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Abstract

We give some introduction to the field of complete affine n-manifolds.

We will try to show that closed manifolds of negative curvature do not admit complete special

affine structures whose linear parts are partially hyperbolic in the dynamical sense.

We can drop the negative curvature condition. We present our attempt here.

Partially a joint work with Kapovich.
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Introduction Geometric structures

Geometric structures

First, we give some introduction.

G a Lie group acting transitively faithfully on a space X .

Let M be a (probably closed) manifold. A (G,X)-structure is a maximal atlas of charts so that

transition maps are in G.

This is equivalent to M having a pair (dev, h)

I There is a homomophism h : π1(M)→ G called a holonomy homomorphism.
I There is an immersion dev : M̃ → X , called a developing map, so that

dev ◦ γ = h(γ) ◦ dev for each deck transformation γ ∈ π1(M).
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Introduction Geometric structures

Bundles and sections (See Goldman [5])

Construct Xh = M̃ × X/π1(M) where g(x , y) = (g(x), h(g)(x)). This is a fiber bundle over M

with fibers X .

Xh is a bundle over M with a flat connection induced from the product structure.

There is a developing section s : M → Xh given by M̃ 3 x 7→ (x ,dev(x)) ∈ M̃ × X . The

section is transverse to the flat connection.

Conversely, a transverse section s : M → Xh gives us a (G,X)-structure.

Complete (G,X )-structures

Suppose that dev : M̃ → X is a diffeomorphism. Then M is complete.

We have a diffeomorphism M → X/h(π1(M)), and h(π1(M)) acts properly discontinously

and freely on X .

Complete (G,X)-structures on M are classified by the conjugacy classes of π1(M)→ G.
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Introduction Geometric structures

Affine manifolds

Let An be a complete affine space. Let Aff(An) denote the group of affine transformations of

An whose elements are of form:

x 7→ Ax + v

for a vector v ∈ Rn and A ∈ GL(n,R).

Let L : Aff(An)→ GL(n,R) denote map sending elements of Aff(An) to its linear part in

GL(n,R).

Example: Zn acting on An as a translation group in lattice directions. The quotients are

homeomorphic to T n.

Any Euclidean manifold is an affine manifold is finitely covered by T i × Rn−i for some i .

(Bieberbach)
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Introduction Geometric structures

An affine n-manifold is an n-manifold equipped with an atlas of charts to An with affine
transition maps.

I An affine n-manifold is special if L(Γ) ⊂ SL±(n,R).
I A complete affine n-manifold is an n-manifold M of form An/Γ.
I Note that completeness and compactness of M have no relation (The Hopf-Rinow lemma does not

hold here)
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Introduction Geometric structures

Auslander, Goldman, Fried, Hirsch
Discrete subgroup of a nilopotent or solvable Lie group with left-invariant affine structures.

(complete ones)

Affine Solv 3-manifold

T1 := (x , y , z) 7→ (x + 1, y , z),

T2 := (x , y , z) 7→ (x , y + 1, z),

T3 := (x , y , z) 7→ (A(x , y), z + 1) (1)

where A is an special integral 2× 2-matrix, e.g., A =

(
2 1

1 1

)
. Then An/〈T1,T2,T3〉 is a

mapping torus of Anosov diffeomorphism T 2 → T 2.
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Introduction Geometric structures

Noncompact examples

Existence of actions
A properly discontinuous action on An of an affine group gives us examples of complete affine

n-manifolds.

Margulis, Drumm found first examples of free groups of rank ≥ 1 acting freely and properly on

An. These gives examples of complete affine 3-manifolds homeomorphic to handlebodies.

Danciger,Kassel, Gueritaud for large n for many Coxeter groups of hyperbolic types. They

produce many complete affine manifolds, which are probably tame.

By their work, there is a free action of Rn by many general manifold groups of negative

curvature. Here n depends on the group.
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Introduction Geometric structures

Nonexistence of proper actions
Danciger and Zhang [3] showed that when M is a surface, there is no properly discontinuous

action on Rn by an affine representation with linear part in a Hitchin component.

