Margulis space-time with parabolics

Suhyoung Choi (with Drumm, Goldman)

KAIST

July, 2018

Outline

Outline

Part 0: Introduction Main results Preliminary

Part 1: Proper action of a parabolic cyclic group

Proper parabolic actions Linear parabolic action Proper affine parabolic action Margulis and Charette-Drumm invariants Parabolic ruled surfaces and transverse foliations Tameness of the parabolic quotient spaces

Part 2: Geometric estimations and convergences

Goldman-Labourie-Margulis decomposition and estimations of cocycles Translations vectors and orbits of a proper affine deformations

・ロト ・ 日 ・ ・ 目 ・ ・ 目 ・ の へ ? 2/40

Part 3: Topology of 3-manifolds

Finding the fundamental domain Finiteness Tameness Relative compactification

Article: arXiv:1710.09162

• $Isom^+(E)$ the group of Lorentzian isometries on the flat Lorentzian space E.

- ▶ **Isom**⁺(E) the group of Lorentzian isometries on the flat Lorentzian space E.
- \blacktriangleright A discrete affine group Γ acting properly on E is either solvable or is free of rank $\geq 2.$
- Γ is a proper affine free group of rank ≥ 2 .

- ▶ Isom⁺(E) the group of Lorentzian isometries on the flat Lorentzian space E.
- \blacktriangleright A discrete affine group Γ acting properly on E is either solvable or is free of rank $\geq 2.$
- Γ is a proper affine free group of rank ≥ 2 .
- ► Assume for convenience $\mathcal{L}(\Gamma) \subset SO(2,1)^{\circ}$. Γ is a proper affine deformation.

- ▶ Isom⁺(E) the group of Lorentzian isometries on the flat Lorentzian space E.
- \blacktriangleright A discrete affine group Γ acting properly on E is either solvable or is free of rank $\geq 2.$
- Γ is a proper affine free group of rank ≥ 2 .
- ► Assume for convenience $\mathcal{L}(\Gamma) \subset SO(2,1)^{\circ}$. Γ is a proper affine deformation.
- Assume $\mathcal{L}(\Gamma)$ is a free group of rank $g, g \ge 2$ in SO(2, 1)^o acting freely and discretely on \mathbb{H}^2 .

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ り < ○ _{3/40}

Real projective structures

- A real projective structure on a manifold is given by a maximal atlas of charts to $\mathbb{R}P^n$, $n \ge 1$, with transition maps in $PGL(n + 1, \mathbb{R})$.
- Suppose that Σ is a real projective surface with holonomy in the image of $\mathcal{L}(\Gamma)$ in PSO(2, 1).

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 4/40

 A parabolic annulus in Σ is a properly embedded compact annulus with a parabolic holonomy.

Theorem 2.1

Suppose that Γ is a proper affine free group of rank $g,g\geq 2,$ with parabolics and linear parts in $SO(2,1)^o.$ Then

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ ○ ○ ○ 5/40

Theorem 2.1

Suppose that Γ is a proper affine free group of rank $g,g\geq 2,$ with parabolics and linear parts in SO(2,1)°. Then

• E/Γ is diffeomorphic to the interior of a compact handlebody of genus g.

Theorem 2.1

Suppose that Γ is a proper affine free group of rank $g,g\geq 2,$ with parabolics and linear parts in $SO(2,1)^o.$ Then

- E/Γ is diffeomorphic to the interior of a compact handlebody of genus g.
- Moreover, it is the interior of a real projective 3-manifold M with a totally geodesic real projective surface as boundary.

< □ ▶ < 酉 ▶ < ≧ ▶ < ≧ ▶ ≧ り ♀ 5/40

Theorem 2.1

Suppose that Γ is a proper affine free group of rank $g, g \ge 2$, with parabolics and linear parts in SO(2,1)°. Then

- E/Γ is diffeomorphic to the interior of a compact handlebody of genus g.
- Moreover, it is the interior of a real projective 3-manifold M with a totally geodesic real projective surface as boundary.
- M deformation retracts to a compact handlebody obtained by removing a union of finitely many solid-torus-end-neighborhoods.

Remark 1

The tameness part is also claimed by Danciger, Kassel, and Guéritaud [5]. Also, the tameness without parabolics was also solved by Choi-Goldman and this group. Crooked plane conjecture for nonparabolic case was solved by this group also.

