Margulis space－time with parabolics

Suhyoung Choi（with Drumm，Goldman）

KAIST

July， 2018

Outline

Outline

Part 0: Introduction
Main results
Preliminary
Part 1: Proper action of a parabolic cyclic group
Proper parabolic actions
Linear parabolic action
Proper affine parabolic action
Margulis and Charette-Drumm invariants
Parabolic ruled surfaces and transverse foliations
Tameness of the parabolic quotient spaces
Part 2: Geometric estimations and convergences
Goldman-Labourie-Margulis decomposition and estimations of cocycles
Translations vectors and orbits of a proper affine deformations
Part 3: Topology of 3-manifolds
Finding the fundamental domain
Finiteness
Tameness
Relative compactification
Article: arXiv:1710.09162

Margulis space-times

- Isom $^{+}(\mathrm{E})$ the group of Lorentzian isometries on the flat Lorentzian space E .

Margulis space-times

- Isom $^{+}(\mathrm{E})$ the group of Lorentzian isometries on the flat Lorentzian space E .
- A discrete affine group Γ acting properly on E is either solvable or is free of rank ≥ 2.
- Γ is a proper affine free group of rank ≥ 2.

Margulis space-times

- Isom $^{+}(\mathrm{E})$ the group of Lorentzian isometries on the flat Lorentzian space E .
- A discrete affine group Γ acting properly on E is either solvable or is free of rank ≥ 2.
- Γ is a proper affine free group of rank ≥ 2.
- Assume for convenience $\mathcal{L}(\Gamma) \subset S O(2,1)^{0}$. Γ is a proper affine deformation.

Margulis space-times

- Isom $^{+}(\mathrm{E})$ the group of Lorentzian isometries on the flat Lorentzian space E .
- A discrete affine group Γ acting properly on E is either solvable or is free of rank ≥ 2.
- Γ is a proper affine free group of rank ≥ 2.
- Assume for convenience $\mathcal{L}(\Gamma) \subset S O(2,1)^{\circ}$. Γ is a proper affine deformation.
- Assume $\mathcal{L}(\Gamma)$ is a free group of rank $g, g \geq 2$ in $\mathrm{SO}(2,1)^{\circ}$ acting freely and discretely on \mathbb{H}^{2}.

Real projective structures

- A real projective structure on a manifold is given by a maximal atlas of charts to $\mathbb{R} P^{n}, n \geq 1$, with transition maps in $\operatorname{PGL}(n+1, \mathbb{R})$.
- Suppose that Σ is a real projective surface with holonomy in the image of $\mathcal{L}(\Gamma)$ in PSO $(2,1)$.
- A parabolic annulus in Σ is a properly embedded compact annulus with a parabolic holonomy.

Main Theorem

Theorem 2.1

Suppose that Γ is a proper affine free group of rank $\mathrm{g}, \mathrm{g} \geq 2$, with parabolics and linear parts in $\mathrm{SO}(2,1)^{\circ}$. Then

Main Theorem

Theorem 2.1

Suppose that Γ is a proper affine free group of rank $\mathrm{g}, \mathrm{g} \geq 2$, with parabolics and linear parts in $\mathrm{SO}(2,1)^{\circ}$. Then

- E / Γ is diffeomorphic to the interior of a compact handlebody of genus g .

Main Theorem

Theorem 2.1

Suppose that Γ is a proper affine free group of rank $\mathrm{g}, \mathrm{g} \geq 2$, with parabolics and linear parts in $\mathrm{SO}(2,1)^{\circ}$. Then

- E / Γ is diffeomorphic to the interior of a compact handlebody of genus g .
- Moreover, it is the interior of a real projective 3-manifold M with a totally geodesic real projective surface as boundary.

Main Theorem

Theorem 2.1

Suppose that Γ is a proper affine free group of rank $\mathrm{g}, \mathrm{g} \geq 2$, with parabolics and linear parts in $\mathrm{SO}(2,1)^{\circ}$. Then

- E / Γ is diffeomorphic to the interior of a compact handlebody of genus g .
- Moreover, it is the interior of a real projective 3-manifold M with a totally geodesic real projective surface as boundary.
- M deformation retracts to a compact handlebody obtained by removing a union of finitely many solid-torus-end-neighborhoods.

Remark 1

The tameness part is also claimed by Danciger, Kassel, and Guéritaud [5]. Also, the tameness without parabolics was also solved by Choi-Goldman and this group. Crooked plane conjecture for nonparabolic case was solved by this group also.

- We conjecture that the Margulis space-time with parabolics deforms immediately to one without parbolics. However, this requires result of Goldman-Labourie-Margulis-Minsky [8] which they have not written up.
- We conjecture that the Margulis space-time with parabolics deforms immediately to one without parbolics. However, this requires result of Goldman-Labourie-Margulis-Minsky [8] which they have not written up.
- The Crooked-plane conjecture is also claimed by DGK [5] and this should also imply the relative compactification.
- We conjecture that the Margulis space-time with parabolics deforms immediately to one without parbolics. However, this requires result of Goldman-Labourie-Margulis-Minsky [8] which they have not written up.
- The Crooked-plane conjecture is also claimed by DGK [5] and this should also imply the relative compactification.
- The main advantage of our approach is to see the 3-dimensional picture such as axes of transformations and globally hyperbolic subspaces bounded by Cauchy hypersurfaces. Also, relative compactification is easy to see.
- We conjecture that the Margulis space-time with parabolics deforms immediately to one without parbolics. However, this requires result of Goldman-Labourie-Margulis-Minsky [8] which they have not written up.
- The Crooked-plane conjecture is also claimed by DGK [5] and this should also imply the relative compactification.
- The main advantage of our approach is to see the 3-dimensional picture such as axes of transformations and globally hyperbolic subspaces bounded by Cauchy hypersurfaces. Also, relative compactification is easy to see.
- Also, these show that every flat complete Lorentz manifold of any dimension is tame. (Goldman-Labourie [6])

Real projective geometry of Margulis space-times

- Define

$$
\mathbb{S}(V):=V \backslash\{0\} / \sim_{+} \text {where } \mathbf{x} \sim_{+} \mathbf{y} \text { iff } \mathbf{x}=s \mathbf{y} \text { for } s \in \mathbb{R}_{+} .
$$

There is a double cover $\mathbb{S}(V) \rightarrow \mathbb{P}(V)$ with the antipodal map $\mathcal{A}: \mathbb{S}(V) \rightarrow \mathbb{S}(V)$.

- ((v)) denotes the equivalence class of \mathbf{v}.

Real projective geometry of Margulis space-times

- Define

$$
\mathbb{S}(V):=V \backslash\{0\} / \sim_{+} \text {where } \mathbf{x} \sim_{+} \mathbf{y} \text { iff } \mathbf{x}=s \mathbf{y} \text { for } s \in \mathbb{R}_{+} .
$$

There is a double cover $\mathbb{S}(V) \rightarrow \mathbb{P}(V)$ with the antipodal map $\mathcal{A}: \mathbb{S}(V) \rightarrow \mathbb{S}(V)$.

- ((v)) denotes the equivalence class of \mathbf{v}.
- $\mathrm{SL}_{ \pm}(V)$ acts on $\mathbb{S}(V)$ effectively and transitively, and is $\operatorname{Aut}(\mathbb{S}(V))$.

Real projective geometry of Margulis space-times

- Define

$$
\mathbb{S}(V):=V \backslash\{0\} / \sim_{+} \text {where } \mathbf{x} \sim_{+} \mathbf{y} \text { iff } \mathbf{x}=s \mathbf{y} \text { for } s \in \mathbb{R}_{+} .
$$

There is a double cover $\mathbb{S}(V) \rightarrow \mathbb{P}(V)$ with the antipodal map $\mathcal{A}: \mathbb{S}(V) \rightarrow \mathbb{S}(V)$.

- ((v)) denotes the equivalence class of \mathbf{v}.
- $\mathrm{SL}_{ \pm}(V)$ acts on $\mathbb{S}(V)$ effectively and transitively, and is $\operatorname{Aut}(\mathbb{S}(V))$.
- E equals an open hemisphere in $\mathbb{S}^{3}=\mathbb{S}\left(\mathbb{R}^{4}\right)$ by sending

$$
\left(x_{1}, x_{2}, x_{3}\right) \text { to }\left(\left(1, x_{1}, x_{2}, x_{3}\right)\right) \text { for } x_{1}, x_{2}, x_{3} \in \mathbb{R}
$$

Real projective geometry of Margulis space-times

- Define

$$
\mathbb{S}(V):=V \backslash\{0\} / \sim_{+} \text {where } \mathbf{x} \sim_{+} \mathbf{y} \text { iff } \mathbf{x}=s \mathbf{y} \text { for } s \in \mathbb{R}_{+} .
$$

There is a double cover $\mathbb{S}(V) \rightarrow \mathbb{P}(V)$ with the antipodal map $\mathcal{A}: \mathbb{S}(V) \rightarrow \mathbb{S}(V)$.

- ((v)) denotes the equivalence class of \mathbf{v}.
- $\mathrm{SL}_{ \pm}(V)$ acts on $\mathbb{S}(V)$ effectively and transitively, and is $\operatorname{Aut}(\mathbb{S}(V))$.
- E equals an open hemisphere in $\mathbb{S}^{3}=\mathbb{S}\left(\mathbb{R}^{4}\right)$ by sending

$$
\left(x_{1}, x_{2}, x_{3}\right) \text { to }\left(\left(1, x_{1}, x_{2}, x_{3}\right)\right) \text { for } x_{1}, x_{2}, x_{3} \in \mathbb{R}
$$

- $\partial \mathrm{E}=\partial \mathcal{H}$ is a great 2 -sphere \mathbb{S} given by $x_{0}=0$.

Real projective geometry of Margulis space-times

- Define

$$
\mathbb{S}(V):=V \backslash\{0\} / \sim_{+} \text {where } \mathbf{x} \sim_{+} \mathbf{y} \text { iff } \mathbf{x}=s \mathbf{y} \text { for } s \in \mathbb{R}_{+} .
$$

There is a double cover $\mathbb{S}(V) \rightarrow \mathbb{P}(V)$ with the antipodal map $\mathcal{A}: \mathbb{S}(V) \rightarrow \mathbb{S}(V)$.

