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Introduction Geometric structures

Abstract
Convex projective structures are generalizations of hyperbolic structures on n-manifolds

(orbifolds).

We will study totally geodesic ends of convex real projective n-manifolds (orbifolds) These are

ends that we can compactify by totally geodesic orbifolds of codimension-one.

A sufficient condition for lens-shaped end-neighborhoods to exist for a totally geodesic end is

that of the uniform-middle-eigenvalues on the end-holonomy-group.

Every affine deformation of a discrete dividing linear group satisfying this condition acts on

properly convex domains in the affine n-space.

We also discuss the relationship to the globally hyperbolic space-times in flat Lorentz

geometry.

The lens-shaped radial ends which are dual to lens-shaped totally geodesic ends.
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End theory at various stages of developments: Ballas, Cooper, Long, Tillman, Leitner, myself, so on...Abelian end holonomy cases were classified by BCLL.
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Introduction Geometric structures

Outline

Introduction: orbifolds, geometric structures, projective, affine, and hyperbolic geometry, real

projective structures

Main result:
I Totally geodesic ends
I Asymptotically nice action
I Outline of proof
I Globally hyperbolic spacetime

Duality and R-ends
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Introduction

Orbifolds

By an n-dimensional orbifold is a space

modelled on finite quotients of open sets

(with some compatibility conditions.)

Let P be a convex polyhedron and we silver

each side where the angles are of form π/n:

Coxeter orbifolds.

Examples: a square with silvered edges, a

triangular orbifold (Conway’s picture)

A good orbifold: M/Γ where Γ is a discrete

group with a properly discontinuous action.
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Introduction

(G,X )-geometry
A pair (G,X): X a space and G a Lie group acting on it transitively.

(G,X )-structure on orbifolds
Given a manifold or orbifold M, we locally model M by open subsets of X or their finite quotients

pasted by elements of G. The compatibility class of the atlas of charts is a (G,X)-structure on M.

5/33
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Introduction

Projective, affine geometry

RPn = P(Rn+1) = (Rn+1−{O})/∼ where ~v ∼ ~w iff ~v = s~w for s ∈ R−{O}.

The group of projective automorphisms is PGL(n + 1,R).

RPn−RPn−1
∞ is an affine space An where the group of projective automorphisms of An is

exactly Aff (An).

An ↪→ RPn,Aff (An) ↪→ PGL(n + 1,R).

Euclidean geometry (En, Isom(En)) is a sub-geometry of the affine geometry.

Figure: Wall-paper groups 16 and 17.
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Introduction

Hyperbolic geometry

R1,n with Lorentzian metric q(~v) :=−x2
0 + x2

1 + · · ·+ x2
n .

The upper part of q =−1 is the model of the hyperbolic n-space Hn.

The cone q < 0 corresponds to the convex open n-ball in Bn ↪→An ⊂ RPn correspond to Hn

in a one-to-one manner.

Isom(Hn) = Aut(Bn) = PO(1,n) ↪→ PGL(n + 1,R).

Figure: The triangle group D2(3,3,4) in the Poincare and Klein models by Bill Casselman.
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Introduction

Real projective structures on orbifolds

We look at the convex domain D in an affine subspace An ⊂ RPn.

The quotient D/Γ for a properly acting discrete group Γ⊂ Aut(D) is called a convex real

projective orbifold.

If D is properly convex, then D/Γ is called a properly convex real projective orbifold.

Figure: The developing images of convex RPn -structures on 2-orbifolds deformed from hyperbolic ones: D(3,3,4), S2(3,3,5)
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Introduction

Oriented real projective space

We can double cover to obtain Sn→ RPn. The group of projective automorphisms is

SL±(n + 1,R).

Here, An corresponds to an open hemisphere with ideal boundary Sn−1
∞ .

Every convex real projective structure on a closed orbifold can be thought of as being of form

Ω/Γ where Ω is a convex domain in an open hemisphere. Hence, the holonomy of any closed

curve can be uniquely chosen as an element of SL±(n + 1,R).