We conjecture that the Margulis space-time with parabolics deforms immediately to one without parbolics. However, this requires result of Goldman-Labourie-Margulis-Minsky [8] which they have not written up.

- We conjecture that the Margulis space-time with parabolics deforms immediately to one without parbolics. However, this requires result of Goldman-Labourie-Margulis-Minsky [8] which they have not written up.
- The Crooked-plane conjecture is also claimed by DGK [5] and this should also imply the relative compactification.

< □ ▶ < 酉 ▶ < ≧ ▶ < ≧ ▶ ≧ り < ⊙ 6/40

- We conjecture that the Margulis space-time with parabolics deforms immediately to one without parbolics. However, this requires result of Goldman-Labourie-Margulis-Minsky [8] which they have not written up.
- The Crooked-plane conjecture is also claimed by DGK [5] and this should also imply the relative compactification.
- The main advantage of our approach is to see the 3-dimensional picture such as axes of transformations and globally hyperbolic subspaces bounded by Cauchy hypersurfaces. Also, relative compactification is easy to see.

- We conjecture that the Margulis space-time with parabolics deforms immediately to one without parbolics. However, this requires result of Goldman-Labourie-Margulis-Minsky [8] which they have not written up.
- The Crooked-plane conjecture is also claimed by DGK [5] and this should also imply the relative compactification.
- The main advantage of our approach is to see the 3-dimensional picture such as axes of transformations and globally hyperbolic subspaces bounded by Cauchy hypersurfaces. Also, relative compactification is easy to see.
- Also, these show that every flat complete Lorentz manifold of any dimension is tame. (Goldman-Labourie [6])

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 6/40

Define

 $\mathbb{S}(V):=V\setminus\{0\}/\sim_+ \ \text{where } {\bf x}\sim_+ {\bf y} \text{ iff } {\bf x}=s{\bf y} \text{ for } s\in\mathbb{R}_+.$

There is a double cover $\mathbb{S}(V) \to \mathbb{P}(V)$ with the antipodal map $\mathcal{A} : \mathbb{S}(V) \to \mathbb{S}(V)$. ((v)) denotes the equivalence class of v.

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E の Q @ 7/40

Define

$$\mathbb{S}(V):=V\setminus\{0\}/\sim_+ ext{ where } {\tt x}\sim_+{\tt y} ext{ iff } {\tt x}=s{\tt y} ext{ for } s\in\mathbb{R}_+.$$

There is a double cover $\mathbb{S}(V) \to \mathbb{P}(V)$ with the antipodal map $\mathcal{A} : \mathbb{S}(V) \to \mathbb{S}(V)$.

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E の Q @ 7/40

- $((\mathbf{v}))$ denotes the equivalence class of \mathbf{v} .
- ▶ $SL_{\pm}(V)$ acts on S(V) effectively and transitively, and is Aut(S(V)).

Define

$$\mathbb{S}(V):=V\setminus\{0\}/\sim_+ ext{ where } {\sf x}\sim_+ {\sf y} ext{ iff } {\sf x}=s{\sf y} ext{ for } s\in\mathbb{R}_+$$

There is a double cover $\mathbb{S}(V) \to \mathbb{P}(V)$ with the antipodal map $\mathcal{A} : \mathbb{S}(V) \to \mathbb{S}(V)$.

- $((\mathbf{v}))$ denotes the equivalence class of \mathbf{v} .
- ▶ $SL_{\pm}(V)$ acts on S(V) effectively and transitively, and is Aut(S(V)).
- E equals an open hemisphere in $\mathbb{S}^3 = \mathbb{S}(\mathbb{R}^4)$ by sending

 (x_1, x_2, x_3) to $((1, x_1, x_2, x_3))$ for $x_1, x_2, x_3 \in \mathbb{R}$.

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E の Q @ 7/40

Define

$$\mathbb{S}(V):=V\setminus\{0\}/\sim_+ ext{ where } {\sf x}\sim_+ {\sf y} ext{ iff } {\sf x}=s{\sf y} ext{ for } s\in\mathbb{R}_+$$

There is a double cover $\mathbb{S}(V) \to \mathbb{P}(V)$ with the antipodal map $\mathcal{A} : \mathbb{S}(V) \to \mathbb{S}(V)$.