- ((v)) denotes the equivalence class of \mathbf{v}.
- $\mathrm{SL}_{ \pm}(V)$ acts on $\mathbb{S}(V)$ effectively and transitively, and is $\operatorname{Aut}(\mathbb{S}(V))$.
- E equals an open hemisphere in $\mathbb{S}^{3}=\mathbb{S}\left(\mathbb{R}^{4}\right)$ by sending

$$
\left(x_{1}, x_{2}, x_{3}\right) \text { to }\left(\left(1, x_{1}, x_{2}, x_{3}\right)\right) \text { for } x_{1}, x_{2}, x_{3} \in \mathbb{R}
$$

- $\partial \mathrm{E}=\partial \mathcal{H}$ is a great 2 -sphere \mathbb{S} given by $x_{0}=0$.
- $\mathbb{S}=\mathbb{S}_{+} \cup \mathbb{S}_{=} \cup \mathbb{S}_{0}$.
- S_{+}is the Klein model of the hyperbolic plane.

Hausdorff convergences

- $\mathbb{S}^{3}=\mathbb{S}\left(\mathbb{R}^{4}\right)$ has Fubini-Study metric d.
- The Hausdorff distance between two compact sets A and B is

$$
\mathbf{d}_{H}(A, B)=\inf \left\{\delta \mid \delta>0, B \subset N_{\mathbf{d}, \delta}(A), A \subset N_{\mathbf{d}, \delta}(B)\right\} .
$$

Hausdorff convergences

- $\mathbb{S}^{3}=\mathbb{S}\left(\mathbb{R}^{4}\right)$ has Fubini-Study metric d.
- The Hausdorff distance between two compact sets A and B is

$$
\mathbf{d}_{H}(A, B)=\inf \left\{\delta \mid \delta>0, B \subset N_{\mathbf{d}, \delta}(A), A \subset N_{\mathbf{d}, \delta}(B)\right\} .
$$

Proposition 2.1 (see Benedetti-Petronio)

A sequence $\left\{A_{i}\right\}$ of compact sets converges to A in the Hausdorff topology if and only if

- If there is a sequence $\left\{x_{i_{j}}\right\}, x_{i_{j}} \in A_{i_{j}}$, where $x_{i_{j}} \rightarrow x$ for $i_{j} \rightarrow \infty$, then $x \in A$.
- If $x \in A$, then there exists a sequence $\left\{x_{i}\right\}, x_{i} \in A_{i}$, such that $x_{i} \rightarrow x$.

Linear parabolic action

- A linear endomorphism $N: V \rightarrow V$ is a skew-adjoint endomorphism of V if

$$
\mathrm{B}(N \mathbf{x}, \mathbf{y})=-\mathrm{B}(\mathbf{x}, N \mathbf{y})
$$

- We classify skew-adjoint linear parabolic transformations.

Linear parabolic action

- A linear endomorphism $N: V \rightarrow V$ is a skew-adjoint endomorphism of V if

$$
\mathrm{B}(N \mathbf{x}, \mathbf{y})=-\mathrm{B}(\mathbf{x}, N \mathbf{y})
$$

- We classify skew-adjoint linear parabolic transformations.

Corollary 3.1

Given a skew-adjoint endomorphism $N: V \rightarrow V$. Then there exists a coordinate system given by $\mathbf{a}, \mathbf{b}, \mathbf{c}$ satisfying
$-\mathrm{B}(\mathbf{a}, \mathbf{b})=0=\mathrm{B}(\mathbf{b}, \mathbf{c}), \mathrm{B}(\mathbf{a}, \mathbf{c})=-1$,

- $\mathbf{c}=N(\mathbf{b}), \mathbf{b}=N(\mathbf{a})$, and
- \mathbf{b} is a unit spacelike vector, $\mathbf{c} \in \operatorname{Ker} N$ is casual null, and \mathbf{a} is null.

Linear parabolic action

- A linear endomorphism $N: V \rightarrow V$ is a skew-adjoint endomorphism of V if

$$
\mathrm{B}(N \mathbf{x}, \mathbf{y})=-\mathrm{B}(\mathbf{x}, N \mathbf{y})
$$

- We classify skew-adjoint linear parabolic transformations.

Corollary 3.1

Given a skew-adjoint endomorphism $N: V \rightarrow V$. Then there exists a coordinate system given by $\mathbf{a}, \mathbf{b}, \mathbf{c}$ satisfying
$-\mathrm{B}(\mathbf{a}, \mathbf{b})=0=\mathrm{B}(\mathbf{b}, \mathbf{c}), \mathrm{B}(\mathbf{a}, \mathbf{c})=-1$,

- $\mathbf{c}=N(\mathbf{b}), \mathbf{b}=N(\mathbf{a})$, and
- \mathbf{b} is a unit spacelike vector, $\mathbf{c} \in \operatorname{Ker} N$ is casual null, and \mathbf{a} is null.
- The coordinate system is is canonical for a skew-symmetric nilpotent endomorphism N with respect to $\mathrm{B}: V \times V \rightarrow \mathbb{R}$.

Proper affine parabolic action

- Let γ be an affine transformation with skew-adjoint parabolic linear part $\exp (N)$.

Proper affine parabolic action

- Let γ be an affine transformation with skew-adjoint parabolic linear part $\exp (N)$.
- Using the frame given as above and translating, γ lies in a one-parameter group

$$
\Psi(t):=\exp t\left(\begin{array}{llll}
0 & 1 & 0 & 0 \tag{3.1}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \mu \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & \mu t^{3} / 6 \\
0 & 1 & t & \mu t^{2} / 2 \\
0 & 0 & 1 & \mu t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

for $\mu \in \mathbb{R}$.

Proper affine parabolic action

- This one-parameter subgroup $\{\Psi(t), t \in \mathbb{R}\}$ leaves invariant the two polynomials

$$
\begin{equation*}
F_{2}(x, y, z)=z^{2}-2 \mu y \text { and } F_{3}(x, y, z)=z^{3}-3 \mu y z+3 \mu^{2} x \tag{3.2}
\end{equation*}
$$

and the diffeomorphism $F(x, y, z):=\left(F_{3}(x, y, z), F_{2}(x, y, z), z\right)$

$$
\begin{equation*}
F \circ \Psi(t) \circ F^{-1}:(x, y, z) \rightarrow(x, y, z+\mu t) . \tag{3.3}
\end{equation*}
$$

Proper affine parabolic action

- This one-parameter subgroup $\{\Psi(t), t \in \mathbb{R}\}$ leaves invariant the two polynomials

$$
\begin{equation*}
F_{2}(x, y, z)=z^{2}-2 \mu y \text { and } F_{3}(x, y, z)=z^{3}-3 \mu y z+3 \mu^{2} x \tag{3.2}
\end{equation*}
$$

and the diffeomorphism $F(x, y, z):=\left(F_{3}(x, y, z), F_{2}(x, y, z), z\right)$

$$
\begin{equation*}
F \circ \Psi(t) \circ F^{-1}:(x, y, z) \rightarrow(x, y, z+\mu t) . \tag{3.3}
\end{equation*}
$$

- All the orbits are twisted cubic curves.

Figure: A number of orbits drawn horizontally.

Margulis invariants

- Let Γ be a proper affine deformation of a free group.
- For non-parabolic $\gamma \in \Gamma \backslash\{\mathrm{I}\}$, we define

Margulis invariants

- Let Γ be a proper affine deformation of a free group.
- For non-parabolic $\gamma \in \Gamma \backslash\{I\}$, we define
- $\mathbf{x}_{+}(\gamma)$ as an eigenvector of $\mathcal{L}(\gamma)$ in the casual null directions with eigenvalue >1,
- $\mathbf{x}_{-}(\gamma)$ as an eigenvector of $\mathcal{L}(\gamma)$ in the casual null direction with eigenvalue <1, and

Margulis invariants

- Let Γ be a proper affine deformation of a free group.
- For non-parabolic $\gamma \in \Gamma \backslash\{I\}$, we define
- $\mathbf{x}_{+}(\gamma)$ as an eigenvector of $\mathcal{L}(\gamma)$ in the casual null directions with eigenvalue >1,
- $\mathbf{x}_{-}(\gamma)$ as an eigenvector of $\mathcal{L}(\gamma)$ in the casual null direction with eigenvalue <1, and - $\mathbf{x}_{0}(\gamma)$ as the spacelike positive eigenvector of $\mathcal{L}(\gamma)$ of eigenvalue 1 given by

$$
\mathbf{x}_{0}(\gamma)=\frac{\mathbf{x}_{-}(\gamma) \times \mathbf{x}_{+}(\gamma)}{\left\|\mathbf{x}_{-}(\gamma) \times \mathbf{x}_{+}(\gamma)\right\|}
$$

Margulis invariants

- Let Γ be a proper affine deformation of a free group.
- For non-parabolic $\gamma \in \Gamma \backslash\{I\}$, we define
- $\mathbf{x}_{+}(\gamma)$ as an eigenvector of $\mathcal{L}(\gamma)$ in the casual null directions with eigenvalue >1,
- $\mathbf{x}_{-}(\gamma)$ as an eigenvector of $\mathcal{L}(\gamma)$ in the casual null direction with eigenvalue <1, and
- $\mathbf{x}_{0}(\gamma)$ as the spacelike positive eigenvector of $\mathcal{L}(\gamma)$ of eigenvalue 1 given by

$$
\mathbf{x}_{0}(\gamma)=\frac{\mathbf{x}_{-}(\gamma) \times \mathbf{x}_{+}(\gamma)}{\left\|\mathbf{x}_{-}(\gamma) \times \mathbf{x}_{+}(\gamma)\right\|}
$$

- The Margulis invariant is given

$$
\begin{equation*}
\alpha(\gamma)=\mathrm{B}\left(\gamma(x)-x, x_{0}(\gamma)\right), x \in \mathrm{E} \tag{3.4}
\end{equation*}
$$

independent of the choice of x.