The space of oriented hyperplanes in Sn forms the dual space Sn∗.
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Main results Totally geodesic ends of convex real projective orbifolds

Totally geodesic ends

A strongly tame orbifold is an orbifold which contains a codimension 0 compact orbifold whose

complement is a union of ends of type compact orbifolds times I. (fixing diffeo class)

A totally geodesic end, or T-end of a real projective orbifold O is an end E admitting a

compactification of a product end neighborhood whose ideal boundary component ΣE is a totally

geodesic orbifold. (Here, of course, with smooth str of such completion added to O.)

A lens L is a properly convex domain whose boundary is a union of two smooth strictly convex

n−1-balls A and B. That is ∂L = A∪B.

A lens neighborhood of ΣE is a one-sided compact neighborhood of totally geodesic ideal

boundary component in an ambient real projective orbifold covered by a lens.
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Main results Totally geodesic ends of convex real projective orbifolds

End fundamental group and pseudo-ends

The end fundamental group π1(E) of an end E is the (orbifold) fundamental group of the

product end-neighborhood.

Each product end neighborhood U has an inverse image, each component of which is a cell

where the end fundamental group ΓẼ conjugate to π1(E) acts on. This determines a

pseudo-end Ẽ of E .

ΣE is covered by an totally geodesic open n−1-ball Σ̃Ẽ associated with Ẽ and ΣE = Σ̃Ẽ/ΓẼ .

In general these are somewhat related to the recent work of Cooper, Long, Tillman, Ballas,

and Leitner.
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Main results Asymptotically nice action: main result

Properly convex affine action

An affine deformation of linear ĥ : Γ→GL±(n,R) is given by a cocycle

~b : g→~bg ∈ Rn,g ∈ Γ

in Z 1(Γ,Rn
ĥ
). This gives an affine map h(g) : x 7→ ĥ(g)x +~bg for each g ∈ Γ.

Let Γ be an affine group acting on the affine subspace An with boundary bdAn = Sn−1
∞ in Sn,

Let U ′ be a properly convex invariant Γ-invariant domain with the property:

Cl(U ′)∩bdAn = Cl(Ω)⊂ bdAn

for a properly convex open domain Ω.

We suppose Ω/Γ is a closed (n−1)-orbifold. To begin with, we assumed only that Ω is

properly convex. Then Γ has a properly convex affine action.

When Γ fixes a point or equivalently~b ∼ 0, U can be a cone. U can also be a properly convex

domain with smooth boundary.

12/33
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ĥ
). This gives an affine map h(g) : x 7→ ĥ(g)x +~bg for each g ∈ Γ.
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Main results Asymptotically nice action: main result

Asymptotically nice action

Definition 3.1 (AS-hyperspace).
A sharply supporting hyperspace P at x ∈ bdΩ is asymptotic to U if there are no other sharply supporting

hyperplane P ′ at x so that P ′ ∩An separates U and P ∩An. P is asymptotic to U.

A properly convex affine action of Γ is said to be asymptotically nice if

Γ acts on U in An with boundary in Cl(Ω)⊂ Sn−1
∞ ,

Γ acts on a compact subset J := {H|H is an AS- hyperspace in Sn at x ∈ bdΩ,H 6⊂ Sn−1
∞ },

requiring that every sharply supporting (n−2)-dimensional space of Ω in Sn−1
∞ is contained in an element

of J.

As a consequence, for any sharply supporting (n−2)-dimensional space Q of Ω, the set

HQ := {H ∈ J|H ⊃Q}

is compact and bounded away from bdAn in the Hausdorff metric dH .

13/33
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Main results Asymptotically nice action: main result

Affine action

For each element of g ∈ ΓẼ , represented as a det =±1 matrix,

h(g) =

 1
λẼ (g)1/n ĥ(g) ~bg

~0 λẼ (g)

 (1)

where~bg is an n×1-vector and ĥ(g) ∈ SL±(n,R) and λẼ (g) > 0.