- $((\mathbf{v}))$ denotes the equivalence class of \mathbf{v} .
- ▶ $SL_{\pm}(V)$ acts on S(V) effectively and transitively, and is Aut(S(V)).
- E equals an open hemisphere in $\mathbb{S}^3 = \mathbb{S}(\mathbb{R}^4)$ by sending

 (x_1, x_2, x_3) to $((1, x_1, x_2, x_3))$ for $x_1, x_2, x_3 \in \mathbb{R}$.

• $\partial E = \partial \mathcal{H}$ is a great 2-sphere \mathbb{S} given by $x_0 = 0$.

Define

$$\mathbb{S}(V):=V\setminus\{0\}/\sim_+ ext{ where } \mathbf{x}\sim_+ \mathbf{y} ext{ iff } \mathbf{x}=s\mathbf{y} ext{ for } s\in\mathbb{R}_+$$

There is a double cover $\mathbb{S}(V) \to \mathbb{P}(V)$ with the antipodal map $\mathcal{A} : \mathbb{S}(V) \to \mathbb{S}(V)$.

- $((\mathbf{v}))$ denotes the equivalence class of \mathbf{v} .
- ▶ $SL_{\pm}(V)$ acts on S(V) effectively and transitively, and is Aut(S(V)).
- E equals an open hemisphere in $\mathbb{S}^3 = \mathbb{S}(\mathbb{R}^4)$ by sending

 (x_1, x_2, x_3) to $((1, x_1, x_2, x_3))$ for $x_1, x_2, x_3 \in \mathbb{R}$.

- $\partial E = \partial \mathcal{H}$ is a great 2-sphere \mathbb{S} given by $x_0 = 0$.
- $\blacktriangleright \ \mathbb{S} = \mathbb{S}_+ \cup \mathbb{S}_= \cup \mathbb{S}_0.$
- S_+ is the Klein model of the hyperbolic plane.

Hausdorff convergences

- $\mathbb{S}^3 = \mathbb{S}(\mathbb{R}^4)$ has Fubini-Study metric **d**.
- ▶ The Hausdorff distance between two compact sets A and B is

$$\mathbf{d}_{H}(A,B) = \inf\{\delta | \delta > 0, B \subset N_{\mathbf{d},\delta}(A), A \subset N_{\mathbf{d},\delta}(B)\}.$$

< □ ▶ < @ ▶ < E ▶ < E ▶ E の < ↔ 8/40

Hausdorff convergences

- $\mathbb{S}^3 = \mathbb{S}(\mathbb{R}^4)$ has Fubini-Study metric **d**.
- ▶ The Hausdorff distance between two compact sets A and B is

$$\mathbf{d}_{H}(A,B) = \inf\{\delta | \delta > 0, B \subset N_{\mathbf{d},\delta}(A), A \subset N_{\mathbf{d},\delta}(B)\}.$$

Proposition 2.1 (see Benedetti-Petronio)

A sequence $\{A_i\}$ of compact sets converges to A in the Hausdorff topology if and only if

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ⁽²⁾ 8/40

- ▶ If there is a sequence $\{x_{i_i}\}$, $x_{i_i} \in A_{i_i}$, where $x_{i_i} \to x$ for $i_j \to \infty$, then $x \in A$.
- If $x \in A$, then there exists a sequence $\{x_i\}$, $x_i \in A_i$, such that $x_i \to x$.

Linear parabolic action

▶ A linear endomorphism $N: V \rightarrow V$ is a *skew-adjoint endomorphism* of V if

$$\mathsf{B}(N\mathbf{x},\mathbf{y}) = -\mathsf{B}(\mathbf{x},N\mathbf{y}).$$

(ロト (日) (三) (三) (三) (三) (3 - 1) (

▶ We classify skew-adjoint linear parabolic transformations.

Linear parabolic action

▶ A linear endomorphism $N: V \rightarrow V$ is a *skew-adjoint endomorphism* of V if

$$\mathsf{B}(N\mathbf{x},\mathbf{y})=-\mathsf{B}(\mathbf{x},N\mathbf{y}).$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 9/40

▶ We classify skew-adjoint linear parabolic transformations.