Charette-Drumm invariants $c d(\cdot)$

Definition 3.1

An eigenvector \mathbf{v} of eigenvalue 1 of parabolic transformation g is positive relative to g if

- $\{\mathbf{v}, \mathbf{x}, \mathcal{L}(g) \mathbf{x}\}$ is positively oriented when
- \mathbf{x} is any null or timelike vector which is not an eigenvector of g.

Definition 3.2

Charette-Drumm invariants $c d(\cdot)$

Definition 3.1

An eigenvector v of eigenvalue 1 of parabolic transformation g is positive relative to g if

- $\{\mathbf{v}, \mathbf{x}, \mathcal{L}(g) \mathbf{x}\}$ is positively oriented when
- \mathbf{x} is any null or timelike vector which is not an eigenvector of g.

Definition 3.2

- Let $F(\mathcal{L}(g))$ be the eigensubspace of $\mathcal{L}(g)$ of eigenvalue 1 .
- Define $\tilde{\alpha}(\gamma): F(\mathcal{L}(\gamma)) \rightarrow \mathbb{R}$ by

$$
\tilde{\alpha}(\gamma)(\cdot)=\mathrm{B}(\gamma(x)-x, \cdot), x \in \mathrm{E}
$$

Charette-Drumm invariants $c d(\cdot)$

Definition 3.1

An eigenvector v of eigenvalue 1 of parabolic transformation g is positive relative to g if

- $\{\mathbf{v}, \mathbf{x}, \mathcal{L}(g) \mathbf{x}\}$ is positively oriented when
- \mathbf{x} is any null or timelike vector which is not an eigenvector of g.

Definition 3.2

- Let $F(\mathcal{L}(g))$ be the eigensubspace of $\mathcal{L}(g)$ of eigenvalue 1 .
- Define $\tilde{\alpha}(\gamma): F(\mathcal{L}(\gamma)) \rightarrow \mathbb{R}$ by

$$
\tilde{\alpha}(\gamma)(\cdot)=\mathrm{B}(\gamma(x)-x, \cdot), x \in \mathrm{E}
$$

- $\operatorname{cd}(\gamma)>0$ if $\tilde{\alpha}(\gamma)$ is positive on positive eigenvectors in $F(\mathcal{L}(\gamma)) \backslash\{0\}$ ([1]).

Charette-Drumm invariants $c d(\cdot)$

Definition 3.1

An eigenvector \mathbf{v} of eigenvalue 1 of parabolic transformation g is positive relative to g if

- $\{\mathbf{v}, \mathbf{x}, \mathcal{L}(g) \mathbf{x}\}$ is positively oriented when
- \mathbf{x} is any null or timelike vector which is not an eigenvector of g.

Definition 3.2

- Let $F(\mathcal{L}(g))$ be the eigensubspace of $\mathcal{L}(g)$ of eigenvalue 1 .
- Define $\tilde{\alpha}(\gamma): F(\mathcal{L}(\gamma)) \rightarrow \mathbb{R}$ by

$$
\tilde{\alpha}(\gamma)(\cdot)=\mathrm{B}(\gamma(x)-x, \cdot), x \in \mathrm{E}
$$

- $c d(\gamma)>0$ if $\tilde{\alpha}(\gamma)$ is positive on positive eigenvectors in $F(\mathcal{L}(\gamma)) \backslash\{0\}$ ([1]).

Lemma 3.1

$\mu>0$ if and only if $\gamma=\Phi_{1}$ has a positive Charette-Drumm invariant. Implying $\langle\gamma\rangle$ acts properly on E .

Constructing transversal foliations

- $\Psi(t): \mathbf{E} \rightarrow \mathbf{E}$ is generated by a vector field

$$
\phi:=y \partial_{x}+z \partial_{y}+\mu \partial_{z}
$$

with the square of the Lorentzian norm $\|\phi\|^{2}=z^{2}-2 \mu y$.

Constructing transversal foliations

- $\Psi(t): \mathbf{E} \rightarrow \mathbf{E}$ is generated by a vector field

$$
\phi:=y \partial_{x}+z \partial_{y}+\mu \partial_{z}
$$

with the square of the Lorentzian norm $\|\phi\|^{2}=z^{2}-2 \mu y$.

- Invariants of g^{t} are

$$
F_{2}(x, y, z)=z^{2}-2 \mu y \text { and } F_{3}(x, y, z)=z^{3}-3 \mu y z+3 \mu^{2} x .
$$

Constructing transversal foliations

- $\Psi(t): \mathbf{E} \rightarrow \mathbf{E}$ is generated by a vector field

$$
\phi:=y \partial_{x}+z \partial_{y}+\mu \partial_{z}
$$

with the square of the Lorentzian norm $\|\phi\|^{2}=z^{2}-2 \mu y$.

- Invariants of g^{t} are

$$
F_{2}(x, y, z)=z^{2}-2 \mu y \text { and } F_{3}(x, y, z)=z^{3}-3 \mu y z+3 \mu^{2} x .
$$

- We define $\Psi(t, s)=g^{t}(I(s))$ so that

$$
I(s)=\left(0, y_{0}, 0\right)+s(a, 0, c)=\left(s a, y_{0}, s c\right), \phi(I(s))=\left(y_{0}, s c, \mu\right) .
$$

ϕ is never parallel to $(a, 0, c)$ for $\frac{y_{0}}{\mu}<\frac{a}{c}$.

L Part 1: Proper action of a parabolic cyclic group
— Parabolic ruled surfaces and transverse foliations

Figure: Two parabolic ruled surfaces. See [3].

Two transverse foliations.

- Assume $0<\kappa_{1} \leq \kappa_{2}<\min \left\{1, \frac{3}{2 \mu}\right\}$.
- Let $f:(0,1) \rightarrow \mathbb{R}$ be a strictly increasing analytic function satisfying

$$
\kappa_{1} \mu \frac{r}{\sqrt{1-r^{2}}} \leq f(r) \leq \kappa_{2} \mu \frac{r}{\sqrt{1-r^{2}}}
$$

Two transverse foliations.

- Assume $0<\kappa_{1} \leq \kappa_{2}<\min \left\{1, \frac{3}{2 \mu}\right\}$.
- Let $f:(0,1) \rightarrow \mathbb{R}$ be a strictly increasing analytic function satisfying

$$
\kappa_{1} \mu \frac{r}{\sqrt{1-r^{2}}} \leq f(r) \leq \kappa_{2} \mu \frac{r}{\sqrt{1-r^{2}}}
$$

- Let \mathcal{H}_{f} be the space of compact segments u passing E with the following
- ∂u in the horodisk $\mathcal{E} \subset \mathrm{Cl}\left(\mathbb{S}_{+}\right)$containing $\left.(1,0,0)\right)$ in the boundary and in the antipodal set $\mathcal{E}_{-} \subset \mathrm{Cl}\left(\mathbb{S}_{-}\right)$,

Two transverse foliations.

- Assume $0<\kappa_{1} \leq \kappa_{2}<\min \left\{1, \frac{3}{2 \mu}\right\}$.
- Let $f:(0,1) \rightarrow \mathbb{R}$ be a strictly increasing analytic function satisfying

$$
\kappa_{1} \mu \frac{r}{\sqrt{1-r^{2}}} \leq f(r) \leq \kappa_{2} \mu \frac{r}{\sqrt{1-r^{2}}}
$$

- Let \mathcal{H}_{f} be the space of compact segments u passing E with the following
- ∂u in the horodisk $\mathcal{E} \subset \mathrm{Cl}\left(\mathbb{S}_{+}\right)$containing $\left.(1,0,0)\right)$ in the boundary and in the antipodal set $\mathcal{E}_{-} \subset \mathrm{Cl}\left(\mathbb{S}_{-}\right)$,
- $u \cap \mathrm{E}$ is equivalent under g^{t} for some t to $I(s)$ given by $I_{f, r}(s)=\left(s a, y_{f}(r), s c\right), s \in \mathbb{R}$, where

$$
y_{f}(r):=f(r), a=r, c=\sqrt{1-r^{2}}, r \in(0,1) .
$$

Two transverse foliations.

- Assume $0<\kappa_{1} \leq \kappa_{2}<\min \left\{1, \frac{3}{2 \mu}\right\}$.
- Let $f:(0,1) \rightarrow \mathbb{R}$ be a strictly increasing analytic function satisfying

$$
\kappa_{1} \mu \frac{r}{\sqrt{1-r^{2}}} \leq f(r) \leq \kappa_{2} \mu \frac{r}{\sqrt{1-r^{2}}}
$$

- Let \mathcal{H}_{f} be the space of compact segments u passing E with the following
- ∂u in the horodisk $\mathcal{E} \subset \mathrm{Cl}\left(\mathbb{S}_{+}\right)$containing $\left.(1,0,0)\right)$ in the boundary and in the antipodal set $\mathcal{E}_{-} \subset \mathrm{Cl}\left(\mathbb{S}_{-}\right)$,
- $u \cap \mathrm{E}$ is equivalent under g^{t} for some t to $I(s)$ given by $I_{f, r}(s)=\left(s a, y_{f}(r), s c\right), s \in \mathbb{R}$, where

$$
y_{f}(r):=f(r), a=r, c=\sqrt{1-r^{2}}, r \in(0,1) .
$$

- For $r \in(0,1)$, let $S_{f, r}$ denote the parabolic ruled surface given by

$$
\bigcup_{t, s \in \mathbb{R}} g^{t}\left(I_{f, r}(s)\right)
$$

Remark 2

Define $D_{f, r_{0}, t}$ for $t \in \mathbb{R}$ denote the surface

$$
\bigcup_{s \in \mathbb{R}, r \in\left[r_{0}, 1\right)} g^{t}\left(I_{f, r}(s)\right)
$$

Theorem 3.2
Let $r_{0} \in(0,1)$. Then the following hold:

Remark 2

Define $D_{f, r_{0}, t}$ for $t \in \mathbb{R}$ denote the surface

$$
\bigcup_{s \in \mathbb{R}, r \in\left[r_{0}, 1\right)} g^{t}\left(l_{f, r}(s)\right)
$$

Theorem 3.2

Let $r_{0} \in(0,1)$. Then the following hold:

- $S_{f, r}$ for $r \in\left[r_{0}, 1\right)$ are properly embedded leaves of a foliation $\tilde{\mathcal{S}}_{f, r_{0}}$ of the region $R_{f, r_{0}}$, closed in E , bounded by $S_{f, r_{0}}$ where g^{t} acts on.