In the affine coordinates, it is of the form

x 7→ 1

λẼ (g)1+ 1
n

ĥ(g)x +
1

λẼ (g)
~bg . (2)

For λ1(g) the max-norm of the eigenvalues of g ∈ ΓE , if there exists a uniform constant C > 1

so that

C−1lengthΩ(g)≤ log
λ1(g)

λẼ (g)
≤ ClengthΩ(g), g ∈ ΓẼ −{I}, (3)

then Γ satisfies the uniform middle eigenvalue condition with respect to the boundary hyperspace.

14/33
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Main results Asymptotically nice action: main result

Asymptotic niceness

Theorem 1.

We assume that Γ is a discrete affine group dividing an open properly convex domain Ω in bdAn.

Suppose that Γ satisfies the uniform middle-eigenvalue condition with respect to bdAn.

Then

Γ is asymptotically nice with respect to a properly convex open domain U, and

any open set U ′ satisfying the properties of U has the AS-hyperspace at each point of bdΩ is

the same as that of U.

Remark

Below, I give a proof for hyperbolic Γ or strictly convex Ω. Here, ÛΩ = UΩ.
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Main results Outline of proofs

Hyperbolic and nonhyperbolic Γ: dichotomy by Koszul, Vey, Benoist

Assume Ω/Γ is a closed orbifold.

I Γ is hyperbolic↔
I Ω is strictly convex and have C1,ε -boundary→
I each infinite order elements are positive proximal. (Benoist)

(Here unique supporting hyperplane for each x ∈ bdΩ.)

Otherwise, bdΩ may have flats and infinite order elements are only positive semiproximal.
I decomposable: Here, we may have decomposition Cl(Ω) = K1 ∗ · · · ∗Km and Γ is virtually a subgroup

of Zm−1×Γ1×·· ·×Γm with Zm−1 in the center and positive diagonalizable.
I nondecomposible: No virtual infinite center case: fairly nice properties.

(here, many supporting hyperplanes for each x ∈ bdΩ.)
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Main results Outline of proofs

Generalization of unit tangent bundles

We generalize UΩ to the augmented unit tangent bundle

ÛΩ := {(~x ,Ha,Hr )|~x ∈ UΩ is a direction vector at a point

of a maximal oriented geodesic l~x in Ω,

Ha is a sharply supporting hyperspace at the starting point of l~x ,

Hr is a sharply supporting hyperspace at the ending point of l~x .} (4)
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Main results Outline of proofs

Proximal flows

the unit tangent space UΩ := T Ω−O/∼, affine space An and associated vector space

version Rn.

Ã := UΩ×An with action

g(x ,~u) = (g(x),h(g)~u) for g ∈ Γ,x ∈ UΩ,~u ∈An.

The quotient space A fibers over UΩ/Γ with fiber ∼=An.

Ṽ := UΩ×Rn and take the quotient under the diagonal action:

g(x ,~u) = (g(x),L (h(g))~u) for g ∈ Γ,x ∈ UΩ,~u ∈ Rn.

The quotient space V fibers over UΩ/Γ with fiber Rn. (A fiberwise tangent bundle of A)

There is a flat connection ∇V on V.
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Ã := UΩ×An with action

g(x ,~u) = (g(x),h(g)~u) for g ∈ Γ,x ∈ UΩ,~u ∈An.

The quotient space A fibers over UΩ/Γ with fiber ∼=An.
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Main results Outline of proofs

There are fiberwise metrics denoted by ||·||fiber on A and V obtainable by partition of unity.

There is a flow Φt : A→A, t ∈R acting parallel way on the fibers and acting as a flow on UΣE .

Also a flow L (Φt ) : V→ V.

The aim is to find a section s : UΣE →An “neutral” under flow Φ. That is the geodesics goes

to an arc varying in only neutral directions.
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Main results Outline of proofs

Decomposition of V.