Ghosh [4] obtained some generalization to hyperbolic groups with affine representations with

Anosov linear part.

Tsouvalas: some cases must virtually be free or be a surface group.

However, these work do not have our dimension conditions.
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Introduction Geometric structures

Auslander Conjecture
Closed complete affine n-manifolds have virtually solvable fundamental groups.

This is proved for n = 2 by Nagano-Yagi, n = 3 by Fried-Goldman, 1983, and for n ≤ 6 for

Abels-Margulis-Soifer.

Linear holonomy in SO(p, q) implies the virtually solvable fundamental group. This is shown

by Goldman-Kamishima 84 for p = n − 1, q = 1 and Abels-Margulis-Soifer some other cases

including some cases of p = n, q = n − 1.
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Introduction What partial hyerbolicity means.

Partial hyperbolicity

Denote by M̃ the universal cover of M with the covering map pM with the deck transformation

group π1(M).

Let πM : UM → M denote the fibration and π̃M : UM̃ → M̃ the induced fibration.

There is a covering UpM : UM̃ → UM from the unit tangent bundle UM̃ of M̃. The deck

transformation group of UpM is π1(M).

(Affine bundle): For an affine representation ρ′ : π1(M)→ Aff(An), define

An
ρ′ := (UM̃ ×An)/π1(M) with the diagonal action.

(Vector bundle): We define Rn
ρ := (UM̃ × Rn)/π1(M) for ρ = L ◦ ρ′.
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Introduction What partial hyerbolicity means.

Flows lifted to the bundle

Let φ̂t : UM → UM denote the geodesic flow, and φt : UM̃ → UM̃ denote the flow lifted from

φ̂t .

There exists a flow Φt , t ∈ R, on An
ρ′ acting as the geodesic flow φt on UM and acting trivially

on An lifted.

Also, there is a flow DΦt , t ∈ R, on Rn
ρ taking the linear part of Φt fiberwise acting as the

geodesic flow on UM and acting trivially on Rn lifted.

We have fiber-wise norm ||·||An
ρ′

on An
ρ′ and a norm ||·||Rn

ρ
on Rn

ρ using partition of unity.
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Introduction Main result

Partial hyperbolicity in the bundle sense.

A representation ρ : π1(M)→ GL(n,R) is partially hyperbolic in a bundle sense if the
following hold:

(i) There exist C0-subbundles V+,V0, and V− in Rn
ρ invariant under the flow DΦt .

(ii) V+,V0 and V− are independent and their bundle sum equals V.

(iii) For any fiber-wise metric on Rn
ρ over UM, the lifted action of DΦt on V+ (resp. V−) is dilating (resp.

contracting): i.e., there are coefficients A > 0, a > 0, A′ > 0:

1
∣∣∣∣DΦ−t (v)

∣∣∣∣
Rn
ρ,Φ−t (m)

≤ A exp(−at) ||v||Rn
ρ,m

for v ∈ V+(m) as t →∞.

2 ||DΦt (v)||Rn
ρ,Φt (m) ≤ A exp(−at) ||v||Rn

ρ,m
for v ∈ V−(m)) as t →∞.

3 (A dominance property)

||DΦt (w)||Rn
ρ,φt (m)

||DΦt (v)||Rn
ρ,φt (m)

≤ A′ exp(−a′t)
||w||Rn

ρ,m

||v||Rn
ρ,m

 for v ∈ V+(m),w ∈ V0(m) as t →∞,

or for v ∈ V0(m),w ∈ V−(m) as t →∞.
(2)
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Introduction Main result

Here dimV+ is a partial hyperbolicity index of ρ.

We assume that dimV+ = dimV− ≥ 1. Also, V0 is said to be the neutral subbundle of V.

Often we will be in cases dimV0 > 0.

