP -orbitolos with radial or totally geodesic end

L The SPC-structures and relative hyperbolicity

We also need to show that the limiting convex real projective structure of a sequence of SPC-structure is also SPC. We show this by showing that the universal covers Ω<sub>i</sub> must converge geometrically to a properly convex domain of nonempty interior. (up to duality) (Essentially because we have only horospherical or lens-type ends.)

- We also need to show that the limiting convex real projective structure of a sequence of SPC-structure is also SPC. We show this by showing that the universal covers Ω<sub>i</sub> must converge geometrically to a properly convex domain of nonempty interior. (up to duality) (Essentially because we have only horospherical or lens-type ends.)
- Let  $g_1, \ldots, g_m$  denote the set of generator of  $\pi_1(\mathcal{O})$ .

 $\mathbf{d}(h_i(g_i)(x_0), \operatorname{bd}\Omega_i) \ge C_0 \text{ for a uniform constant } C_0:$ (1)

$$d_{\Omega_i}(x_0, h_i(g_j)(x_0)) < C.$$
<sup>(2)</sup>

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- We also need to show that the limiting convex real projective structure of a sequence of SPC-structure is also SPC. We show this by showing that the universal covers Ω<sub>i</sub> must converge geometrically to a properly convex domain of nonempty interior. (up to duality) (Essentially because we have only horospherical or lens-type ends.)
- Let  $g_1, \ldots, g_m$  denote the set of generator of  $\pi_1(\mathcal{O})$ .

$$\mathbf{d}(h_i(g_i)(x_0), \operatorname{bd}\Omega_i) \ge C_0 \text{ for a uniform constant } C_0:$$
(1)

$$d_{\Omega_i}(x_0,h_i(g_j)(x_0)) < C.$$
<sup>(2)</sup>

▶ We make use of Benzecri's estimation that there are two fixed balls B<sub>r</sub> and B<sub>R</sub> so that

$$B_r \subset au_i(\Omega_i) \subset B_R$$

up to projective transformations. Then  $\tau_i g_i \tau_i^{-1}$  must be bounded and convergent.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

The SPC-structures and relative hyperbolicity



Convex RP<sup>n</sup>-orbifolds with radial or totally geodesic ends

The SPC-structures and relative hyperbolicity



#### W. Goldman.

Geometric structures on manifolds and varieties of representations.

Contemp. Math., 74:169-198, 1988.



D. Heard, C. Hodgson, B. Martelli, and C. Petronio,

Hyperbolic graphs of small complexity,

Experiment. Math. 19 (2010), no. 2, 211-236



D. Johnson and J.J. Millson.

Deformation spaces associated to compact hyperbolic manifolds.

In *Discrete Groups in Geometry and Analysis*, Proceedings of a conference held at Yale University in honor of G. D. Mostow, Springer-Verlag, Berlin, 1986.



Ludovic Marquis,

Espace des modules de certains polyedres projectifs miroirs,





A. Yaman

A topological characterisation of relatively hyperbolic groups,

J. reine ange. Math. 566 (2004), 41 - 89.