For each vector ~u ∈ UΩ, the oriented geodesic l ending at ∂+l ,∂−l ∈ bdΩ. correspond to the

1-dim vector subspaces V+(~u) and V−(~u) in Rn.

There exists a unique pair of sharply supporting hyperspaces H+ and H− in bdAn at ∂+l and

∂−l . We denote by H0 = H+ ∩H−, a codimension 2 great sphere in bdAn and corresponds to

a subspace V0(~u) of codimension-two in V.

For each vector ~u, we obtain the C0-decomposition of V as V+(~u)⊕V0(~u)⊕V−(~u) and form

the subbundles Ṽ+, Ṽ0, Ṽ− over UΩ where Ṽ = Ṽ+⊕ Ṽ0⊕ Ṽ−.

Since the Γ-action and Φ preserves the decomposition of Ṽ, we obtain the bundle decomposition

V = V+⊕V0⊕V− (5)

invariant under the flow L (Φ)t .
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Main results Outline of proofs

Flow properties of L (Φt )

By the uniform middle-eigenvalue condition, V satisfies the following properties:

the flat linear connection ∇V on V is bounded with respect to ||·||fiber.

hyperbolicity: There exists constants C,k > 0 so that∣∣∣∣L (Φt )(~v)
∣∣∣∣

fiber ≥
1
C

exp(kt)
∣∣∣∣~v ∣∣∣∣fiber as t → ∞ (6)

for ~v ∈ V+ and ∣∣∣∣L (Φt )(~v)
∣∣∣∣

fiber ≤ C exp(−kt)
∣∣∣∣~v ∣∣∣∣fiber as t → ∞ (7)

for v ∈ V−.

Intuitively, these are just from the fact that as one goes along the flow the forward vector must

become larger and larger in order for it to be in the same size as in ||·||fiber.
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Main results Outline of proofs

Proof of the flow properties: V−-part only

Let F be a compact fundamental domain of Ω. We let yi = Φti (xi ), ti → ∞, for xi is some

compact set K in UΩ. Let li denote the complete geodesic containing xi ,yi .

Find a deck transformation gi so that gi (yi ) ∈ F and gi acts on the line bundle Ṽ− by the

linearization of the matrix of form of (1):

L (gi ) : V−→ V− given by

(yi ,~v)→ (gi (yi ),L (gi )(~v)) where

L (gi ) =
1

λẼ (gi )
1+ 1

n
ĥ(gi ) : V−(yi ) = V−(xi )→ V−(gi (yi )). (8)

(Goal) We will show {(gi (yi ),L (gi )(~v−,i ))}→ 0 under ||·||fiber. This will complete the proof since gi

acts as isometries on V− with ||·||fiber.
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Main results Outline of proofs

Proof continues

Let ||·||E denote the standard Euclidean metric of Rn. Let ai , ri denote the attracting and repelling

fixed poins of gi .

Since ΠΩ(yi )→ y−, ΠΩ(yi ) is also uniformly bounded away from ai and the tangent sphere

Sn−1
i at ai .

Since
((
~v−,i

))
→ y−, the vector ~v−,i has the component ~vp

i parallel to ri and the component ~vS
i

in the direction of Sn−2
i where ~v−,i =~vp

i +~vS
i .

Since ri → r∗ = y− and
((
~v−,i

))
→ y−, we obtain

∣∣∣∣~vS
i

∣∣∣∣
E → 0 and that

1
C

<
∣∣∣∣~vp

i

∣∣∣∣
E < C

for some constant C > 1.

gi acts by preserving the directions of Sn−2
i and ri .
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Main results Outline of proofs

Since {gi (
((
~v−,i

))
)} converging to y ′, y ′ ∈ bdΩ, is bounded away from Sn−2

i uniformly, we obtain

that

considering the homogeneous coordinates((
L (gi )(~vS

i ) : L (gi )(~vp
i )
))

we obtain that the Euclidean norm of

L (gi )(~vS
i )∣∣∣∣L (gi )(~vp

i )
∣∣∣∣

E

is bounded above uniformly.