A related dynamical system is “partially hyperbolic system" as in Bonatti, Diaz, Viana [1] or

Crovisier and Potrie [2]. (Related to Bochi-Sambarino and see Definition 1.5 of [2].)

Theorem 1 (Negative curvature case)

Let M be a closed complete special affine n-manifold. Suppose that M admits a negatively curved

Riemannian metric. Then the linear part of a holonomy homomorphism ρ is not a partially

hyperbolic representation in a bundle sense.
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Introduction Main result

Consequences

Question
We think that P-Anosov condition implies partially hyperbolic linear holonomy for every parabolic

subgroup P of SL(n,R) in most situations. Consequently, every complete special affine closed

manifold is not P-Anosov. (Maybe with a few exceptions for reducible L ◦ ρ′)

Corollary 1 (Special Lie groups)

Let M be a closed complete special affine n-manifold with a fundamental group π1(M) with linear

holonomy in G = SO(k , n − k) for 0 ≤ k ≤ n or SP(m,R) for n = 2m. Suppose that M admits a

negatively curved Riemannian metric. Then the linear part of the holonomy homomorphism ρ is

not P-Anosov for any parabolic group P of SL(n,R).

Proof.
When ρ has images in the specified groups in the premises, the singular values are invariant

under inverses.
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I: Proof for Partial hyperbolic actions

Developing sections
We begin the proof of Theorem 1 for M = An/Γ for Γ = ρ′(π1(M)).

Let dM denote the negatively curved Riemannian metric on M and on M̃.

There is a projection Π̃An : UM̃ ×An → An inducing a bundle map

ΠAn : An
ρ′ := (UM̃ ×An)/π1(M)→ An/Γ

and π̃UM : UM̃ ×An → UM̃ inducing a bundle map

πUM : (UM̃ ×An)/π1(M)→ UM.

dAn/Γ denote one induced from dM and dAn denote the lifted on on M̃.

We define a section s̃ : UM̃ → UM̃ ×An where

s̃((x , ~v)) = ((x , ~v),dev(x)), x ∈ M̃. (3)

s̃ induces a section s : UM → An
ρ′ , called the developing section.

Since M = An/Γ has a complete affine structure, dev induces the map

I := ΠAn ◦ s : UM → An/Γ.

16/33
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I: Proof for Partial hyperbolic actions

Neutralizing the sections

Proposition 2

There is a section s∞ : M → An
ρ′ homotopic to the developing section s in the C0-topology with

the following conditions:

∇φs∞ is in V0(x) for each x ∈ UM.

I∞ := ΠAn ◦ s∞ is onto.

dAn/Γ(s̃(x), s̃∞(x)) and dAn/Γ(Ĩ(x), Ĩ∞(x)) are uniformly bounded for x ∈ UM̃.

Proof.
We project to flat connections ∇+,∇−,∇0 respectively on V+,V0,V− respectively.

We define s∞ := s +
∫∞

0 (DΦt )∗(∇−φ s)dt −
∫∞

0 (DΦ−t )∗(∇+
φs)dt . Then it is homotopic to s since

we can replace∞ by T ,T > 0 and let T →∞. (See Section 8 of Goldman-Labourie-Margulis [6].)

Since M is compact and the norms of the integrand decreases exponentially, the integral is

uniformly bounded above.
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I: Proof for Partial hyperbolic actions

Corollary 2

˜I∞ := Π̃An ◦ s̃∞ restricted to each oriented geodesic~l on UM̃ lies on a neutral affine subspace

parallel to V0(~l).

Let ly := {φt (y)|t ≥ 0} for y ∈ K .

The image ˜I∞(ly ) is in a neutral affine subspace denoted it by A0
y or A0

ly
.

We choose ly so that an infinite-order deck-transformation γ acts on the axis containing ly .

s̃∞ ◦ γ = ρ′(γ) ◦ s̃∞, γ ∈ π1(M) implies (4)

ρ′(γ)(A0
y ) = A0

γ(y) = ρ′(γ)(A0
ly ) = A0

γ(ly ). (5)

In particular, γ acts on the axis containing ly and on Ao
y .

