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The SO(3)-character space and spherical triangles

Abstract

IWe use geometric techniques to explicitly find the
topological structure of the space of SO(3)-representations
of the fundamental group of a closed surface of genus 2
quotient by the conjugation action of SO(3).

IThere are two components of the space. We will describe
the topology of each of the two components and describe
the corresponding SU(2)-character spaces.

IFor each component, there is a sixteen to one
branch-covering and the branch locus is a union of
2-spheres and 2-tori.

IThe main purpose is to find the explicit
cell-decompositions.
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The SO(3)-character space and spherical triangles

Introduction

History

Defintion of G-character spaces

IG a compact Lie group (algebraic)
I π a fundamental group of a compact surface.
IHom(π,G) is an algebraic set in Gn for which G acts by

conjugation.
IHom(π,G)/G is a semi-algebraic set, called the

G-character space of π.
IFor G = SU(2), this is a well-known space.
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The SO(3)-character space and spherical triangles

Introduction

History

Main motivation

I π = π1(Σ) for a real 2-dimensional closed surface.
IG = SO(3) or G = SL(3,R).
IThe inclusion

Hom(π,SO(3))/SO(3)→ Hom(π,SL(3,R))/SL(3,R).
I C0, C1 into two components but not to the Teichmuller

component.

IQuestion: what are the topology of the two components?
(Goldman 1990)

IWe are interested in non-Teichmuller components.
IWe hope to understand from the imbedded subspaces.
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The SO(3)-character space and spherical triangles

Introduction

History

History

IThe classical work of Narashimhan, Ramanan, Seshadri,
Newstead and so on [NR], [NS],[Ne2] show that the space
of SU(2)-characters for a genus-two closed surface is
diffeomorphic to CP3.

INewstead [Ne] and others worked on determining
cohomology rings and some cellular decompositions.

IYang-Mills fields over Riemann surfaces (Atiyah-Bott,
Donaldson)

ISee Goldman [G,1985] for a part of the beginning of the
topological approach to the subject. Goldman found the
symplectic structures on the character spaces.
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The SO(3)-character space and spherical triangles

Introduction

History

IHuebschmann, Jeffrey and Weitsmann [JW, 1994]
[JW, 1997] worked extensively on the spaces of characters
to SU(2), and showed that they are toric manifolds by
finding the open dense set where 3-torus acts on.

IHuebshmann [Hu, 1998] also showed that this space
branch-covers the SO(3)-character spaces. (See also
Florentino-Lawton [FL].)

IHiggs bundle techniques as initiated by Donaldson [Do],
Corlette [Cor], Hitchin [Hit], and Simpson [Sim]. There are
now extensive accomplishments in this area using these
techniques.

ISee Bradlow, Garcia-Prada, and P. Gothen [BGG1] and
[BGG2].
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The SO(3)-character space and spherical triangles

Introduction

Main results

Our method

IOur method is more elementary and geometric: relations to
configuration spaces. (relations to algebraic varieties)

IHowever, the steps and the details to check seem more
here since we are not using already established theories.
Also, the arguments are not totally geometrical yet. (We
need to make use of the smoothness result of Huebshmann
[Hu, 1998]. )

IThe main point of our method seems to be that we have
more direct way to relate the SO(3)-character space with
the SU(2)-character space with cell-structures preserved
under the branching map.
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The SO(3)-character space and spherical triangles

Introduction

Main results

The main objects

I Let Σ be a closed surface of genus 2 and π1(Σ) its
fundamental group and let SO(3) denote the group of
special orthogonal matrices with real entries.

IThe space of homomorphisms π1(Σ)→ SO(3) admits an
action by SO(3) given by

h(·) 7→ g ◦ h(·) ◦ g−1, for g ∈ SO(3).

IHom(π1(Σ),SO(3)) as an algebraic subset of SO(3)4.
IWe denote by rep(π1(Σ),SO(3)) the Hausdorff quotient

space of the space under the action of SO(3): i.e., the
space of SO(3)-characters of π1(Σ).
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The SO(3)-character space and spherical triangles

Introduction

Main results

The main objects

IWe define a solid tetrahedron G in the positive octant of R3

by the equation x + y + z ≥ π, x ≤ y + z − π,
y ≤ x + z − π, and z ≤ x + z − π.

IThere is a natural action of the Klein four-group on G by
isometries generated by three involutions each fixing a
maximal segment in G (See Figure 1.)

IWe will denote the Klein four-group by V , isomorphic to Z2
2.

IA double Klein four-group isomorphic to Z4
2.
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The SO(3)-character space and spherical triangles

Introduction

Main results

A’

B

I

I

B’

C

C’

(!/2, !, !/2)

B

A

C

A

I
(!/2,!/2,0)

(!/2, !/2, !)

(0,!/2,!/2)(!/2,0,!/2)

(!,!/2,!/2)

Figure: 1. The tetrahedron and the Klein four-group-symmetries. The
three edges in front are labeled A,B, and C in front and the three
opposite edges are labeled A′,B′, and C ′.
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The SO(3)-character space and spherical triangles

Introduction

Main results

The main result A

Theorem A
Let π1(Σ) the fundamental group of a closed surface Σ of

genus 2.
(i) The component C0 of rep(π1(Σ),SO(3)) is homeomorphic to

the quotient space of rep(π1(Σ),SU(2)) by a double Klein
four-group action.

(ii) rep(π1(Σ),SU(2)) is homeomorphic to CP3.
(iii) The quotient by the double Klein four-group induces a

16-to-1 branch-covering of rep(π1(Σ),SU(2)) onto C0.
(iv) C0 has an orbifold structure with singularities in a union of

six 2-spheres meeting transversally.
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The SO(3)-character space and spherical triangles

Introduction

Main results

The main result A

ICP3 is a T 3-fibration over the tetrahedron where fibers over
the interior are T 3, the fibers over the interiors of faces are
T 2, the fibers over the interiors of the edges are circles,
and the fiber over each of the vertices is a point.