Remark 2

Define $D_{f, r_{0}, t}$ for $t \in \mathbb{R}$ denote the surface

$$
\bigcup_{s \in \mathbb{R}, r \in\left[r_{0}, 1\right)} g^{t}\left(I_{f, r}(s)\right)
$$

Theorem 3.2

Let $r_{0} \in(0,1)$. Then the following hold:

- $S_{f, r}$ for $r \in\left[r_{0}, 1\right)$ are properly embedded leaves of a foliation $\tilde{\mathcal{S}}_{f, r_{0}}$ of the region $R_{f, r_{0}}$, closed in E , bounded by $S_{f, r_{0}}$ where g^{t} acts on.
- $\left\{D_{f, r_{0}, t}, t \in \mathbb{R}\right\}$ is the set of properly embedded leaves of a foliation $\tilde{\mathcal{D}}_{f, r_{0}}$ of $R_{f, r_{0}}$ by disks meeting $S_{f, r}$ for each $r, r_{0}<r<1$, transversally.
- $g^{t_{0}}\left(D_{f, r_{0}, t}\right)=D_{f, r_{0}, t+t_{0}}$.
$-D_{f, r_{0}, t^{\prime}} \cap D_{f, r_{0}, t}=\emptyset$ for $t, t^{\prime}, t \neq t^{\prime}$.
- $\operatorname{Cl}\left(D_{f, r_{0}, t}\right) \cap \mathbb{S}_{+}$is given as a geodesic ending at the parabolic fixed point of g.

Figure: Three reddish leaves of foliation $\mathcal{S}_{f, r_{0}}$ and three bluish leaves of $\mathcal{D}_{f, r_{0}}$ where $f(r)=\frac{3}{4} \frac{r}{\sqrt{1-r^{2}}}$ and $\mu=1$. See [4].

Tameness of $\mathrm{E} /\langle\gamma\rangle$

Definition 3.3

The quotient $R_{f, r_{0}} /\langle g\rangle$ is homeomorphic to a solid torus and is foliated by $\mathcal{S}_{f, r_{0}}$ induced by $\tilde{\mathcal{S}}_{f, r_{0}}$ and $\mathcal{D}_{f, r_{0}}$ induced by $\tilde{\mathcal{D}}_{f, r_{0}}$. The leaves of $\mathcal{S}_{f, r_{0}}$ are annuli of form $S_{f, r} /\langle g\rangle$, and the leaves of $\mathcal{D}_{f, r_{0}}$ are the embedded images of $D_{f, r_{0}, t}$ for $t \in \mathbb{R}$. The embedded image of $R_{f, r_{0}} /\langle g\rangle$ in E / Γ are foliated also.

Tameness of $\mathrm{E} /\langle\gamma\rangle$

Definition 3.3

The quotient $R_{f, r_{0}} /\langle g\rangle$ is homeomorphic to a solid torus and is foliated by $\mathcal{S}_{f, r_{0}}$ induced by $\tilde{\mathcal{S}}_{f, r_{0}}$ and $\mathcal{D}_{f, r_{0}}$ induced by $\tilde{\mathcal{D}}_{f, r_{0}}$. The leaves of $\mathcal{S}_{f, r_{0}}$ are annuli of form $S_{f, r} /\langle g\rangle$, and the leaves of $\mathcal{D}_{f, r_{0}}$ are the embedded images of $D_{f, r_{0}, t}$ for $t \in \mathbb{R}$. The embedded image of $R_{f, r_{0}} /\langle g\rangle$ in E / Γ are foliated also.

Theorem 3.4 (Parabolic Tameness)

Let γ be a parabolic affine transformation with a positive Charette-Drumm invariant. Then $\mathrm{E} /\langle\gamma\rangle$ is homeomorphic to a solid torus.

Tameness of $\mathrm{E} /\langle\gamma\rangle$

Definition 3.3

The quotient $R_{f, r_{0}} /\langle g\rangle$ is homeomorphic to a solid torus and is foliated by $\mathcal{S}_{f, r_{0}}$ induced by $\tilde{\mathcal{S}}_{f, r_{0}}$ and $\mathcal{D}_{f, r_{0}}$ induced by $\tilde{\mathcal{D}}_{f, r_{0}}$. The leaves of $\mathcal{S}_{f, r_{0}}$ are annuli of form $S_{f, r} /\langle g\rangle$, and the leaves of $\mathcal{D}_{f, r_{0}}$ are the embedded images of $D_{f, r_{0}, t}$ for $t \in \mathbb{R}$. The embedded image of $R_{f, r_{0}} /\langle g\rangle$ in E / Γ are foliated also.

Theorem 3.4 (Parabolic Tameness)

Let γ be a parabolic affine transformation with a positive Charette-Drumm invariant. Then $\mathrm{E} /\langle\gamma\rangle$ is homeomorphic to a solid torus.

Remark 3

We may use a γ-invariant foliation of E by crooked planes from the results of Charette-Kim [2]. We will give a topological proof later.

Anosov property of the geodesic flows

- Let Γ be as above with parabolics so that $M=\mathrm{E} / \Gamma$ is a Margulis space-time.
- Define \mathbf{V} as a quotient budle of $\tilde{\mathbf{V}}:=U \mathbb{S}_{+} \times \mathbb{R}^{2,1}$ under the diagonal action

$$
\gamma(x, \mathbf{v})=(D \gamma(x), \mathcal{L}(\gamma)(\mathbf{v})), x \in \mathbb{U}_{+}, \mathbf{v} \in \mathbb{R}^{2,1}, \gamma \in \Gamma .
$$

Anosov property of the geodesic flows

- Let Γ be as above with parabolics so that $M=\mathrm{E} / \Gamma$ is a Margulis space-time.
- Define \mathbf{V} as a quotient budle of $\tilde{\mathbf{V}}:=U \mathbb{S}_{+} \times \mathbb{R}^{2,1}$ under the diagonal action

$$
\gamma(x, \mathbf{v})=(D \gamma(x), \mathcal{L}(\gamma)(\mathbf{v})), x \in \mathbb{U}_{+}, \mathbf{v} \in \mathbb{R}^{2,1}, \gamma \in \Gamma
$$

- The vector bundle \mathbf{V} has a fiberwise Riemannian metric $\|\cdot\|_{\text {fiber }}$ where Γ acts as isometries.
- Define $\widetilde{\mathscr{V}}:=\mathbb{S}_{+} \times \mathbb{R}^{2,1}$ and the bundle $\mathscr{V}:=\widetilde{\mathscr{V}} / \Gamma$ with the action

$$
\gamma(x, \mathbf{v})=(D \gamma(x), \mathcal{L}(\gamma)(\mathbf{v})), x \in \mathbb{S}_{+}, \mathbf{v} \in \mathbb{R}^{2,1}, \gamma \in \Gamma .
$$

Anosov property of the geodesic flows

- Let Γ be as above with parabolics so that $M=\mathrm{E} / \Gamma$ is a Margulis space-time.
- Define \mathbf{V} as a quotient budle of $\tilde{\mathbf{V}}:=U \mathbb{S}_{+} \times \mathbb{R}^{2,1}$ under the diagonal action

$$
\gamma(x, \mathbf{v})=(D \gamma(x), \mathcal{L}(\gamma)(\mathbf{v})), x \in \mathbb{U}_{+}, \mathbf{v} \in \mathbb{R}^{2,1}, \gamma \in \Gamma .
$$

- The vector bundle \mathbf{V} has a fiberwise Riemannian metric $\|\cdot\|_{\text {fiber }}$ where Γ acts as isometries.
- Define $\widetilde{\mathscr{V}}:=\mathbb{S}_{+} \times \mathbb{R}^{2,1}$ and the bundle $\mathscr{V}:=\widetilde{\mathscr{V}} / \Gamma$ with the action

$$
\gamma(x, \mathbf{v})=(D \gamma(x), \mathcal{L}(\gamma)(\mathbf{v})), x \in \mathbb{S}_{+}, \mathbf{v} \in \mathbb{R}^{2,1}, \gamma \in \Gamma
$$

- Let $\Phi_{t}: U \mathbb{S}_{+} \rightarrow$ US ${ }_{+}$denote the geodesic flow on US \mathbb{S}_{+}defined by the hyperbolic metric.
- Let

$$
D \Phi_{t}: U \mathbb{S}_{+} \times \mathbb{R}^{2,1} \rightarrow U \mathbb{S}_{+} \times \mathbb{R}^{2,1}
$$

denote the flow acting trivially on the second factor and as the geodesic flow on US.

Decomposition of \mathbf{V}

Given $(((x)), \mathbf{u}) \in U \mathbb{S}_{+}$,

- Define $I(((\mathrm{x})), \mathbf{u}) \subset \mathbb{S}_{+}$to be the oriented complete geodesic passing through ((x)) in the direction of \mathbf{u}, and
- Define $\mathbf{v}_{+,((\mathbf{k}), \mathbf{j})}=1 / \sqrt{2} \mathbf{j}+1 / \sqrt{2} \mathbf{k}$ and $\mathbf{v}_{-,((\mathbf{k}), \mathbf{j})}=-1 / \sqrt{2} \mathbf{j}+1 / \sqrt{2} \mathbf{k}$ endpoints of the geodesic $I(((\mathbf{k})), \mathbf{j}) \subset \mathbb{S}_{+}$.