Since ri is a repelling fixed point of gi and
∣∣∣∣~vp

i

∣∣∣∣
E is uniformly bounded above, {L (gi )(~vp

i )}→ 0 by

(3) and lengthΩ(gi )→ ∞. {L (gi )(~vp
i )}→ 0 implies {L (gi )(~vS

i )}→ 0 for ||·||E . Hence, we obtain∣∣∣∣L (gi )(~v−,i ))
∣∣∣∣

E → 0.
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Main results Outline of proofs

Neutralized sections

A := UΩ×An/Γ. A section s : UΩ/Γ→ A is neutralized if

∇
V
φ s ∈ V0. (9)

Lemma 2.

A neutralized section s0 : UΩ/Γ→A exists. This lifts to a map s̃0 : UΩ→ Ã so that s̃0 ◦ γ = γ ◦ s̃0 for

each γ in Γ acting on Ã = UΩ×An.

Proof.
We decompose

∇
V
φ (s) = ∇

V+
φ

(s) + ∇
V0
φ

(s) + ∇
V−
φ

(s) ∈ V

so that ∇
V±
φ

(s) ∈ V± and ∇
V0
φ

(s) ∈ V0 hold. The integrals converge to smooth functions over UΩ/Γ:

s0 = s +
∫

∞

0 (DΦt )∗(∇
V−
φ

(s))dt−
∫

∞

0 (DΦ−t )∗(∇
V+
φ

(s))dt is a continuous section and

∇V
φ

(s0) = ∇
V0
φ

(s0) ∈ V0 as shown by Goldman-Labourie-Margulis [2].
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Main results Outline of proofs

Finding supporting hyperspaces

Let N2(An) denote the space of codimension-two affine subspaces of An.

Each geodesic goes into a neutral affine subspace of codimension two in An. There exists a

continuous function ŝ : UΩ→ N2(An) equivariant with respect to Γ-actions.

Given g ∈ Γ and for~lg in UΩ where g acts on, ŝ(~lg) = N2(g).

s̄ : Λ∗ = bdΩ×bdΩ−∆→ N2(An)

is continuous and equivariant wrt the Γ-actions.

27/33



Main results Outline of proofs

Finding supporting hyperspaces

Let N2(An) denote the space of codimension-two affine subspaces of An.

Each geodesic goes into a neutral affine subspace of codimension two in An. There exists a
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Main results Outline of proofs

Theorem 3 (Existence of U).

Let Γ have an affine action on the affine subspace An, An ⊂ Sn, acting properly and

cocompactly on a properly convex domain Ω in bdAn.

Γ satisfies the uniform middle-eigenvalue condition.

Then Γ is asymptotically nice with respect to a properly convex open domain U.

Proof.
We form an affine subspace of codim 1 for each oriented (augmented) geodesic l by taking

an affine span of the backward (augmented) endpoint of l and the affine subspace ŝ(~lg) in

N2(An).

This affine subspace depends only on the backward endpoint of l .

Then we form an affine half-space by taking the component containing Ω in the boundary.
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Main results Outline of proofs

Theorem 4 (Uniqueness of the set of AS-hyperplanes).

Let Γ have an affine action on the affine subspace An, An ⊂ Sn, acting properly and

cocompactly on a properly convex domain Ω in bdAn.

Suppose that Ω/Γ is a closed (n−1)-dimensional orbifold.

Γ satisfies the uniform middle-eigenvalue condition.

Then the set of AS-planes for U containing all sharply supporting hyperspaces of Ω in bdAn is

independent of the choice of U.

Proof.
The action is expansive on the space of parallel AS-hyperplanes.

Proof of Theorem 1.
Theorems 3 and 4 prove it.
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Main results Globally hyperbolic spacetime

Globally hyperbolic spacetime

When the linear holonomy is convex cocompact in SO(n−1,1), Ω is a standard ball in Sn−1
∞

and Thierry Barbot showed that there exists Γ acting on properly convex domain U in An with

Cl(U)∩Sn−1
∞ = Cl(Ω).