IWe will see rep(π1(Σ),SU(2)) as CP3 by inserting into CP3

the four 3-balls corresponding to the vertices and inserting
solid tori at the circles over the interior of edges.

IThe parameters of solid tori over the open edges will
converge to 3-balls as they approach the fibers above the
vertices. (clasping)

I The subspace of abelian characters consist of 2-tori over the interior of faces and the boundary 2-tori of the solid tori over

edges and the boundary sphere of the vertex 3-balls. (crossing over the edges and identified to a sphere over the vertices.)
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The SO(3)-character space and spherical triangles

Introduction

Main results

d
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Ι

Figure: The face diagram of blown-up solid tetrahedron and regions to be
explained later.
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The SO(3)-character space and spherical triangles

Introduction

Main results

The main result B
IConsider a solid octahedron in R3.

IAn octahedral manifold is a manifold obtained from the
toric variety over the solid octahedron by removing the six
singularities and gluing in six submanifolds homeomorphic
to B3 × S3 to make it into a manifold.

I The octahedral manifold is a torus fibration over an octahedron so that
over the interior of the octahedron the fibers are 3-dimensional tori and
over the interior of faces the fibers are 2-dimensional tori and over the interior of

the edges the fibers are circles and the over the vertex the fibers are 3-spheres.

I Let Σ1 denote a surface of genus two with one puncture, and
rep−I(π1(Σ),SU(2)) be the quotient space of the subspace of
Hom(π1(Σ1),SU(2)) determined by the condition that the holonomy of
the boundary curve −I under the conjugation action.
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The SO(3)-character space and spherical triangles

Introduction

Main results
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The SO(3)-character space and spherical triangles

Introduction

Main results

The main result B

Theorem B
(i) C1 is homeomorphic to the double Klein four-group quotient

of an octahedral manifold.
(ii) rep−I(π1(Σ1,SU(2)) is homeomorphic to an octahedral

manifold seen as a torus fibration over an octahedron
except at the vertices.

(iii) rep−I(π1(Σ1),SU(2)) branch-covers C1 in a 16 to 1 manner
by an action of Z4

2 and has a cell structure.

(iv) There is a Z4
2-action preserving the torus fibers. The

branch locus is a union of six 2-tori meeting transversally.
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The SO(3)-character space and spherical triangles

Introduction

Outline

Outline: Setting up

ICompactify the space of isometry classes of triangles.

IThe SO(3)-character space of the fundamental group of a
pair of pants and the spherical triangles.

IThe relationship of SU(2) with SO(3).
IThe SO(3)-character space for Σ, which has two

components C0, containing the identity representation, and
the other component C1.
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The SO(3)-character space and spherical triangles

Introduction

Outline

Outline: C0

I C0 as a quotient space of the T 3-bundle over the blown-up
tetrahedron above, and the explicit quotient relations for C0
by going over each of the faces of the blown-up
tetrahedron.

IThe SU(2)-character space of the fundamental group of Σ
and the geometric representations of such characters
using the spherical triangles. The character space is CP3.

IThe topology of C0 and the Z4
2-action on the

SU(2)-character space of the fundamental group of Σ to
branch-cover C0.
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The SO(3)-character space and spherical triangles

Introduction

Outline

Outline: C1

I C1 as the quotient space of an octahedron blown-up at
vertices times T 3. We describe the equivalence relations.

I rep−I(π1(Σ1),SU(2)) is homeomorphic to an octahedral
manifold.

IDescribe the Z4
2-action on the above manifold to

branch-cover C1.
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The SO(3)-character space and spherical triangles

The geometric limit configuration space

Spherical triangles

IA geodesic in S2 is an arc in a great circle in S1. A short
geodesic is a geodesic of length ≤ π. A great segment is a
geodesic segment of length equal to π.

I By a triangle in S2, we mean a convex disk bounded by three short
geodesics with vertices v0, v1, v2 and edges l0, l1, l2.

IConsider only counterclockwise oriented triangles: vis and lis appear
in the clockwise direction.

I A lune is the closed domain in S2 bounded by two segments
connecting two antipodal points forming an angle < π.

I A hemisphere is the closed domain bounded by a great circle in S2.

20/75
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The SO(3)-character space and spherical triangles

The geometric limit configuration space

Generalized triangles

We say that ordinary triangles to be nondegenerate
triangles. We define degenerate triangles:
IA pointed-lune is a lune with three ordered points where

two of them are antipodal vertices of the lune, and the third
one is either on an edge or identical with one of the
vertices.

IA pointed-hemisphere is a hemisphere with three ordered
points on the boundary great circle where a segment
between any two not containing the other is of length ≤ π.
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The SO(3)-character space and spherical triangles

The geometric limit configuration space

Generalized triangles

IA pointed-segment is a segment of length ≤ π with three
ordered points where two are the endpoints and one is on
the segment. Here again, the third point could be identical
with one of the endpoint, and the pointed-segment is
degenerate.

IA pointed-point is a point with three identical vertices.
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The SO(3)-character space and spherical triangles

The geometric limit configuration space

Angles
IThe notion of angles for nondegenerate triangles is the

same as in geometry.
IWe now associate angles to each of the three vertices of

degenerate triangles by the following rules. The angles are
numbers in [0, π]. Let us use indices in Z3:
I If a vertex vi has two nonzero length edges li−1 and li+1 ending at vi ,

then we define the angle θi at vi to be the interior angle between the
edge vectors oriented away from vi .