Corollary 3.1

Given a skew-adjoint endomorphism $N: V \to V$. Then there exists a coordinate system given by a, b, c satisfying

•
$$B(a, b) = 0 = B(b, c), B(a, c) = -1,$$

$$\triangleright$$
 c = N(b), b = N(a), and

b is a unit spacelike vector, $\mathbf{c} \in \operatorname{Ker} N$ is casual null, and \mathbf{a} is null.

Linear parabolic action

▶ A linear endomorphism $N: V \rightarrow V$ is a *skew-adjoint endomorphism* of V if

$$\mathsf{B}(N\mathbf{x},\mathbf{y})=-\mathsf{B}(\mathbf{x},N\mathbf{y}).$$

We classify skew-adjoint linear parabolic transformations.

Corollary 3.1

Given a skew-adjoint endomorphism $N: V \to V$. Then there exists a coordinate system given by a, b, c satisfying

►
$$B(a, b) = 0 = B(b, c), B(a, c) = -1,$$

•
$$\mathbf{c} = N(\mathbf{b}), \mathbf{b} = N(\mathbf{a}), and$$

- **b** is a unit spacelike vector, $\mathbf{c} \in \operatorname{Ker} N$ is casual null, and \mathbf{a} is null.
- ▶ The coordinate system is is canonical for a skew-symmetric nilpotent endomorphism N with respect to $B: V \times V \rightarrow \mathbb{R}$.

Margulis space-time with parabolics

Part 1: Proper action of a parabolic cyclic group

Proper parabolic actions

Proper affine parabolic action

• Let γ be an affine transformation with skew-adjoint parabolic linear part exp(N).

Proper parabolic actions

Proper affine parabolic action

- Let γ be an affine transformation with skew-adjoint parabolic linear part exp(N).
- \blacktriangleright Using the frame given as above and translating, γ lies in a one-parameter group

$$\Psi(t) := \exp t \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \mu \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & t & t^2/2 & \mu t^3/6 \\ 0 & 1 & t & \mu t^2/2 \\ 0 & 0 & 1 & \mu t \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(3.1)

・ロト <
つ ト <
ラ ト <
三 ト <
三 ト <
三 ・ つ へ (* 10/40)
</p>

for $\mu \in \mathbb{R}$.

Proper affine parabolic action

▶ This one-parameter subgroup $\{\Psi(t), t \in \mathbb{R}\}$ leaves invariant the two polynomials

$$F_2(x, y, z) = z^2 - 2\mu y$$
 and $F_3(x, y, z) = z^3 - 3\mu y z + 3\mu^2 x$, (3.2)

and the diffeomorphism $F(x, y, z) := (F_3(x, y, z), F_2(x, y, z), z)$

$$F \circ \Psi(t) \circ F^{-1}: (x, y, z) \to (x, y, z + \mu t).$$
(3.3)

Proper affine parabolic action

▶ This one-parameter subgroup $\{\Psi(t), t \in \mathbb{R}\}$ leaves invariant the two polynomials

$$F_2(x, y, z) = z^2 - 2\mu y$$
 and $F_3(x, y, z) = z^3 - 3\mu y z + 3\mu^2 x$, (3.2)

and the diffeomorphism $F(x, y, z) := (F_3(x, y, z), F_2(x, y, z), z)$

$$F \circ \Psi(t) \circ F^{-1}: (x, y, z) \to (x, y, z + \mu t).$$
(3.3)

All the orbits are twisted cubic curves.

Figure: A number of orbits drawn horizontally.

Margulis invariants

- Let Γ be a proper affine deformation of a free group.
- ▶ For non-parabolic $\gamma \in \Gamma \setminus {I}$, we define

Proper parabolic actions

Margulis invariants

- Let Γ be a proper affine deformation of a free group.
- For non-parabolic $\gamma \in \Gamma \setminus \{I\}$, we define
 - ▶ $\mathbf{x}_+(\gamma)$ as an eigenvector of $\mathcal{L}(\gamma)$ in the casual null directions with eigenvalue > 1,
 - **x**₋(γ) as an eigenvector of $\mathcal{L}(\gamma)$ in the casual null direction with eigenvalue < 1, and