We can form the maximal globally hyperbolic space-time in Rn−1,1. One can find a foliation by

Cauchy hypersurfaces. (For compact Ω/Γ, these were done by Geroch in 1970s, and the

convex domain U can be chosen to be bounded by an affine sphere by Loftin and Labourie as

shown in late 90s but with no AS niceness.)

Barbot’s technique is that of Mane-Sullivan. One extends the action to parallel null-planes and

use contraction properties to obtain the Sullivan stability.

30/33



Main results Globally hyperbolic spacetime

Globally hyperbolic spacetime

When the linear holonomy is convex cocompact in SO(n−1,1), Ω is a standard ball in Sn−1
∞

and Thierry Barbot showed that there exists Γ acting on properly convex domain U in An with

Cl(U)∩Sn−1
∞ = Cl(Ω).

We can form the maximal globally hyperbolic space-time in Rn−1,1. One can find a foliation by

Cauchy hypersurfaces. (For compact Ω/Γ, these were done by Geroch in 1970s, and the

convex domain U can be chosen to be bounded by an affine sphere by Loftin and Labourie as

shown in late 90s but with no AS niceness.)

Barbot’s technique is that of Mane-Sullivan. One extends the action to parallel null-planes and

use contraction properties to obtain the Sullivan stability.

30/33



Main results Globally hyperbolic spacetime

Globally hyperbolic spacetime

When the linear holonomy is convex cocompact in SO(n−1,1), Ω is a standard ball in Sn−1
∞

and Thierry Barbot showed that there exists Γ acting on properly convex domain U in An with

Cl(U)∩Sn−1
∞ = Cl(Ω).

We can form the maximal globally hyperbolic space-time in Rn−1,1. One can find a foliation by

Cauchy hypersurfaces. (For compact Ω/Γ, these were done by Geroch in 1970s, and the

convex domain U can be chosen to be bounded by an affine sphere by Loftin and Labourie as

shown in late 90s but with no AS niceness.)

Barbot’s technique is that of Mane-Sullivan. One extends the action to parallel null-planes and

use contraction properties to obtain the Sullivan stability.

30/33



Duality and R-ends

Duality and R-ends

Given a properly convex affine action of Γ acting on

U ⊂An ⊂ Sn and Ω⊂ Sn−1
∞ ,

the dual group Γ∗ will act on Sn∗ fixing a pair of points p and p− in Sn∗ dual to Sn−1
∞ with two

orientations.

Oriented hyperspaces meeting Sn−1
∞ in a fixed codimension 2 subspace disjoint from Ω form a

segment from p to p− in Sn∗.

Γ∗ acts on a union of segments Tp from p to p− and the spaces of whose directions form a

properly convex domain projectively diffeomorphic to Ω∗ in Sn−1
p .

There is a fibration ∂Tp−{p,p−}→ ∂Ω∗ with fiber a line from p to p−.

The uniform middle eigenvalue condition in this case implies the existence of the continuous

Γ∗-invariant section ∂Ω→ ∂Tp−{p,p−}.

This gives a lens-domain in Tp disjoint from {p,p−}.
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Duality and R-ends

Lens-shaped R-ends

A lens-cone is a space of form {v}∗L = {v}∗B for a lens L and a boundary component B of

L.

We can also use a generalized lens where L is allowed to have nonsmooth boundary

component B.

We assume that our p-end neighborhood is projectively diffeomorphic to {v}∗L−{v} for a

lens-cone with a lens L or generalized lens L.

Such a p-end neighborhood has a foliation by radial segments, and the corresponding end is

called a lens-shaped radial end.

Again, the uniform middle eigenvalue condition for the end holonomy group Γ is equivalent to

the existence of generalized lens-shaped radial end-neighborhood.
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