I If a vertex vi is such that exactly one of li−1 or li+1 has a zero length,
say li−1 without loss of generality, ... then we choose an arbitrary
great circle S1

i−1 containing vi .. We take the counter-clockwise unit
tangent vector for S1

i−1, to be called the direction vector at vi for li−1,
and we take the inward unit tangent vector for li+1 at vi ... (an
infinitesimal edge.)

I If a vertex vi is such that both of li−1 or li+1 are zero lengths, then we
have a pointed-point, and the angles to the three vertices are given
arbitrarily so that they sum up to π.
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The geometric limit configuration space

Examples of generalized triangles and
angles
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The SO(3)-character space and spherical triangles

The geometric limit configuration space

The space of generalized triangles and
angles

I Let Ĝ denote the space of generalized triangles with angles assigned.

I Let Ĝ be given a metric defined by letting D(L,M) to be maximum of
I the Hausdorff distance between regions L and M of S2

I and the Hausdorff distances between corresponding points and
segments of L and M

I and the absolute values of the differences between the
corresponding angles respectively.

Proposition (1.1)
Ĝ is compact under the metric, and the subspace of
nondegenerate triangles are dense in Ĝ.
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The geometric limit configuration space

The space of generalized triangles and
angles

IThe isometry group SO(3) acts properly on Ĝ.
IThe quotient topological space is denoted by G̃. This is a

compact metric space with metric induced from Ĝ by taking
the Hausdorff distances between the orbits.

IWe will denote by Go the quotient space of the space of
nondegenerate triangles by the SO(3)-action.

Theorem (1.5)
The geometric-limit configuration space G̃ is homeomorphic
to a blown-up solid tetrahedron with Go as the interior.

Proof: embed by (θ1, θ2, θ3, l1, l2, l3).
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The geometric limit configuration space

Parameterizing the degenerate triangles

IWe will classify the degenerate triangles according to their
types and show that the collection form nice topology of
triangles and rectangles, i.e., 2-cells.

I Let us denote by l(i) the coordinate function measuring
length of li for i = 0,1,2, and v(j) the coordinate function
measuring the angle of vi for i = 0,1,2.
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The geometric limit configuration space

v(0),v(1)

a

b c

d

l(0)=l(1)=l(2)=0

v(0)+v(1)+v(2)=

v(1)=v(0)+v(2)!

l(1)=0
l(0)=l(2)=

!

!

!

l(1)=l(2)=
l(0)=0

v(0)=v(1)+v(2)!

!

!

l(0)=l(1)=
l(2)=0

v(2)=v(0)+v(1)! !

!

l(0)

l(2)

l(1)

l(2)

l(0)

l(1)

v(0),v(2)

v(1)

v(0)

v(1),v(2)

v(2)

28/75



The SO(3)-character space and spherical triangles

The geometric limit configuration space
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The SO(3)-character space and spherical triangles

The geometric limit configuration space

The Klein four-group action

The Klein four-group action

IThe map IA in G̃o can be described as first find an element
µ in G̃o and representing it as a triangle with vertices
v0, v1, v2 and taking a triangle with vertices v ′0 = −v0 and
v ′1 = −v1 and v ′2 = v2.
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The geometric limit configuration space

The Klein four-group action

The Klein four-group action
I

IA : (v(0), v(1), v(2), l(0), l(1), l(2)) 7→
(π − v(0), π − v(1), v(2), π − l(0), π − l(1), l(2)). (1)

ISimilarly, the map IB changes the triangle with vertices
v0, v1, and v2 to one with v0,−v1, and −v2:

(v(0), v(1), v(2), l(0), l(1), l(2)) 7→
(v(0), π − v(1), π − v(2), l(0), π − l(1), π − l(2)). (2)

ISimilarly, the map IC changes the triangle with vertices
v0, v1, and v2 to one with −v0, v1, and −v2:

(v(0), v(1), v(2), l(0), l(1), l(2)) 7→
(π − v(0), v(1), π − v(2), π − l(0), l(1), π − l(2)). (3)

I For our geometric degenerate triangles, we do the same. For regions
a,b, c, and d , the transformations are merely the linear extensions or
equivalently extensions with respect to the metrics.
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The character space of the fundamental group of a pair of pants

Matrix-multiplication by geometry

Matrix-multiplication by geometry
IAn element of SO(3) can be written as Rx ,θ where x is a

fixed point and an angle θ, 0 ≤ θ ≤ 2π mod 2π.
I For the identity element, x is not determined but θ = 0.

IFor any nonidentity element, x is determined up to
antipodes: Rx ,θ = R−x ,2π−θ.

I Let w0,w1, and w2 be vertices of a triangle oriented in the
clockwise direction. Then

Rw2,2θ2
◦ Rw1,2θ1

◦ Rw0,2θ0
= I :

IDenoting the rotation at w0,w1,w2 by A,B, C respectively,
we obtain

CBA = I, C−1 = BA, C = A−1B−1. (4)

I These work even for the degenerate triangles.
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The character space of the fundamental group of a pair of pants

Matrix-multiplication by geometry
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Figure: Multiplication by geometry. Triangular representations
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The SO(3)-character space and spherical triangles

The character space of the fundamental group of a pair of pants

The SO(3)-character space of the fundamental group of a pair of pants

The SO(3)-character space of the
fundamental group of a pair of pants

I Let P be a pair of pants and let P̃ be the universal cover.
I Let c0, c1, and c2 denote three boundary components of P

oriented using the boundary orientation.
I Let π1(P) denote the fundamental group of P seen as a

group of deck transformations generated by three elements
A,B, and C parallel to the boundary components of P
satisfying CBA = I.
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The character space of the fundamental group of a pair of pants

The SO(3)-character space of the fundamental group of a pair of pants

ITake a triangle on the sphere S2 with geodesic edges so
that each edge has length < π so that the vertices are
ordered in a clockwise manner in the boundary of the
triangle.