Decomposition of \mathbf{V}

Given $(((x)), \mathbf{u}) \in U \mathbb{S}_{+}$,

- Define $I(((\mathrm{x})), \mathbf{u}) \subset \mathbb{S}_{+}$to be the oriented complete geodesic passing through ((x)) in the direction of \mathbf{u}, and
- Define $\mathbf{v}_{+,((\mathbf{k}), \mathbf{j})}=1 / \sqrt{2} \mathbf{j}+1 / \sqrt{2} \mathbf{k}$ and $\mathbf{v}_{-,((\mathbf{k}), \mathbf{j})}=-1 / \sqrt{2} \mathbf{j}+1 / \sqrt{2} \mathbf{k}$ endpoints of the geodesic $l(((\mathbf{k})), \mathbf{j}) \subset \mathbb{S}_{+}$.
- Define $\mathbf{v}_{+,(((x)), \mathbf{u})}$ and $\mathbf{v}_{-,(((x)), \mathbf{u})}$ respectively to be the images of $\mathbf{v}_{+,((k)), j)}$ and $\mathbf{v}_{-,((\mathbf{k}), \mathrm{j})}$ under $\mathcal{L}(g)$ if

$$
\mathcal{L}(g)((\mathbf{k}))=\mathbf{x} \text { and } D g(\mathbf{j})=\mathbf{u} .
$$

We give as a basis

$$
\begin{equation*}
\left\{\mathbf{v}_{+,(((\mathrm{x}), \mathbf{u})}, \mathbf{v}_{-,(((\mathrm{x})), \mathbf{u})}, \mathbf{v}_{0,(((\mathrm{x})), \mathbf{u})}:=\frac{\mathbf{v}_{-,(((\mathrm{x})), \mathbf{u})} \times \mathbf{v}_{+,(((\mathrm{x})), \mathbf{u})}}{\left\|\mathbf{v}_{-,(((\mathrm{x})), \mathbf{u})} \times \mathbf{v}_{+,(((\mathrm{x})), \mathbf{u}) \|}\right\|}\right\} \tag{4.1}
\end{equation*}
$$

for the fiber over ((x)) where \times is the Lorentzian crossproduct.

- Let $\tilde{\mathbf{V}}_{0}$ be the 1-dimensional subbundle of $U \mathbb{S}_{+} \times \mathbb{R}^{2,1}$ containing $\mathbf{v}_{0,((\mathrm{x})), \mathbf{u})}$.
- Let $\tilde{\mathbf{V}}_{+}$be the 1 -dimensional subbundle of $\mathbb{U} \mathbb{S}_{+} \times \mathbb{R}^{2,1}$ containing $\mathbf{v}_{+,(((x)), \mathbf{u})}$.
- Let $\tilde{\mathbf{V}}_{-}$be the 1 -dimensional subbundle of $U \mathbb{S}_{+} \times \mathbb{R}^{2,1}$ containing $\mathbf{v}_{-,((\mathrm{(x})), \mathrm{u})}$.

Exponential stretching and contracting

Recall from Section 4.4 of [7] that the flow Φ_{t} acts on \mathbf{V}, and \mathbf{V} splits into three Φ_{t}-invariant line bundles $\mathbf{V}_{+}, \mathbf{V}_{-}$and \mathbf{V}_{0}, which are images of $\tilde{\mathbf{V}}_{+}, \tilde{\mathbf{V}}_{-}$and $\tilde{\mathbf{V}}_{0}$.

Exponential stretching and contracting

Recall from Section 4.4 of [7] that the flow Φ_{t} acts on \mathbf{V}, and \mathbf{V} splits into three Φ_{t}-invariant line bundles $\mathbf{V}_{+}, \mathbf{V}_{-}$and \mathbf{V}_{0}, which are images of $\tilde{\mathbf{V}}_{+}, \tilde{\mathbf{V}}_{-}$and $\tilde{\mathbf{V}}_{0}$.

Our choice of $\|\cdot\|_{\text {fiber }}$ shows that $D \Phi_{t}$ acts as uniform contraction in \mathbf{V}_{+}as $t \rightarrow \infty,-\infty$, i.e.,

$$
\begin{align*}
& \left\|D \Phi_{t}\left(\mathbf{v}_{+}\right)\right\|_{\text {fiber }} \cong \exp (-t)\left\|\mathbf{v}_{+}\right\|_{\text {fiber }} \text { for } \mathbf{v}_{+} \in \tilde{\mathbf{V}}_{+} \\
& \left\|D \Phi_{t}\left(\mathbf{v}_{-}\right)\right\|_{\text {fiber }} \cong \exp (t)\left\|\mathbf{v}_{-}\right\|_{\text {fiber }} \text { for } \mathbf{v}_{-} \in \tilde{\mathbf{v}}_{-} \\
& \left\|D \Phi_{t}\left(\mathbf{v}_{0}\right)\right\|_{\text {fiber }} \cong\left\|\mathbf{v}_{0}\right\|_{\text {fiber }} \text { for } \mathbf{v}_{0} \in \tilde{\mathbf{v}}_{0} \tag{4.2}
\end{align*}
$$

Digram for bundles

The frames on US + and on US. The circles bound horodisks covering the cusp neighborhoods below. The compact set \mathscr{K} is a some small compact set where the closed geodesics pass through.

de Rham isomorphism

- The \mathscr{V}-valued forms are differential forms with values in the fiber spaces of \mathscr{V}.
- The $\widetilde{\mathscr{V}}$-valued forms on \mathbb{S}_{+}are simply the $\mathbb{R}^{2,1}$-valued forms on \mathbb{S}_{+}.

de Rham isomorphism

- The \mathscr{V}-valued forms are differential forms with values in the fiber spaces of \mathscr{V}.
- The $\widetilde{\mathscr{V}}$-valued forms on \mathbb{S}_{+}are simply the $\mathbb{R}^{2,1}$-valued forms on \mathbb{S}_{+}.
- The group Γ acts by

$$
\begin{equation*}
\gamma^{*}(\mathbf{v} \otimes d x)=\mathcal{L}(\gamma)^{-1}(\mathbf{v}) \otimes d(x \circ \gamma), \gamma \in \Gamma \tag{4.3}
\end{equation*}
$$

- Write g as $g(x)=A_{g} x+\mathbf{b}_{g}, x \in \mathrm{E}$. Then $\mathbf{b}: \Gamma \rightarrow \mathbb{R}^{2,1}$ given by

$$
g \mapsto \mathbf{b}_{g} \text { for every } g
$$

is a cocycle representing an element of

$$
H^{1}\left(\pi_{1}(\mathrm{~S}), \mathbb{R}^{2,1}\right)=H^{1}(\mathrm{~S}, \mathscr{V})
$$

using the de Rham isomorphism.

de Rham isomorphism

- The \mathscr{V}-valued forms are differential forms with values in the fiber spaces of \mathscr{V}.
- The $\widetilde{\mathscr{V}}$-valued forms on \mathbb{S}_{+}are simply the $\mathbb{R}^{2,1}$-valued forms on \mathbb{S}_{+}.
- The group Γ acts by

$$
\begin{equation*}
\gamma^{*}(\mathbf{v} \otimes d x)=\mathcal{L}(\gamma)^{-1}(\mathbf{v}) \otimes d(x \circ \gamma), \gamma \in \Gamma \tag{4.3}
\end{equation*}
$$

- Write g as $g(x)=A_{g} x+\mathbf{b}_{g}, x \in \mathrm{E}$. Then $\mathbf{b}: \Gamma \rightarrow \mathbb{R}^{2,1}$ given by

$$
g \mapsto \mathbf{b}_{g} \text { for every } g
$$

is a cocycle representing an element of

$$
H^{1}\left(\pi_{1}(\mathrm{~S}), \mathbb{R}^{2,1}\right)=H^{1}(\mathrm{~S}, \mathscr{V})
$$

using the de Rham isomorphism.

- Let η denote the smooth \mathscr{V}-valued 1-form on S representing the cocycle \mathbf{b} in the de-Rham sense.

Estimating cocycle values \mathbf{b}_{g}

- We obtain

$$
\begin{equation*}
\mathbf{b}_{g}:=\int_{\left[0, t_{g}\right]} D \Phi\left(\left(x_{g}, \mathbf{u}_{g}\right), t\right)^{-1}\left(\tilde{\eta}\left(\frac{d \Phi\left(\left(x_{g}, \mathbf{u}_{g}\right), t\right)}{d t}\right)\right) d t \tag{4.4}
\end{equation*}
$$

where $\Phi\left(\left(x_{g}, \mathbf{u}_{g}\right),\left[0, t_{g}\right]\right)$ for $x_{g} \in \mathscr{K}$ and a unit vector \mathbf{u}_{g} at x_{g}, covers a closed curve representing g.

Estimating cocycle values \mathbf{b}_{g}

- We obtain

$$
\begin{equation*}
\mathbf{b}_{g}:=\int_{\left[0, t_{g}\right]} D \Phi\left(\left(x_{g}, \mathbf{u}_{g}\right), t\right)^{-1}\left(\tilde{\eta}\left(\frac{d \Phi\left(\left(x_{g}, \mathbf{u}_{g}\right), t\right)}{d t}\right)\right) d t \tag{4.4}
\end{equation*}
$$

where $\Phi\left(\left(x_{g}, \mathbf{u}_{g}\right),\left[0, t_{g}\right]\right)$ for $x_{g} \in \mathscr{K}$ and a unit vector \mathbf{u}_{g} at x_{g}, covers a closed curve representing g.

- Define

$$
\begin{equation*}
\tilde{\eta}_{\omega}(((\mathbb{x})), \mathbf{u})=\Pi_{\widetilde{\mathbf{v}}_{\omega}}(\tilde{\eta}(((\mathbb{x})), \mathbf{u})) \tag{4.5}
\end{equation*}
$$

where $\omega=+,-, 0$.

Estimating cocycle values \mathbf{b}_{g}

- We obtain

$$
\begin{equation*}
\mathbf{b}_{g}:=\int_{\left[0, t_{g}\right]} D \Phi\left(\left(x_{g}, \mathbf{u}_{g}\right), t\right)^{-1}\left(\tilde{\eta}\left(\frac{d \Phi\left(\left(x_{g}, \mathbf{u}_{g}\right), t\right)}{d t}\right)\right) d t \tag{4.4}
\end{equation*}
$$

where $\Phi\left(\left(x_{g}, \mathbf{u}_{g}\right),\left[0, t_{g}\right]\right)$ for $x_{g} \in \mathscr{K}$ and a unit vector \mathbf{u}_{g} at x_{g}, covers a closed curve representing g.