Finally since s∞ is continuous, x 7→ A0
x is a continuous function. Hence,

A0
zi
→ A0

z if zi → z ∈ UM̃. (6)

18/33



I: Proof for Partial hyperbolic actions

Corollary 2

˜I∞ := Π̃An ◦ s̃∞ restricted to each oriented geodesic~l on UM̃ lies on a neutral affine subspace

parallel to V0(~l).

Let ly := {φt (y)|t ≥ 0} for y ∈ K .

The image ˜I∞(ly ) is in a neutral affine subspace denoted it by A0
y or A0

ly
.

We choose ly so that an infinite-order deck-transformation γ acts on the axis containing ly .

s̃∞ ◦ γ = ρ′(γ) ◦ s̃∞, γ ∈ π1(M) implies (4)

ρ′(γ)(A0
y ) = A0

γ(y) = ρ′(γ)(A0
ly ) = A0

γ(ly ). (5)

In particular, γ acts on the axis containing ly and on Ao
y .

Finally since s∞ is continuous, x 7→ A0
x is a continuous function. Hence,

A0
zi
→ A0

z if zi → z ∈ UM̃. (6)

18/33



I: Proof for Partial hyperbolic actions

Corollary 2

˜I∞ := Π̃An ◦ s̃∞ restricted to each oriented geodesic~l on UM̃ lies on a neutral affine subspace

parallel to V0(~l).

Let ly := {φt (y)|t ≥ 0} for y ∈ K .

The image ˜I∞(ly ) is in a neutral affine subspace denoted it by A0
y or A0

ly
.

We choose ly so that an infinite-order deck-transformation γ acts on the axis containing ly .

s̃∞ ◦ γ = ρ′(γ) ◦ s̃∞, γ ∈ π1(M) implies (4)

ρ′(γ)(A0
y ) = A0

γ(y) = ρ′(γ)(A0
ly ) = A0

γ(ly ). (5)

In particular, γ acts on the axis containing ly and on Ao
y .

Finally since s∞ is continuous, x 7→ A0
x is a continuous function. Hence,

A0
zi
→ A0

z if zi → z ∈ UM̃. (6)

18/33



I: Proof for Partial hyperbolic actions

Denote by V±(y) be the vector subspace parallel to the lift of V± at y . The

C0-decomposition property also implies

V±(zi )→ V±(z) if zi → z ∈ UM̃. (7)

Let p ∈ ∂∞M̃ be a point of the Gromov boundary of M̃. We define Rp as the set

{~u ∈ Ux M̃|~u is tangent to a complete geodesic ending at p}.

Proposition 3

˜I∞(Rp) equals An.

Definition 1

A0−
p : the affine subspace containing A0

p and all points in directions of V−(p) from points of A0
p .
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I: Proof for Partial hyperbolic actions

dev

yi+1
yi

yi−1

zi+1 zi zi−1

γi

ρ′(γi )

F

Figure: The proof of Theorem 1. Here γi is multiplied by an element to make the figure look better.

20/33



I: Proof for Partial hyperbolic actions

We can choose two leaves ly and lz in Rp y , z ∈ UM̃, so that ˜I∞(ly ) and ˜I∞(lz ) are in

distinct subspaces A0−
ly

and A0−
lz

by Proposition 3.

The following contradiction proves Theorem 1.

Proposition 4

There are no two leaves ly and lz in Rp for y , z ∈ UM̃ so that so that ˜I∞(ly ) and ˜I∞(lz ) are in

distinct subspaces A0−
ly

and A0−
lz

Proof begins
Suppose not. Also, under π̃M , ly and lz respectively go to geodesics ending at p. We assume that

an infinite order deck transformation γ acts on the axis containing ly and fixes p.