I Such a triangle is classified by their angles θ0, θ1, θ2 satisfying

θ0 + θ1 + θ2 > π (5)
θi < θi+1 + θi+2 − π, i ∈ Z3. (6)

IThe region gives us an open tetrahedron in the positive
octant of R3 with vertices

(π,0,0), (0, π,0), (0,0, π), (π, π, π)

and thus we have 0 < θi < π. This is a regular tetrahedron
with edge lengths all equal to

√
2π.
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The character space of the fundamental group of a pair of pants

The SO(3)-character space of the fundamental group of a pair of pants

Lemma (2.2)
rep(π1(P),SO(3)) contains a dense open set where each

character is a triangular.

Proposition (2.3)
rep(π1(P),SO(3)) is homeomorphic to the quotient of the

tetrahedron G by a {I, IA, IB, IC}-action. (See Figure 1.)
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SO(3) and SU(2): geometric relationships

SO(3) and SU(2): geometric relationships

I SO(3) can be identified with RP3 in the following way: Take
B3 of radius π in R3. Then for each g ∈ SO(3) we choose the fixed point
with angle θ < π and take the point in the ray to the point in B3 of
distance θ from the origin. If θ = π, then we take both points in the
boundary S1 of B3 in the direction and identify them.

ISince SU(2) double-covers SO(3), the Lie group SU(2) is
diffeomorphic to S3. Take the ball B3

2 of radius 2π so that the
boundary is identified with a point. Hence, we obtain S3 . Let ||v ||
denote the norm of a vector v in B3

2. Take the map from B3
2 → B3 given

by sending a vector v to v if ||v || ≤ π or to (π − ||v ||)v if ||v || > π. This
is a double-covering map clearly.
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SO(3) and SU(2): geometric relationships

SO(3) and SU(2): geometric relationships
ISince we have Rx ,θ = R−x ,4π−θ, an element of SU(2) can

be considered as a fixed point of S2 with angles in
[−2π,2π] where −2π and 2π are identified or with angles in
[0,4π] where 0 and 4π are identified.

I

−IRw ,θ = Rw ,2π ◦ Rw ,θ = Rw ,2π+θ

= R−w ,4π−2π−θ = R−w ,2π−θ.
(7)

The multiplication by −I gives the antipodal map.

IDefinition (3.3)
By choosing θ to be in (0,2π), Rx ,θ is now a point in
B3,o

2 − {O}. Thus, each point of S3 − {I,−I}, we obtain a
unique rotation Rx ,θ for θ ∈ (0,2π), x ∈ S2 and conversely. (

normal representation)
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The SO(3)-character space and spherical triangles

SO(3) and SU(2): geometric relationships

IThe “multiplication by geometry" also works in SU(2): Let
w0,w1, and w2 be vertices of a triangle, possibly
degenerate, oriented in the clockwise direction.

I Let e0,e1, and e2 denote the opposite edges. Let θ0, θ1, and θ2 be the
respective angles for 0 ≤ θ ≤ π. Then

Rw2,2θ2 ◦ Rw1,2θ1 ◦ Rw0,2θ0 = −I.

Here the minus sign is needed.

IWe can even do this for immersed triangles with angles
> π.

IBy lifting the representations, we obtain (See Proposition
3.2)

Proposition
rep(π1(P),SU(2)) is homeomorphic to the tetrahedron, and
map to rep(π1(P),SO(3)) as a 4 to 1 branched covering map
induced by the Klein four-group V-action. �
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The SO(3)-character space and spherical triangles

The character space of a closed surface of genus 2.

The character space of a closed surface of
genus 2
I First, we discuss the two-components of the character space.
INext, we discuss how to view a representation as two related

representations of the fundamental groups of two pairs of pants glued
by three pasting maps.

0

2c

!

c1!c

!
2

0

1

Figure: Σ and closed curves.
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The SO(3)-character space and spherical triangles

The character space of a closed surface of genus 2.

Two components

Two components

I Three sccs c0, c1, and c2 on Σ so that we have two pairs of pants S0
and S1 so that S0 ∩ S1 = c0 ∪ c1 ∪ c2.

I Let scc d1 and d2 dual to c1 and c2 respectively.
I There are two components of rep(π1(Σ),SO(3)) as shown by Goldman

[G, 1988]. The Stiefel-Whitney class in H2(Σ, π1(SO(3))) = Z2 of the flat
bundle classifies the component.

I C0 the identity component.
I C1 the other component. This contains a representation sending c1 and

d1 to

A1 :=

1 0 0
0 −1 0
0 0 −1

 and B1 :=

−1 0 0
0 −1 0
0 0 1

 (8)

and c2 and d2 to the identity matrix.
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The SO(3)-character space and spherical triangles

The character space of a closed surface of genus 2.

Representations considered with pasting maps

Two components

I The base point x∗ of Σ in the interior of S0. Given a representation
h : π1(Σ)→ SO(3), we obtain a representations h0 : π1(S0)→ SO(3)
and h1 : π1(S1)→ SO(3).

I Let c0
0, c

0
1, and c0

2 denote the sccs on S0 with base point x∗0 that are
freely homotopic to c0, c1, and c2 respectively, Let us choose a base
point x∗1 in S1 and oriented sccs c1

0, c
1
1, and c1

2 homotopic to c0, c1, and
c2.

IRelation
[c0

1,d1][c0
2,d2] = 1.