Proper parabolic actions

Margulis invariants

- Let Γ be a proper affine deformation of a free group.
- For non-parabolic $\gamma \in \Gamma \setminus \{I\}$, we define
 - $x_+(\gamma)$ as an eigenvector of $\mathcal{L}(\gamma)$ in the casual null directions with eigenvalue > 1,
 - ▶ $\mathbf{x}_{-}(\gamma)$ as an eigenvector of $\mathcal{L}(\gamma)$ in the casual null direction with eigenvalue < 1, and
 - ▶ $\mathbf{x}_0(\gamma)$ as the spacelike positive eigenvector of $\mathcal{L}(\gamma)$ of eigenvalue 1 given by

$$\mathbf{x}_0(\gamma) = \frac{\mathbf{x}_-(\gamma) \times \mathbf{x}_+(\gamma)}{\|\mathbf{x}_-(\gamma) \times \mathbf{x}_+(\gamma)\|}$$

Proper parabolic actions

Margulis invariants

- Let Γ be a proper affine deformation of a free group.
- For non-parabolic $\gamma \in \Gamma \setminus \{I\}$, we define
 - ▶ $\mathbf{x}_+(\gamma)$ as an eigenvector of $\mathcal{L}(\gamma)$ in the casual null directions with eigenvalue > 1,
 - **x**₋(γ) as an eigenvector of $\mathcal{L}(\gamma)$ in the casual null direction with eigenvalue < 1, and
 - ▶ $\mathbf{x}_0(\gamma)$ as the spacelike positive eigenvector of $\mathcal{L}(\gamma)$ of eigenvalue 1 given by

$$\mathbf{x}_0(\gamma) = rac{\mathbf{x}_-(\gamma) imes \mathbf{x}_+(\gamma)}{\|\mathbf{x}_-(\gamma) imes \mathbf{x}_+(\gamma)\|}$$

The Margulis invariant is given

$$\alpha(\gamma) = \mathsf{B}(\gamma(x) - x, \mathbf{x}_0(\gamma)), x \in \mathsf{E}$$
(3.4)

independent of the choice of x.

Margulis space-time with parabolics

Part 1: Proper action of a parabolic cyclic group

Proper parabolic actions

Charette-Drumm invariants $cd(\cdot)$

Definition 3.1

An eigenvector ${\bf v}$ of eigenvalue 1 of parabolic transformation g is *positive* relative to g if

- $\{\mathbf{v}, \mathbf{x}, \mathcal{L}(g)\mathbf{x}\}$ is positively oriented when
- **x** is any null or timelike vector which is not an eigenvector of g.

Definition 3.2

Proper parabolic actions

Charette-Drumm invariants $cd(\cdot)$

Definition 3.1

An eigenvector ${\bf v}$ of eigenvalue 1 of parabolic transformation g is positive relative to g if

- $\{\mathbf{v}, \mathbf{x}, \mathcal{L}(g)\mathbf{x}\}$ is positively oriented when
- **x** is any null or timelike vector which is not an eigenvector of g.

Definition 3.2

- Let $F(\mathcal{L}(g))$ be the eigensubspace of $\mathcal{L}(g)$ of eigenvalue 1.
- Define $\tilde{\alpha}(\gamma) : F(\mathcal{L}(\gamma)) \to \mathbb{R}$ by

$$\tilde{\alpha}(\gamma)(\cdot) = \mathsf{B}(\gamma(x) - x, \cdot), x \in \mathsf{E}.$$

Proper parabolic actions

Charette-Drumm invariants $cd(\cdot)$

Definition 3.1

An eigenvector ${\bf v}$ of eigenvalue 1 of parabolic transformation g is positive relative to g if

- $\{\mathbf{v}, \mathbf{x}, \mathcal{L}(g)\mathbf{x}\}$ is positively oriented when
- **x** is any null or timelike vector which is not an eigenvector of g.

Definition 3.2

- ▶ Let *F*(*L*(*g*)) be the eigensubspace of *L*(*g*) of eigenvalue 1.
- Define $\tilde{\alpha}(\gamma) : F(\mathcal{L}(\gamma)) \to \mathbb{R}$ by

$$\tilde{\alpha}(\gamma)(\cdot) = \mathsf{B}(\gamma(x) - x, \cdot), x \in \mathsf{E}.$$

• $cd(\gamma) > 0$ if $\tilde{\alpha}(\gamma)$ is positive on positive eigenvectors in $F(\mathcal{L}(\gamma)) \setminus \{0\}$ ([1]).