- Define

$$
\begin{equation*}
\tilde{\eta}_{\omega}(((\mathbb{x})), \mathbf{u})=\Pi_{\widetilde{\mathbf{v}}_{\omega}}(\tilde{\eta}(((\mathbb{x})), \mathbf{u})), \tag{4.5}
\end{equation*}
$$

where $\omega=+,-, 0$.

- We define invariants:

$$
\begin{equation*}
\mathbf{b}_{g, \omega}:=\Pi_{\mathbf{v}_{\omega}}\left(\mathbf{b}_{g}\right)=\int_{\left[0, t_{g}\right]} D \Phi\left(\left(x_{g}, \mathbf{u}_{g}\right), t\right)^{-1}\left(\tilde{\eta}_{\omega}\left(\frac{d \Phi\left(\left(x_{g}, \mathbf{u}_{g}\right), t\right)}{d t}\right)\right) d t \tag{4.6}
\end{equation*}
$$

- Let $\mathbf{H}_{j} \subset \mathbb{S}_{+}, j=1,2, \ldots$, denote the horodisks Let p_{j} denote the parabolic fixed point corresponding to \mathbf{H}_{j}.
- Let $\mathbf{H}_{j} \subset \mathbb{S}_{+}, j=1,2, \ldots$, denote the horodisks Let p_{j} denote the parabolic fixed point corresponding to \mathbf{H}_{j}.
- Each \mathbf{H}_{j} has coordinates x_{j}, y_{j} from the upper half-space model where p_{j} becomes ∞, and \mathbf{H}_{j} is given by $y_{j}>1$.
- We may choose the 1 -form η in the same cohomology class so that η^{\prime}, its lift to \mathbb{S}_{+}, is on any cusp neighborhood:

$$
\begin{equation*}
\mathbf{p}_{j} d x_{j} \text { where }\left(\left(\mathbf{p}_{j}\right)\right)=p_{j} \tag{4.7}
\end{equation*}
$$

- Let $\mathbf{H}_{j} \subset \mathbb{S}_{+}, j=1,2, \ldots$, denote the horodisks Let p_{j} denote the parabolic fixed point corresponding to \mathbf{H}_{j}.
- Each \mathbf{H}_{j} has coordinates x_{j}, y_{j} from the upper half-space model where p_{j} becomes ∞, and \mathbf{H}_{j} is given by $y_{j}>1$.
- We may choose the 1 -form η in the same cohomology class so that η^{\prime}, its lift to \mathbb{S}_{+}, is on any cusp neighborhood:

$$
\begin{equation*}
\mathbf{p}_{j} d x_{j} \text { where }\left(\left(\mathbf{p}_{j}\right)\right)=p_{j} . \tag{4.7}
\end{equation*}
$$

Theorem 4.1

Assume the positivity of Margulis and Charette-Drumm invariants, and $\mathcal{L}(\Gamma) \subset \mathrm{SO}(2,1)^{\circ}$. For every sequence $\left\{g_{i}\right\}$ with $I\left(g_{i}\right) \rightarrow \infty$ of elements of $\Gamma_{\mathscr{K}}$, the following hold:

- $\left\|\mathbf{b}_{g_{i}}\right\|_{E} \rightarrow \infty$.
- $\left\{\left\|\mathbf{b}_{g_{i}-}\right\|_{E}\right\}<C$ for a uniform constant $C>0$ independent of i.
- $\mathbf{d}\left(\left(\left(\mathbf{b}_{g_{i}}\right)\right), \mathrm{Cl}\left(\zeta_{a_{i}}\right)\right) \rightarrow 0$.

Corollary 4.2

Let M be a Margulis space-time E / Γ with holonomy group Γ with parabolics. Let $K \subset \mathrm{E}$ be a compact subset. Let $\mathrm{y} \in \mathbb{S}_{+}$, and let $\gamma_{i} \in \Gamma$ be a sequence such that $\gamma_{i}(y) \rightarrow y_{\infty}$ for $y_{\infty} \in \partial \mathbb{S}_{+}$. Then for every $\epsilon>0$, there exists I_{0} such that

$$
\gamma_{i}(K) \subset N_{\mathbf{d}, \epsilon}\left(\mathrm{Cl}\left(\zeta_{y_{\infty}}\right)\right) \text { for } i>I_{0} .
$$

Equivalently, any sequence $\left\{\gamma_{i}\left(z_{i}\right) \mid z_{i} \in K\right\}$ accumulates only to $\mathrm{Cl}\left(\zeta_{y_{\infty}}\right)$.

Exhaustions

Proposition 5.1 (Scott-Tucker)

Let E / Γ be a Margulis space-time with parabolics. Then E / Γ has a sequence of handlebodies

$$
M_{(1)} \subset M_{(2)} \subset \cdots \subset M_{(i)} \subset M_{(i+1)} \subset \cdots
$$

so that $M_{0}=\bigcup_{i=1}^{\infty} M_{(i)}$. They have the following properties:

- $\pi_{1}\left(M_{(1)}\right) \rightarrow \pi_{1}(M)$ is an isomorphism.
- The inverse image $\tilde{M}_{(i)}$ of $M_{(i)}$ in \tilde{M} is connected.
- $\pi_{1}\left(M_{(i)}\right) \rightarrow \pi_{1}(M)$ is surjective.
- for each compact subset $K \subset E / \Gamma$, there exists an integer I so that for $i>I$, $K \subset M_{(i)}$.

Boundedness in the parabolic sectors

Proposition 5.2

Let \hat{R}_{j} denote the subdomain of the parabolic region R_{j} bounded by two crooked-boundary disks D_{1} and D_{2} whose closures contains $\mathrm{Cl}\left(\zeta_{p_{j}}\right)$ for a parabolic fixed point p_{j} with the parabolic generator γ_{j} acting on R_{j}. Assume that $D_{i} \cap R_{j}, i=1,2$, is a ruled disk of the form of Theorem 3.2. Suppose that $D_{1} \cap R_{j}$ and $\gamma_{j}^{\delta}\left(D_{1}\right) \cap R_{j}$ for $\delta=1$ or -1 bounds a region in R_{j} containing \hat{R}_{j}.

Boundedness in the parabolic sectors

Proposition 5.2

Let \hat{R}_{j} denote the subdomain of the parabolic region R_{j} bounded by two crooked-boundary disks D_{1} and D_{2} whose closures contains $\mathrm{Cl}\left(\zeta_{p_{j}}\right)$ for a parabolic fixed point p_{j} with the parabolic generator γ_{j} acting on R_{j}. Assume that $D_{i} \cap R_{j}, i=1,2$, is a ruled disk of the form of Theorem 3.2. Suppose that $D_{1} \cap R_{j}$ and $\gamma_{j}^{\delta}\left(D_{1}\right) \cap R_{j}$ for $\delta=1$ or -1 bounds a region in R_{j} containing \hat{R}_{j}.

- Then $\hat{R}_{j} \cap \tilde{M}_{(J)}$ is also compact for each j.
- Furthermore, we may assume that

$$
\tilde{M}_{(J)} \cap R_{j}=\emptyset \text { for } j=1, \ldots, c_{0}
$$

by choosing R_{j} sufficiently far away.
-Finding the fundamental domain

Boundedness in the parabolic sectors

Proposition 5.2

Let \hat{R}_{j} denote the subdomain of the parabolic region R_{j} bounded by two crooked-boundary disks D_{1} and D_{2} whose closures contains $\mathrm{Cl}\left(\zeta_{p_{j}}\right)$ for a parabolic fixed point p_{j} with the parabolic generator γ_{j} acting on R_{j}. Assume that
$D_{i} \cap R_{j}, i=1,2$, is a ruled disk of the form of Theorem 3.2. Suppose that $D_{1} \cap R_{j}$ and $\gamma_{j}^{\delta}\left(D_{1}\right) \cap R_{j}$ for $\delta=1$ or -1 bounds a region in R_{j} containing \hat{R}_{j}.

- Then $\hat{R}_{j} \cap \tilde{M}_{(J)}$ is also compact for each j.
- Furthermore, we may assume that

$$
\tilde{M}_{(J)} \cap R_{j}=\emptyset \text { for } j=1, \ldots, c_{0}
$$

by choosing R_{j} sufficiently far away.

Proof

We use exhaustions and Corollary 4.2

Choices of the candidate fundamental domain \mathbf{F} bounded by almost crooked-disks \mathcal{D}_{j}

Now going to E / Γ with exhaustions $M_{(J)}$ as above.

Lemma 5.3

We can choose the mutually disjoint collection $\mathcal{D}_{j} \subset \mathrm{E}$ of properly embedded open disks and a tubular neighborhood $T_{j} \subset \mathrm{Cl}\left(\mathcal{D}_{j}\right)$ of $\partial \mathcal{D}_{j}$ for each $j, j=1, \ldots, 2 \mathrm{~g}$, that form a matching set $\left\{T_{j} \mid j=1, \ldots, 2 \mathrm{~g}\right\}$ for a collection \mathcal{S}_{0} of generators of Γ. Finally, $\partial \mathcal{D}_{j}=d_{j} \cup \mathcal{A}\left(d_{j}\right) \cup \bigcup_{x \in \partial d_{j}} \mathrm{Cl}\left(\zeta_{x}\right)$ for a lift d_{j} of \hat{d}_{j}.

Choices of the candidate fundamental domain \mathbf{F} bounded by almost crooked-disks \mathcal{D}_{j}

Now going to E / Γ with exhaustions $M_{(J)}$ as above.

Lemma 5.3

We can choose the mutually disjoint collection $\mathcal{D}_{j} \subset \mathrm{E}$ of properly embedded open disks and a tubular neighborhood $T_{j} \subset \mathrm{Cl}\left(\mathcal{D}_{j}\right)$ of $\partial \mathcal{D}_{j}$ for each $j, j=1, \ldots, 2 \mathrm{~g}$, that form a matching set $\left\{T_{j} \mid j=1, \ldots, 2 \mathrm{~g}\right\}$ for a collection \mathcal{S}_{0} of generators of Γ. Finally, $\partial \mathcal{D}_{j}=d_{j} \cup \mathcal{A}\left(d_{j}\right) \cup \bigcup_{x \in \partial d_{j}} \mathrm{Cl}\left(\zeta_{x}\right)$ for a lift d_{j} of \hat{d}_{j}.