I h0(c0
i ) are conjugate to h1(c1

i ) by Pi ∈ SO(3), i.e.,

Pih0(c0
i )P−1

i = h1(c1
i ) for i = 0,1,2.

We call Pi the pasting map for ci for i = 0,1,2.

43/75



The SO(3)-character space and spherical triangles

The character space of a closed surface of genus 2.

Representations considered with pasting maps

Two components

I The base point x∗ of Σ in the interior of S0. Given a representation
h : π1(Σ)→ SO(3), we obtain a representations h0 : π1(S0)→ SO(3)
and h1 : π1(S1)→ SO(3).

I Let c0
0, c

0
1, and c0

2 denote the sccs on S0 with base point x∗0 that are
freely homotopic to c0, c1, and c2 respectively, Let us choose a base
point x∗1 in S1 and oriented sccs c1

0, c
1
1, and c1

2 homotopic to c0, c1, and
c2.

IRelation
[c0

1,d1][c0
2,d2] = 1.

I h0(c0
i ) are conjugate to h1(c1

i ) by Pi ∈ SO(3), i.e.,

Pih0(c0
i )P−1

i = h1(c1
i ) for i = 0,1,2.

We call Pi the pasting map for ci for i = 0,1,2.

43/75



The SO(3)-character space and spherical triangles

The character space of a closed surface of genus 2.

Representations considered with pasting maps

Proposition (4.2)
We have

h(d1) = P−1
0 ◦ P1,h(d2) = P−1

0 ◦ P2.

Proposition (4.3)
Let h0 and h1 are representations of the fundamental

groups of pairs of pants S0 and S1 from a
SO(3)-representation h. The angles (θ0, θ1, θ2) of h0 and
(θ′0, θ

′
1, θ
′
2) of h1 satisfy the equation

θ′i = θi or (9)
θ′i = π − θi for i = 0,1,2. (10)
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The SO(3)-character space and spherical triangles

Establishing equivalence relations on G̃ × T 3 to make it equal to C0.

IWe consider the identity component C0.

Proposition (5.3)
If h is in the identity component C0 of rep(π1(Σ),SO(3)), and
h0 and h1 be obtained as above by restrictions to S0 and S1.
then
(a) We can conjugate h1 so that h0 = h1 and corresponding angles are

equal.
(b) For each representation h in C0, we can associate a pair of identical

degenerate or nondegenerate triangles and an element of
S1 × S1 × S1, i.e., the parameter space of the pasting angles. (not
normally a unique association for the degenerate triangle cases.)

I This gives a surjective map

T : G̃ × T 3 → C0 ⊂ rep(π1(Σ),SO(3)).

We need to find the equivalence relation ∼ on G̃ × T 3 to make the
above map induce a homeomorphism.
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The SO(3)-character space and spherical triangles

Establishing equivalence relations on G̃ × T 3 to make it equal to C0.

IWe describe the action below where IA, IB, IC inside are the
transformations on G̃ described above:

IA : (x , φ0, φ1, φ2) 7→ (IA(x), φ0,2π − φ1,2π − φ2)

IB : (x , φ0, φ1, φ2) 7→ (IB(x),2π − θ0, φ1,2π − φ2)

IC : (x , φ0, φ1, φ2) 7→ (IC(x),2π − φ0,2π − φ1, φ2). (11)
Since the action correspond to changing the fixed points of
ci and hence does not change the associated
representations, we have T ◦ IA = T ◦ IB = T ◦ IC = T .

IBy above, the set of triangular characters and
G̃o × T 3/{I, IA, IB, IC} are in one-to-one correspondence.
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The SO(3)-character space and spherical triangles

Establishing equivalence relations on G̃ × T 3 to make it equal to C0.

The equivalence over regions

The equivalence relation

IThe equivalence relation ∼ on the union of these are very
complicated and we obmit these.

IThe following is the main result:
Theorem (5.27)
The identity component C0 of rep(π1(Σ),SO(3)) is
homeomorphic to G̃ × T 3/ ∼. Thus C0 is a topological
complex consisting of a 3-dimensional copy of H(F2), and
4-dimensional CA,CB, and CC, and the space of abelian
representations, coming from the boundary of the 3-ball G̃
and the 6-dimensional complex from the interior of C0.
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The SO(3)-character space and spherical triangles

The SU(2)-character space of π(Σ).

The SU(2)-character space of π(Σ).

IWe will first find the topological type of the SU(2)-character
space of π and then in the next section do the same for the
SO(3)-character space.

IWe first study CP3 as a quotient space of a tetrahedron
times a 3-torus. Then we represent each SU(2)-character
by a generalized triangle and pasting angles as in the
SO(3)-case.

IAn SU(2)-character of a pair of pants corresponds to a
generalized triangle in a one-to-one manner except for the
degenerate ones. The space of pasting maps in SU(2) is
now S1

2.
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The SO(3)-character space and spherical triangles

The SU(2)-character space of π(Σ).

The SU(2)-character space of π(Σ)

I Let CP3 denote the complex projective space. According to
the toric manifold theory, CP3 admits a T 3-action given by

(eiθ1,eiθ2,eiθ3) · [z0, z1, z2, z3] = [eiθ1z0,eiθ2z1,eiθ3z2, z3] (12)
and the quotient map is given by

[z0, z1, z2, z3] 7→ π(|z0|2, |z1|2, |z2|2)/
3∑

i=0

|zi |2, zi ∈ C (13)

IThe image is a standard 3-simplex 4∗ in the positive
quadrant of R3 given by the plane given by x0 + x1 + x2 ≤ π

and the fibers are the orbits of T 3-action. The fibers are
given by R3 quotient out by the standard lattice L∗ with
generators (2π,0,0), (0,2π,0), (0,0,2π).
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The SO(3)-character space and spherical triangles

The SU(2)-character space of π(Σ).