Proper parabolic actions

Charette-Drumm invariants $cd(\cdot)$

Definition 3.1

An eigenvector ${\bf v}$ of eigenvalue 1 of parabolic transformation g is positive relative to g if

- $\{\mathbf{v}, \mathbf{x}, \mathcal{L}(g)\mathbf{x}\}$ is positively oriented when
- **x** is any null or timelike vector which is not an eigenvector of g.

Definition 3.2

- Let $F(\mathcal{L}(g))$ be the eigensubspace of $\mathcal{L}(g)$ of eigenvalue 1.
- Define $\tilde{\alpha}(\gamma) : F(\mathcal{L}(\gamma)) \to \mathbb{R}$ by

$$\tilde{\alpha}(\gamma)(\cdot) = \mathsf{B}(\gamma(x) - x, \cdot), x \in \mathsf{E}.$$

• $cd(\gamma) > 0$ if $\tilde{\alpha}(\gamma)$ is positive on positive eigenvectors in $F(\mathcal{L}(\gamma)) \setminus \{0\}$ ([1]).

Lemma 3.1

 $\mu > 0$ if and only if $\gamma = \Phi_1$ has a positive Charette-Drumm invariant. Implying $\langle \gamma \rangle$ acts properly on E.

Parabolic ruled surfaces and transverse foliations

Constructing transversal foliations

▶ $\Psi(t) : \mathbf{E} \to \mathbf{E}$ is generated by a vector field

$$\phi := y\partial_x + z\partial_y + \mu\partial_z$$

with the square of the Lorentzian norm $\|\phi\|^2 = z^2 - 2\mu y.$

Parabolic ruled surfaces and transverse foliations

Constructing transversal foliations

▶ $\Psi(t) : \mathbf{E} \rightarrow \mathbf{E}$ is generated by a vector field

$$\phi := y\partial_x + z\partial_y + \mu\partial_z$$

with the square of the Lorentzian norm $\|\phi\|^2 = z^2 - 2\mu y$.

Invariants of g^t are

$$F_2(x, y, z) = z^2 - 2\mu y$$
 and $F_3(x, y, z) = z^3 - 3\mu y z + 3\mu^2 x$.

Parabolic ruled surfaces and transverse foliations

Constructing transversal foliations

▶ $\Psi(t) : \mathbf{E} \rightarrow \mathbf{E}$ is generated by a vector field

$$\phi := y\partial_x + z\partial_y + \mu\partial_z$$

with the square of the Lorentzian norm $\|\phi\|^2=z^2-2\mu y.$

Invariants of g^t are

$$F_2(x, y, z) = z^2 - 2\mu y$$
 and $F_3(x, y, z) = z^3 - 3\mu y z + 3\mu^2 x$.

• We define $\Psi(t,s) = g^t(I(s))$ so that

$$l(s) = (0, y_0, 0) + s(a, 0, c) = (sa, y_0, sc), \phi(l(s)) = (y_0, sc, \mu).$$

 ϕ is never parallel to (a, 0, c) for $\frac{y_0}{\mu} < \frac{a}{c}$.

Margulis space-time with parabolics

Part 1: Proper action of a parabolic cyclic group

 ${{\textstyle \sqsubseteq}}$ Parabolic ruled surfaces and transverse foliations

Figure: Two parabolic ruled surfaces. See [3].

Parabolic ruled surfaces and transverse foliations

Two transverse foliations.

- Assume $0 < \kappa_1 \le \kappa_2 < \min\{1, \frac{3}{2\mu}\}.$
- Let $f:(0,1) \to \mathbb{R}$ be a strictly increasing analytic function satisfying

$$\kappa_1 \mu \frac{r}{\sqrt{1-r^2}} \leq f(r) \leq \kappa_2 \mu \frac{r}{\sqrt{1-r^2}}$$

Parabolic ruled surfaces and transverse foliations

Two transverse foliations.