- Here, of course, the disk collection is not a matching set under \mathcal{S}_{0}.
- $\mathcal{D}_{j}, j=1,2, \ldots, 2 \mathbf{g}$, bound a region \mathbf{F} closed in E with a compact closure in $\mathrm{Cl}(\mathrm{E})$, a finite-sided polytope in the topological sense.

Figures

(a) $\tilde{M}_{(J)}$ meeting with disks

(b) The fundamental domain bounded by disks

Tameness

Proposition 5.4 (Boundedness of $M_{(J)}$ in disks)

Let J be an arbitrary positive integer. For any crooked-boundary disk $D, D \cap \tilde{M}_{(J)}$ is compact, i.e., bounded, and has only finitely many components.

Proof.

Follows from Cor 4.2 and Prop. 5.2.

Tameness

Proposition 5.4 (Boundedness of $M_{(J)}$ in disks)

Let J be an arbitrary positive integer. For any crooked-boundary disk $D, D \cap \tilde{M}_{(J)}$ is compact, i.e., bounded, and has only finitely many components.

Proof.

Follows from Cor 4.2 and Prop. 5.2.

Definition 5.1

We modify T_{j} so that it is disjoint from the compact set in \mathcal{D}_{j}

$$
\bigcup_{(k, l) \neq(j, j+\mathbf{g})} \mathcal{D}_{j} \cap \gamma_{k}\left(\mathcal{D}_{l}\right)
$$

which we call an unintended set.

Tameness

Proposition 5.4 (Boundedness of $M_{(J)}$ in disks)

Let J be an arbitrary positive integer. For any crooked-boundary disk $D, D \cap \tilde{M}_{(J)}$ is compact, i.e., bounded, and has only finitely many components.

Proof.

Follows from Cor 4.2 and Prop. 5.2.

Definition 5.1

We modify T_{j} so that it is disjoint from the compact set in \mathcal{D}_{j}

$$
\bigcup_{(k, l) \neq(j, j+\mathbf{g})} \mathcal{D}_{j} \cap \gamma_{k}\left(\mathcal{D}_{l}\right)
$$

which we call an unintended set.

- Now we consider K_{0} be the set

$$
\bigcup_{j=1}^{2 \mathbf{g}} \bigcup_{(k, l) \neq(j, j+\mathbf{g})}\left(\mathcal{D}_{j} \cap \gamma_{k}\left(\mathcal{D}_{l}\right)\right)
$$

which is a compact set by the finiteness. We also add to K_{0} the following sets:

By Proposition 5.1, we choose $M_{(J)}$ in our exhaustion sequence of M so that

$$
\begin{equation*}
\tilde{M}_{(J)} \supset N_{\mathbf{d}, \epsilon}\left(K_{0}\right) \tag{5.1}
\end{equation*}
$$

for an ϵ-neighborhood, $\epsilon>0$.

By Proposition 5.1, we choose $M_{(J)}$ in our exhaustion sequence of M so that

$$
\begin{equation*}
\tilde{M}_{(J)} \supset N_{\mathbf{d}, \epsilon}\left(K_{0}\right) \tag{5.1}
\end{equation*}
$$

for an ϵ-neighborhood, $\epsilon>0$.
Lemma 5.5
$\tilde{M}_{(J)} \cap \mathcal{D}_{i}$ is a union of finitely many compact planar surfaces. Then $\bigcup_{i=1}^{2 g} \mathcal{D}_{i} \cap \partial \tilde{M}_{(J)}$ maps to a union of embedded simple closed circles in $\partial M_{(J)}$ bounding immersed planar surfaces in $M_{(J)}$.

By Proposition 5.1, we choose $M_{(J)}$ in our exhaustion sequence of M so that

$$
\begin{equation*}
\tilde{M}_{(J)} \supset N_{\mathbf{d}, \epsilon}\left(K_{0}\right) \tag{5.1}
\end{equation*}
$$

for an ϵ-neighborhood, $\epsilon>0$.
Lemma 5.5
$\tilde{M}_{(J)} \cap \mathcal{D}_{i}$ is a union of finitely many compact planar surfaces. Then $\bigcup_{i=1}^{2 g} \mathcal{D}_{i} \cap \partial \tilde{M}_{(J)}$ maps to a union of embedded simple closed circles in $\partial M_{(J)}$ bounding immersed planar surfaces in $M_{(J)}$.

Proof.

This follows since they form the boundary of a fundamental region of $\partial \tilde{M}_{(J)}$.

By Proposition 5.1, we choose $M_{(J)}$ in our exhaustion sequence of M so that

$$
\begin{equation*}
\tilde{M}_{(J)} \supset N_{\mathbf{d}, \epsilon}\left(K_{0}\right) \tag{5.1}
\end{equation*}
$$

for an ϵ-neighborhood, $\epsilon>0$.

Lemma 5.5

$\tilde{M}_{(J)} \cap \mathcal{D}_{i}$ is a union of finitely many compact planar surfaces. Then $\bigcup_{i=1}^{2 g} \mathcal{D}_{i} \cap \partial \tilde{M}_{(J)}$ maps to a union of embedded simple closed circles in $\partial M_{(J)}$ bounding immersed planar surfaces in $M_{(J)}$.

Proof.

This follows since they form the boundary of a fundamental region of $\partial \tilde{M}_{(J)}$.

Proposition 5.6 (Outside Tameness)

Let M denote E / Γ where $\mathcal{L}(\Gamma) \subset S O(2,1)^{\circ}$. Let \mathbf{F} be the domain bounded by $\bigcup_{i=1}^{2 \mathbf{g}} \mathcal{D}_{i}$. Then $\mathbf{F} \backslash \tilde{M}_{(J)}$ is a fundamental domain of $M \backslash M_{(J)}$, and M is tame. Furthermore, $\bigsqcup_{i=1}^{2 \mathrm{~g}} \mathcal{D}_{i} \backslash \tilde{M}_{(J)}$ embeds to a disjoint union of properly embedded surfaces in M.

- By Dehn's lemma applied to $M_{(J)}$, each component of $\mathcal{D}_{i} \cap \partial \tilde{M}_{(J)}$ bounds a disk mapping to a mutually disjoint collection of embedded disks in $M_{(J)}$.
- We modify \mathcal{D}_{i} by replacing each component of $\mathcal{D}_{i} \cap \tilde{M}_{(J)}$ with lifts of these disks.
- By Dehn's lemma applied to $M_{(J)}$, each component of $\mathcal{D}_{i} \cap \partial \tilde{M}_{(J)}$ bounds a disk mapping to a mutually disjoint collection of embedded disks in $M_{(J)}$.
- We modify \mathcal{D}_{i} by replacing each component of $\mathcal{D}_{i} \cap \tilde{M}_{(J)}$ with lifts of these disks.
- We define $A_{i}:=\bigcup_{x \in a_{i}} \zeta_{x}$, an open domain where ζ_{x} is the accordant semi-circle for x. We define

$$
\tilde{\Sigma}:=\mathbb{S}_{+} \cup \mathbb{S}_{-} \cup \bigcup_{i \in \mathcal{I}}\left(A_{i} \cup a_{i} \cup \mathcal{A}\left(a_{i}\right)\right)
$$

for the antipodal map \mathcal{A}.

- $\Sigma:=\tilde{\Sigma} / \Gamma$ is a real projective surface, i.e., the ideal $\mathbb{R P}^{2}$-surface.
- By Dehn's lemma applied to $M_{(J)}$, each component of $\mathcal{D}_{i} \cap \partial \tilde{M}_{(J)}$ bounds a disk mapping to a mutually disjoint collection of embedded disks in $M_{(J)}$.
- We modify \mathcal{D}_{i} by replacing each component of $\mathcal{D}_{i} \cap \tilde{M}_{(J)}$ with lifts of these disks.
- We define $A_{i}:=\bigcup_{x \in a_{i}} \zeta_{x}$, an open domain where ζ_{x} is the accordant semi-circle for x. We define

$$
\tilde{\Sigma}:=\mathbb{S}_{+} \cup \mathbb{S}_{-} \cup \bigcup_{i \in \mathcal{I}}\left(A_{i} \cup a_{i} \cup \mathcal{A}\left(a_{i}\right)\right)
$$

for the antipodal map \mathcal{A}.

- $\Sigma:=\tilde{\Sigma} / \Gamma$ is a real projective surface, i.e., the ideal $\mathbb{R P}^{2}$-surface.

Proposition 5.7

There exists a fundamental domain \mathcal{R} closed in E bounded by $\mathcal{D}_{j}, j=1, \ldots, 2 \mathbf{g}$. Moreover, $\mathrm{Cl}(\mathcal{R}) \cap(\mathrm{E} \cup \tilde{\Sigma})$ is the fundamental domain of a manifold $(\mathrm{E} \cup \tilde{\Sigma}) / \Gamma$ with boundary Σ. Here, \mathcal{R} and $\mathrm{Cl}(\mathcal{R})$ are 3-cells, and E / Γ is homeomorphic to the interior of a handlebody of genus \mathbf{g}.

Let $P=\bigcup_{\gamma \in \Gamma} \bigcup_{i=1, \ldots, m_{0}} \gamma\left(\mathcal{P}_{i}\right)$, and let $\mathcal{P}_{\mathcal{R}}:=\left(\mathcal{P}_{1} \cup \cdots \cup \mathcal{P}_{m_{0}}\right) \cap \mathcal{R}$.

Proposition 5.8

We can choose the sufficiently far away parabolic regions

$$
\mathcal{P}_{1}, \ldots, \mathcal{P}_{m_{0}}
$$

meeting \mathcal{R} nicely so that they are disjoint in E . Then the following hold:

Let $P=\bigcup_{\gamma \in \Gamma} \bigcup_{i=1, \ldots, m_{0}} \gamma\left(\mathcal{P}_{i}\right)$, and let $\mathcal{P}_{\mathcal{R}}:=\left(\mathcal{P}_{1} \cup \cdots \cup \mathcal{P}_{m_{0}}\right) \cap \mathcal{R}$.