On T 3
2 , an equivalence relation is given by the Z2-action sending

(φ0, φ1, φ2) to (φ0 + 2π, φ1 + 2π, φ2 + 2π): We obtain T 3/Z2.

Proposition (6.1)
By considering fibers of faces of G, we can realize CP3 as the quotient

space G × T 3
2 /Z2 of under an equivalence relation given as follows:

I In the interior, the equivalence is trivially given.
I For the face a, the equivalence relation on a× T 3

2 /Z2 is given by

(v , φ0, φ1, φ2) ∼ (v ′, φ′0, φ
′
1, φ

′
2)

if and only if v = v ′ and two vectors (φ0, φ1, φ2) and (φ′0, φ
′
1, φ

′
2) are the

same up to the S1-action generated by vectors parallel to (2π,2π,2π)
normal to a.

I For faces b, c, and d, the equivalence relation is similarly defined.
I In the edges and the vertices, the equivalence relation is induced from

the facial ones.
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The SO(3)-character space and spherical triangles

The SU(2)-character space of π(Σ).

Theorem (6.2)
rep(π1(Σ),SU(2)) is diffeomorphic to CP3 considered as a

T 3/Z2-fibration over G with the following properties:
I Each edge of G corresponding to the region A,A′,B,B′,C,C ′ of G̃

correspond a solid torus fibration over the interior of edges of G̃. Here,
the solid torus end is identified to a 3-ball.

I Three of them meet in a 3-ball over each vertex of G̃ according to the
pattern of the edges of G̃.

I The set of abelian characters χ2(Σ) forms a subspace with an orbifold
structure with 16 singularities. It consists of the two-torus fibrations
over faces of G which meet at the boundary components of the above
solid torus fibration.
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The SO(3)-character space and spherical triangles

The SU(2)-character space of π(Σ).

Triangular characters

Triangular characters

IWe find a description of rep(π1(Σ),SU(2)) as a quotient
space of G̃ × T 3

2 /Z2: For the open domain of triangular
characters, a representation of π1(Σ) gives us a unique
triangle on S2 by Proposition 4.2 and hence unique pasting
map. Thus, the space of triangular characters is
homeomorphic to G̃o × T 3

2 /Z2.
IBy density, the map

G̃ × T 3
2 /Z2→ rep(π1(Σ),SU(2))

is onto.
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The SO(3)-character space and spherical triangles

The SU(2)-character space of π(Σ).

The space of abelian SU(2)-characters

I For the face a, the equivalence relation on a× T 3
2 /Z2 is given by

(v , φ0, φ1, φ2) ∼ (v ′, φ′0, φ
′
1, φ

′
2) if and only if v = v ′ and two vectors

(φ0, φ1, φ2) and (φ′0, φ
′
1, φ

′
2) are the same up to the S1-action generated

by vectors parallel to (2π,2π,2π) normal to a.
I For faces b, c, and d , the equivalence relation is defined again using

the respective S1-action generated by vectors parallel to
(−2π,2π,2π), (2π,−2π,−2π), (2π,2π,−2π) perpendicular to b, c,d
respectively.

I The quotient space T 2
2,a is homeomorphic to a 2-torus. Thus, the

character space here is in one-to-one correspondence with a× T 2
2,a.

Similarly, we obtain T 2
2,b, T 2

2,c, and T 2
2,d for respective faces b, c, and d .

IWe take a union of a× T 2
2,a, b × T 2

2,b, c × T 2
2,c, and d × T 2

2,d . Note that
as we cross an edge through a tie from a face to another face, we
change one of the vertex of a lune triangle to its antipode.

IHence, we can consider as a fibration over ∂G̃ with fibers
homeomorphic to T 2 except at vertices where the fibers are
homeomorphic to a 2-sphere.
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The SO(3)-character space and spherical triangles

The SU(2)-character space of π(Σ).

The space of abelian SU(2)-characters

Lemma (6.3)
IThe subspace over a tie in one of the regions A, B, C, A′,

B′, and C′ but not in U is homeomorphic to S1 × B2. Thus,
over the interior of each of A,A′,B,B′,C,C′, there is a
bundle over an open interval with fibers homeomorphic to
the solid tori.

I If a tie is in U, the subspace over it is identical with the
subspace over I, II, III, or IV respectively and hence is
homeomorphic to a 3-ball and can be considered as having
been obtained from a Z2-action on the solid torus.

IHence, the region above each of A,A′,B,B′,C,C′ is
homeomorphic to the quotient space of a solid torus times
an interval with the solid torus over each end identified with
a 3-ball.

54/75



The SO(3)-character space and spherical triangles

The SU(2)-character space of π(Σ).

The space of abelian SU(2)-characters

Lemma (6.3)
IThe subspace over a tie in one of the regions A, B, C, A′,

B′, and C′ but not in U is homeomorphic to S1 × B2. Thus,
over the interior of each of A,A′,B,B′,C,C′, there is a
bundle over an open interval with fibers homeomorphic to
the solid tori.

I If a tie is in U, the subspace over it is identical with the
subspace over I, II, III, or IV respectively and hence is
homeomorphic to a 3-ball and can be considered as having
been obtained from a Z2-action on the solid torus.

IHence, the region above each of A,A′,B,B′,C,C′ is
homeomorphic to the quotient space of a solid torus times
an interval with the solid torus over each end identified with
a 3-ball.

54/75



The SO(3)-character space and spherical triangles

The SU(2)-character space of π(Σ).