A0−
φt (y)

is a fixed affine subspace independent of t , and ρ′(γ) acts on A0−
φt (y)

.
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I: Proof for Partial hyperbolic actions

Pulling-back argument

A0
φt (z)

contains lz and V−(φt (z)) is independent of t since they are parallel under the flat

connection.

Choose yi ∈ ly so that yi = φti (y), and zi ∈ lz so that zi = φti (z) where ti →∞ as i →∞.

Denote by

y ′i := ˜I∞(yi ) and z′i := ˜I∞(zi ) in An.

Since 〈γ〉 acts on the axis containing ly , γi (yi ) is in a compact subset F of UM̃ for a sequence

γi = γ−ji with ji going to infinity. ρ′(γi )(y ′i ) is in a compact subset of An for y ′i = Π̃M (yi ).

Choose a subsequence so that

ρ′(γi )(y ′i )→ y ′∞ for a point y ′∞ ∈ An. (8)
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I: Proof for Partial hyperbolic actions

Since s∞ is continuous by Proposition 2, we obtain

dAn/Γ( ˜I∞(yi ), ˜I∞(zi ))→ 0. (9)

Since γi is an isometry of dAn ,

dAn (ρ′(γi )(y ′i ), ρ′(γi )(z′i ))→ 0 (10)

as i →∞.

Lemma 5

A0−
lz

is affinely parallel to A0−
ly

.

Proof.

Otherwise, we can show ρ(γi )(A0−
lz

) = A0−
γi (zi )

does not converge to A0
ly

. But

dM (γi (zi ), γi (yi ))→ 0.
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I: Proof for Partial hyperbolic actions

Also the sequence of the Hausdorff distance between

A0−
γi (zi )

= ρ′(γi )(A0−
lz

) and A0−
γi (yi )

= ρ′(γi )(A0−
ly

)

is going to 0.

Let ~v denote the vector in the direction of V+(yi ) going from yi to A0−
lz

, independent of yi .

Then for the linear part Aγi of the affine transformation γi ,∣∣∣∣v ′i := Aγi (~v)
∣∣∣∣E

n →∞.

Hence affine subspaces

A0−
γi (zi )

= ρ′(γi )(A0−
lz

) and A0−
γi (yi )

= ρ′(γi )(A0−
ly

)

are not getting close to each other. This is a contradiction to the third paragraph above.

See following diagram as a proof.
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I: Proof for Partial hyperbolic actions

y ′i+1 y ′i
y ′i−1

z′i+1
z′i z′i−1

ρ′(γi )

A0−
ly

A0−
lz

A+,iA+,i+1 A+,i−1

F

Figure: The proof of Theorem 1
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III: Generalization without negative curvature conditions.

III: Generalization without negative curvature conditions

Assume that M̃ is Gromov hyperbolic.

A complete isometric geodesic in M̃ is a geodesic that is an isometry of R into M̃ equipped

with a Riemannian metric. A complete isometric geodesic in M is a geodesic that lifts to a

complete isometric geodesic in M̃.

We consider the subset of UM where complete isometric geodesics pass. We denote this set

by UCM, and call it the complete-isometric-geodesic unit-tangent bundle.

The inverse image in UM̃ is denoted by UCM̃. Clearly, UCM is compact and UCM̃ is locally

compact. However, π̃M (UCM̃) may be a proper subset of M̃.

Now we define partial hyperbolicity over UCM only.

26/33



III: Generalization without negative curvature conditions.

III: Generalization without negative curvature conditions

Assume that M̃ is Gromov hyperbolic.

A complete isometric geodesic in M̃ is a geodesic that is an isometry of R into M̃ equipped

with a Riemannian metric. A complete isometric geodesic in M is a geodesic that lifts to a

complete isometric geodesic in M̃.

We consider the subset of UM where complete isometric geodesics pass. We denote this set

by UCM, and call it the complete-isometric-geodesic unit-tangent bundle.

The inverse image in UM̃ is denoted by UCM̃. Clearly, UCM is compact and UCM̃ is locally

compact. However, π̃M (UCM̃) may be a proper subset of M̃.