Proposition 5.8

We can choose the sufficiently far away parabolic regions

$$
\mathcal{P}_{1}, \ldots, \mathcal{P}_{m_{0}}
$$

meeting \mathcal{R} nicely so that they are disjoint in E . Then the following hold:

- $\gamma\left(\mathcal{P}_{i}\right) \cap \mathcal{R} \neq \emptyset$ if and only if $\gamma\left(\mathcal{P}_{i}\right)$ meets \mathcal{R} nicely, and $\gamma\left(\mathcal{P}_{i}\right)=\mathcal{P}_{j}$ for some j.
- \mathcal{R} meets only $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m_{0}}$ among all images $\gamma\left(\mathcal{P}_{r}\right)$ for $\gamma \in \Gamma, r=1, \ldots, m_{0}$.

Let $P=\bigcup_{\gamma \in \Gamma} \bigcup_{i=1, \ldots, m_{0}} \gamma\left(\mathcal{P}_{i}\right)$, and let $\mathcal{P}_{\mathcal{R}}:=\left(\mathcal{P}_{1} \cup \cdots \cup \mathcal{P}_{m_{0}}\right) \cap \mathcal{R}$.

Proposition 5.8

We can choose the sufficiently far away parabolic regions

$$
\mathcal{P}_{1}, \ldots, \mathcal{P}_{m_{0}}
$$

meeting \mathcal{R} nicely so that they are disjoint in E . Then the following hold:

- $\gamma\left(\mathcal{P}_{i}\right) \cap \mathcal{R} \neq \emptyset$ if and only if $\gamma\left(\mathcal{P}_{i}\right)$ meets \mathcal{R} nicely, and $\gamma\left(\mathcal{P}_{i}\right)=\mathcal{P}_{j}$ for some j.
- \mathcal{R} meets only $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m_{0}}$ among all images $\gamma\left(\mathcal{P}_{r}\right)$ for $\gamma \in \Gamma, r=1, \ldots, m_{0}$.
- Moreover, for every pair $\gamma, \eta \in \Gamma$,

$$
\gamma\left(\mathcal{P}_{j}\right) \cap \eta\left(\mathcal{P}_{k}\right)=\emptyset \operatorname{or} \gamma\left(\mathcal{P}_{j}\right)=\eta\left(\mathcal{P}_{k}\right), j, k=1, \ldots, m_{0}
$$

- First, we recall our bordifying surface:

$$
\tilde{\Sigma}_{0}:=\mathbb{S}_{+} \cup \mathbb{S}_{-} \cup \bigcup_{i \in \mathcal{I}}\left(A_{i} \cup a_{i} \cup \mathcal{A}\left(a_{i}\right)\right)
$$

- $\Sigma:=\tilde{\Sigma}_{0} / \Gamma$ and $N:=(E \cup \tilde{\Sigma}) / \Gamma$.
- First, we recall our bordifying surface:

$$
\tilde{\Sigma}_{0}:=\mathbb{S}_{+} \cup \mathbb{S}_{-} \cup \bigcup_{i \in \mathcal{I}}\left(A_{i} \cup a_{i} \cup \mathcal{A}\left(a_{i}\right)\right)
$$

- $\Sigma:=\tilde{\Sigma}_{0} / \Gamma$ and $N:=(\mathrm{E} \cup \tilde{\Sigma}) / \Gamma$.
- We define P to be a union of mutually disjoint parabolic regions of form $\gamma\left(\mathcal{P}_{i}\right)$ for $\gamma \in \Gamma, i=1, \ldots, m_{0}$.
- We take the closure $\mathrm{Cl}(P)$ of P and take the relative interior P^{\prime} in the closed hemisphere \mathcal{H}.
- Let $\partial_{\mathrm{E}} P^{\prime}$ denote $\partial P \cap \mathrm{E}$. Then define $\tilde{N}^{\prime}:=\mathrm{E} \cup \tilde{\Sigma} \backslash P^{\prime}$.
- First, we recall our bordifying surface:

$$
\tilde{\Sigma}_{0}:=\mathbb{S}_{+} \cup \mathbb{S}_{-} \cup \bigcup_{i \in \mathcal{I}}\left(A_{i} \cup a_{i} \cup \mathcal{A}\left(a_{i}\right)\right)
$$

- $\Sigma:=\tilde{\Sigma}_{0} / \Gamma$ and $N:=(\mathrm{E} \cup \tilde{\Sigma}) / \Gamma$.
- We define P to be a union of mutually disjoint parabolic regions of form $\gamma\left(\mathcal{P}_{i}\right)$ for $\gamma \in \Gamma, i=1, \ldots, m_{0}$.
- We take the closure $\mathrm{Cl}(P)$ of P and take the relative interior P^{\prime} in the closed hemisphere \mathcal{H}.
- Let $\partial_{\mathrm{E}} P^{\prime}$ denote $\partial P \cap \mathrm{E}$. Then define $\tilde{N}^{\prime}:=\mathrm{E} \cup \tilde{\Sigma} \backslash P^{\prime}$.
- Γ acts properly discontinuously on \tilde{N}^{\prime}. Thus, $N^{\prime}:=\tilde{N}^{\prime} / \Gamma$ is a manifold.
- The manifold boundary ∂N^{\prime} of N^{\prime} is

$$
\left(\left(\tilde{\Sigma} \backslash P^{\prime}\right) \cup \partial_{\mathrm{E}} P^{\prime}\right) / \Gamma
$$

Define $P^{\prime \prime}=P^{\prime} / \Gamma$.

- Also, $\partial_{N}\left(P^{\prime \prime}\right):=\left(\partial_{E} P^{\prime}\right) / \Gamma$ is a union of a finite number of disjoint annuli. ∂N^{\prime} is homeomorphic to $\left(\Sigma \backslash P^{\prime \prime}\right) \cup \partial_{N} P^{\prime \prime}$.
- Recall that the union of facial-disks $\mathcal{D}_{i}, i=1, \ldots, 2 \mathbf{g}$, bounds the fundamental domain \mathcal{R} in \mathcal{H}.
- Also, $\partial_{N}\left(P^{\prime \prime}\right):=\left(\partial_{\mathrm{E}} P^{\prime}\right) / \Gamma$ is a union of a finite number of disjoint annuli. ∂N^{\prime} is homeomorphic to $\left(\Sigma \backslash P^{\prime \prime}\right) \cup \partial_{N} P^{\prime \prime}$.
- Recall that the union of facial-disks $\mathcal{D}_{i}, i=1, \ldots, 2 \mathbf{g}$, bounds the fundamental domain \mathcal{R} in \mathcal{H}.

$$
\bigcup_{i=1}^{2 \mathrm{~g}} \mathrm{Cl}\left(\mathcal{D}_{i}\right) \cap\left(\mathrm{E} \cup \tilde{\Sigma} \backslash P^{\prime}\right)
$$

bounds a fundamental domain

$$
\mathrm{Cl}(\mathcal{R}) \cap\left(\mathrm{E} \cup \tilde{\Sigma} \backslash P^{\prime}\right)
$$

- Also, $\partial_{N}\left(P^{\prime \prime}\right):=\left(\partial_{\mathrm{E}} P^{\prime}\right) / \Gamma$ is a union of a finite number of disjoint annuli. ∂N^{\prime} is homeomorphic to $\left(\Sigma \backslash P^{\prime \prime}\right) \cup \partial_{N} P^{\prime \prime}$.
- Recall that the union of facial-disks $\mathcal{D}_{i}, i=1, \ldots, 2 \mathbf{g}$, bounds the fundamental domain \mathcal{R} in \mathcal{H}.

$$
\bigcup_{i=1}^{2 \mathrm{~g}} \mathrm{Cl}\left(\mathcal{D}_{i}\right) \cap\left(\mathrm{E} \cup \tilde{\Sigma} \backslash P^{\prime}\right)
$$

bounds a fundamental domain

$$
\mathrm{Cl}(\mathcal{R}) \cap\left(\mathrm{E} \cup \tilde{\Sigma} \backslash P^{\prime}\right)
$$

- $N^{\prime}:=\left(\mathrm{E} \cup \tilde{\Sigma} \backslash P^{\prime}\right) / \Gamma$ is compact and is homeomorphic to a handlebody of genus g by Theorem 5.2 of Hempel [9].
- N deformation retracts to N^{\prime} as above since ϕ does not act on any component of P^{\prime}.

Bibliography I

Virginie Charette and Todd A. Drumm.
The Margulis invariant for parabolic transformations.
Proc. Amer. Math. Soc., 133(8):2439-2447, 2005.

Virginie Charette and Youngju Kim.
Foliations of Minkowski $2+1$ spacetime by crooked planes.
Internat. J. Math., 25(9):1450088, 25, 2014.

Suhyoung Choi. convergenceii.nb.
mathematica file at mathsci.kaist.ac.kr/~schoi/research.html.

Suhyoung Choi.
Foliationsv2.nb.
mathematica file at mathsci.kaist.ac.kr/~schoi/research.html.

Jeffrey Danciger, François Guéritaud, and Fanny Kassel.
Margulis spacetimes with parabolic elements.
in preparation.
.
William M. Goldman and François Labourie.
Geodesics in Margulis spacetimes.
Ergodic Theory Dynam. Systems, 32(2):643-651, 2012.

Bibliography II

William M. Goldman, François Labourie, and Gregory Margulis. Proper affine actions and geodesic flows of hyperbolic surfaces. Ann. of Math. (2), 170(3):1051-1083, 2009.

William M. Goldman, François Labourie, Gregory Margulis, and Yair Minsky. Complete flat Lorentz 3-manifolds and laminations on hyperbolic surfaces. in preparation, 2012.

John Hempel.
3-manifolds.
AMS Chelsea Publishing, Providence, RI, 2004.
Reprint of the 1976 original.