The space of abelian SU(2)-characters

Lemma (6.3)
IThe subspace over a tie in one of the regions A, B, C, A′,

B′, and C′ but not in U is homeomorphic to S1 × B2. Thus,
over the interior of each of A,A′,B,B′,C,C′, there is a
bundle over an open interval with fibers homeomorphic to
the solid tori.

I If a tie is in U, the subspace over it is identical with the
subspace over I, II, III, or IV respectively and hence is
homeomorphic to a 3-ball and can be considered as having
been obtained from a Z2-action on the solid torus.

IHence, the region above each of A,A′,B,B′,C,C′ is
homeomorphic to the quotient space of a solid torus times
an interval with the solid torus over each end identified with
a 3-ball.

54/75
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The SU(2)-character space of π(Σ).

The space of abelian SU(2)-characters
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Figure: Finding topology of space over regions A,A′,B,B′,C, and C ′
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The SO(3)-character space and spherical triangles

The topology of the quotient space G̃ × T 3/ ∼ or C0

The topology of the quotient space
G̃ × T 3/ ∼ or C0

IClearly, there is a group V ′ of order 16 action on
G̃ × T 3

2 /Z2/ ∼ generated by the {I, IA, IB, IC}-action similar
to equations 11

I and the Klein four-group acting on each of the fibers
S1

2 × S1
2 × S1

2/Z2:
by ia sending (θ0, θ1, θ2)→ (θ0 + 2π, θ1 + 2π, θ2) and ib sending
(θ0, θ1, θ2)→ (θ0, θ1 + 2π, θ2 + 2π) and ic sending
(θ0, θ1, θ2)→ (θ0 + 2π, θ1, θ2 + 2π).
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The SO(3)-character space and spherical triangles

The topology of the quotient space G̃ × T 3/ ∼ or C0

ITheorem (7.5)
G̃ × T 3/ ∼ is homeomorphic to a quotient of CP3 under the
product of the two Klein four-group actions generated by
fiberwise and axial action:
I The branch loci of IA, IB, IC are given as follows: six 2-spheres

corresponding to the axes of IA, IB, and IC. There are two 2-spheres
over each axis, and over each axis, the two 2-spheres are disjoint. All
three 2-spheres over different axis meet at the same point as above.

I The branched loci of ia, ib, ic are 2-spheres also over A,A′,B,B′,C,C ′.

57/75



The SO(3)-character space and spherical triangles

The other component

The other component C1

I In this section, we study the other component C1. We follow the basic
strategy as in C0 case.

I First, we introduce an octahedron O and its blown-up compactification
Õ to parameterize the characters. This octahedron characterizes the
characters of the two pairs of pants S0 and S1.

I Again, we compactify the octahedron by blowing up vertices into
squares to prepare for the study of the characters of the fundamental
group of the surface itself.

I Then we introduce equivalence relation so that Õ × T 3/ ∼ becomes
homeomorphic to C1. This will be done by considering the interior and
each of the boundary regions as in the previous sections.

I Finally, we will show that the quotient space is homeomorphic to an
octahedral manifold.
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The SO(3)-character space and spherical triangles

The other component

Lemma (8.1)

IThe subset of triangular characters in C1 is a dense open
subset.

IAny character whose associated triangles is degenerate
can be pushed to triangular ones by a path of deformations.

IEvery character in the component C1 is associated with
generalized triangles (40,41) whose associated angles
are (θ0, θ1, θ2) and (θ0, π − θ1, θ2).

For our convention, the pasting map P0 sends v0 to v ′0, P1
sends v1 to −v ′1 and P2 sends v2 to v ′2. Note we do not have
a canonical choices for Pi which we need to get a coordinate
system as of yet.
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The other component

IThe set of possible nondegenerate triangles for 40 and 41
is then described as the intersection of G̃o ∩ κ(G̃o) where κ
is the map sending (θ0, θ1, θ2) to (θ0, π − θ1, θ2).

ISince G̃o is given by
θ0 + θ1 + θ2 > π

θ0 < θ1 + θ2 − π,
θ1 < θ2 + θ0 − π

θ2 < θ0 + θ1 − π (14)

I it follows that our domain is an octahedron O given by eight
equations

θ0 + θ1 + θ2 > π : (a)

θ0 + θ2 > θ1 : (a′)

θ0 < θ1 + θ2 − π, : (c)

θ0 + θ1 < θ2 : (c′)

θ1 < θ2 + θ0 − π : (b)

2π < θ0 + θ1 + θ2 : (b′)

θ2 < θ0 + θ1 − π : (d)

θ1 + θ2 < θ0 : (d ′) (15)
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The other component

IThe Klein four-group {I, IA, IB, IC} acts on the resulting
polyhedron Õ as isometric actions. They are obtained by
replacing vi to −vi for some i = 0,1,2, and they have the
same formula as in the C0 case.

IThey are as follows in terms of coordinates
IA : (v(0), v(1), v(2), l(0), l(1), l(2), v(0)′, v(1)′, v(2)′, l ′(0), l ′(1), l ′(2)) 7→

(π − v(0), π − v(1), v(2), π − l(0), π − l(1), l(2), π − v(0)′, π − v(1)′, v(2)′, π − l(0)′, π − l(1)′, l(2)′) (16)
IThe map IB changes the triangle with vertices v0, v1, and

v2 to one with v0,−v1, and −v2:
(v(0), v(1), v(2), l(0), l(1), l(2), v(0)′, v(1)′, v(2)′, l(0)′, l(1)′, l(2)′) 7→

(v(0), π − v(1), π − v(2), l(0), π − l(1), π − l(2), v(0)′, π − v(1)′, π − v(2)′, l(0)′, π − l(1)′, π − l(2)′). (17)
IThe map IC changes the triangle with vertices v0, v1, and

v2 to one with −v0, v1, and −v2:
(v(0), v(1), v(2), l(0), l(1), l(2), v(0)′, v(1)′, v(2)′, l(0)′, l(1)′, l(2)′) 7→

(π − v(0), v(1), π − v(2), π − l(0), l(1), π − l(2), π − v(0)′, v(1)′, π − v(2)′, π − l(0)′, l(1)′, π − l(2)′). (18)
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The other component

Proposition (8.2)
Using pasting map construction as above, we have a

continuous onto map

T : Õ × T 3→ C1.
Furthermore, we have

T ◦ IA = T ◦ IB = T ◦ IC = T .