Now we define partial hyperbolicity over UCM only.

26/33



III: Generalization without negative curvature conditions.

Generalization of Theorem 1

Theorem 6

Let M be a closed complete special affine n-manifold. Then the linear part of a holonomy

homomorphism ρ is not a partially hyperbolic representation in a bundle sense.

Partial hyperbolicity −→ P-Anosov for k = dimV+.

Now, by Kapovich-Leeb-Porti, π1(M) is hyperbolic.

Hence, M̃ is Gromov hyperbolic by Svarc-Milnor.
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III: Generalization without negative curvature conditions.

Let p be a point of the Gromv boundary ∂∞M̃. Let Rp denote the union of complete isometric

geodesics in UCM̃ mapping to complete isometric geodesics in M̃ ending at p.

Proposition 7

Let M be a closed manifold with a Riemannian metric. Suppose that π1(M) is hyperbolic. Let

p ∈ ∂∞M̃. Then πM̃ (Rp) is C-dense in M̃.
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III: Generalization without negative curvature conditions.

Proposition 8 (Modification)

There is a section s∞ : UCM → An
ρ′ homotopic to the developing section s|UCM in the

C0-topology with the following conditions:

∇φs∞ is in V0(x) for each x ∈ UCM.

dAn
ρ′

(s(x), s∞(x)) is uniformly bounded for every x ∈ UCM.

dAn (Ĩ(x), ˜I∞(x)) is uniformly bounded for x ∈ UCM̃.

˜I∞ : UCM̃ → An is properly homotopic to Ĩ and is coarsely Lipschitz.

Now, the proof of Theorem 6 proceeds similar to that of Theorem 1. However, we need some

rough geometry ideas.
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III: Generalization without negative curvature conditions.

Theorem 9 (Choi-Kapovich)

Suppose that M is a closed complete affine manifold covered by an affine space M̃ = An with the

Riemannain metric dM induced from that of M. Let L be an affine subspace of lower-dimension of

M̃. Then M̃ is not a C-neighborhood NC(L) of L.

Proof.
Follows from the following two theorems.

Proposition 10 (Choi-Kapovich)

Let M and L be as above. Then L with induced path-metric dL is uniformly properly embedded in

M̃ = An.

Proof.
Just need to show if two points are of bounded distance under dM , the path-distance in L cannot

go to infinity. Here, we may assume that one point is in a fundamental domain using deck

transformations.
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III: Generalization without negative curvature conditions.

Theorem 11

Let M and L be as above. Then L is uniformly contractible with respect to the path metric on L

induced from dM .

Proof.
Any sphere map f : Si → L with a dM -diameter C may be moved by a deck transformation γ to a

one passing a fundamental domain F of An. Hence, a Euclidean ball BR of some radius contains

the image of γ ◦ f . Here R depends only on C. Now, BR ⊂ BM
R′ for a dM -ball BM

R′ for a radius R′

depending only on R. Hence, f is homotopic to a point inside γ−1(BM
R′ ) for R′ depending only on

C.
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III: Generalization without negative curvature conditions.

Recall Hn
C(X) := lim−→Hn(X ,X − K ) for K a compact subset of X . For X = Rn, Hn

C(X) = Z.

Theorem 12 (Kapovich)

Let X be an open n-manifold that is a contractible δ-hyperbolic complete Riemannian metric space

with the path metric dX . Let U be a uniformly properly embedded open cell with the induced

path-metric so that U is uniformly contractible and coarsely equivalent to X. Then U must have the

topological dimension n.

Proof.
There is an inclusion map f : U → X and its rough inverse map g : X → U. We may assume that

both are continuous. Then f ◦ g is homotopic to identity by a bounded continuous homotopy. Then

g∗ ◦ f∗ : Hn
C(X)→ Hn

C(X) is an isomorphism. Since Hn
C(U) has to be nonzero, dim U = dim X .
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