The upper and lower triangles are related by the relation in O:

(θ0, θ1, θ2)↔ (θ0, π − θ1, θ2).

Theorem
The map T : Õ × T 3→ C1 induces a homeomorphism

Õ × T 3/ ∼→ C1 where ∼ is an appropriate equivalence
relation.
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The SU(2)-pseudo-characters for the above component

The SU(2)-pseudo-characters for the above
component

IWe define the SU(2)-character space rep−I(π1(Σ1),SU(2))
of a punctured genus 2 surface Σ1 with the puncture
holonomy −I as the quotient space of the subspace of
Hom(π1(Σ1),SU(2)) where h(c) = −I by conjugations
where c is a simple closed curve around the puncture.

Theorem (9.1)
rep−I(π1(Σ1),SU(2)) is homeomorphic to the filled octahedral
manifold.
IWe have a surjective map from Õ × T 3

2 /Z2 to
rep−I(π1(Σ1),SU(2)).
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The SU(2)-pseudo-characters for the above component

IWe will use the same equivalence relation on regions
above a, b, c, d , a′, b′, c′, and d ′ as in the SO(3)-case
except that now the fibers are T 3

2 /Z2.
IThe equivalence relation is given by identifying all elements

proportional to (2π,2π,2π)-vector in T 3
2 /Z2 to O for face

a× T 3
2 /Z2, by identifying all elements proportional to

(2π,−2π,2π)-vector in T 3
2 to O for face a′ × T 3

2 /Z2, and so
on.

IThus, the character space here is in one-to-one
correspondence with ao × T 2.

ISimilar statements are true for the other regions.
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The SU(2)-pseudo-characters for the above component

IFor regions, AA,BB,CC′,A
′
A′, B′B′, and C′C, we will use a

different but similar identification to the SO(3)-cases.
I Let us take the case AA first. Here the pasting angles are in

S1
2. By an extended multiplication by geometry for SU(2),

we obtain the fixed point u1 of h(d1) and h(d2) uniquely
determined in this case.

ITherefore, by reading the coordinates of h(d2) in terms of
u1, we obtain a map AA × T 3

2 /Z2→ C1 whose image is an
imbedded 3-sphere since given all points of S2 arise as a
point and all rotation angles occur by our constructions,
where again we used our control of P2 with pasting angles
fixed at v0 and v2.

IMoreover, AA × T 3
2 /Z2/ ∼→ C1 is an embedding since ∼ is chosen for

this to hold.
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Figure: How to find a fixed point of h(d1) for region AA.
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The SU(2)-pseudo-characters for the above component

ISince rep−I(π1(Σ1),SU(2)) is topologically a manifold, the
tubular neighborhood of the region above AA is
homeomorphic to S3 × B3 and covers the tubular
neighborhood of the 3-sphere in SO(3) case 4 to 1.

I In all other cases BB, CC′,A
′
A′, B′B′, and C′C, similar

arguments show that the rectangle times T 3
2 maps to a

3-sphere in C1.
ISince the boundary of the closure M is a union of six

five-dimensional manifolds homeomorphic to S3 × S2.
Thus, we can glue six neighborhoods of the three spheres
over AA,BB,CC′,A

′
A′, B′B′, and C′C, homeomorphic to

S3 × B3 to obtain the octahedral manifold. Hence, it follows
that Õ × T 3

2 /Z2/ ∼ is homeomorphic to the octahedral
manifold.

68/75



The SO(3)-character space and spherical triangles

The SU(2)-pseudo-characters for the above component

ISince rep−I(π1(Σ1),SU(2)) is topologically a manifold, the
tubular neighborhood of the region above AA is
homeomorphic to S3 × B3 and covers the tubular
neighborhood of the 3-sphere in SO(3) case 4 to 1.

I In all other cases BB, CC′,A
′
A′, B′B′, and C′C, similar

arguments show that the rectangle times T 3
2 maps to a

3-sphere in C1.

ISince the boundary of the closure M is a union of six
five-dimensional manifolds homeomorphic to S3 × S2.
Thus, we can glue six neighborhoods of the three spheres
over AA,BB,CC′,A

′
A′, B′B′, and C′C, homeomorphic to

S3 × B3 to obtain the octahedral manifold. Hence, it follows
that Õ × T 3
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The topology of the other component C1

I Again, we define ia, ib, and ic on T 3
2 /Z2: ia is defined by

(φ0, φ1, φ2) 7→ (φ0 + 2π, φ1 + 2π, φ2) and ib by
(φ0, φ1, φ2) 7→ (φ0, φ1 + 2π, φ2 + 2π) and ic by
(φ0, φ1, φ2) 7→ (φ0 + 2π, φ1, φ2 + 2π). Again, this amounts to changing
some of the pasting maps by multiplications by −I.

I Let us study what are the branch loci of IA, IB, IC. This is
defined by equations 11.

Theorem (10.1)
The other component C1 is homeomorphic to the quotient of
filled octahedral manifold with the product Klein four-group
action given by the action of IA, IB, IC, ia, ib, and ic.
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