- Assume $0 < \kappa_1 \le \kappa_2 < \min\{1, \frac{3}{2\mu}\}$.
- Let $f:(0,1) \to \mathbb{R}$ be a strictly increasing analytic function satisfying

$$\kappa_1 \mu \frac{r}{\sqrt{1-r^2}} \leq f(r) \leq \kappa_2 \mu \frac{r}{\sqrt{1-r^2}}$$

- Let \mathcal{H}_f be the space of compact segments u passing E with the following
 - ∂u in the horodisk E ⊂ Cl(S₊) containing ((1,0,0)) in the boundary and in the antipodal set E_− ⊂ Cl(S_−),

Parabolic ruled surfaces and transverse foliations

Two transverse foliations.

- Assume $0 < \kappa_1 \le \kappa_2 < \min\{1, \frac{3}{2\mu}\}.$
- Let $f:(0,1) \to \mathbb{R}$ be a strictly increasing analytic function satisfying

$$\kappa_1 \mu \frac{r}{\sqrt{1-r^2}} \leq f(r) \leq \kappa_2 \mu \frac{r}{\sqrt{1-r^2}}$$

- Let \mathcal{H}_f be the space of compact segments u passing E with the following
 - ∂u in the horodisk E ⊂ Cl(S₊) containing ((1,0,0)) in the boundary and in the antipodal set E_− ⊂ Cl(S_−),
 - $u \cap E$ is equivalent under g^t for some t to l(s) given by $l_{f,r}(s) = (sa, y_f(r), sc), s \in \mathbb{R}$, where

$$y_f(r) := f(r), a = r, c = \sqrt{1 - r^2}, r \in (0, 1).$$

Parabolic ruled surfaces and transverse foliations

Two transverse foliations.

- Assume $0 < \kappa_1 \le \kappa_2 < \min\{1, \frac{3}{2\mu}\}$.
- Let $f:(0,1) \to \mathbb{R}$ be a strictly increasing analytic function satisfying

$$\kappa_1 \mu rac{r}{\sqrt{1-r^2}} \leq f(r) \leq \kappa_2 \mu rac{r}{\sqrt{1-r^2}}$$

- Let \mathcal{H}_f be the space of compact segments u passing E with the following
 - ∂u in the horodisk E ⊂ Cl(S₊) containing ((1,0,0)) in the boundary and in the antipodal set E_− ⊂ Cl(S_−),
 - $u \cap E$ is equivalent under g^t for some t to l(s) given by $l_{f,r}(s) = (sa, y_f(r), sc), s \in \mathbb{R}$, where

$$y_f(r) := f(r), a = r, c = \sqrt{1 - r^2}, r \in (0, 1).$$

For $r \in (0, 1)$, let $S_{f,r}$ denote the parabolic ruled surface given by

$$\bigcup_{t,s\in\mathbb{R}}g^t(I_{f,r}(s)).$$

Parabolic ruled surfaces and transverse foliations

Remark 2

Define $D_{f,r_0,t}$ for $t \in \mathbb{R}$ denote the surface

$$\bigcup_{s\in\mathbb{R},r\in[r_0,1)}g^t(I_{f,r}(s)).$$

Theorem 3.2

Let $r_0 \in (0, 1)$. Then the following hold:

Parabolic ruled surfaces and transverse foliations

Remark 2

Define $D_{f,r_0,t}$ for $t \in \mathbb{R}$ denote the surface

$$\bigcup_{s\in\mathbb{R},r\in[r_0,1)}g^t(l_{f,r}(s)).$$

Theorem 3.2

Let $r_0 \in (0, 1)$. Then the following hold:

▶ $S_{f,r}$ for $r \in [r_0, 1)$ are properly embedded leaves of a foliation \tilde{S}_{f,r_0} of the region R_{f,r_0} , closed in E, bounded by S_{f,r_0} where g^t acts on.

Parabolic ruled surfaces and transverse foliations

Remark 2

Define $D_{f,r_0,t}$ for $t \in \mathbb{R}$ denote the surface

$$\bigcup_{s\in\mathbb{R},r\in[r_0,1)}g^t(l_{f,r}(s)).$$

Theorem 3.2

Let $r_0 \in (0, 1)$. Then the following hold:

- ▶ $S_{f,r}$ for $r \in [r_0, 1)$ are properly embedded leaves of a foliation \tilde{S}_{f,r_0} of the region R_{f,r_0} , closed in E, bounded by S_{f,r_0} where g^t acts on.
- ▶ { $D_{f,r_0,t}, t \in \mathbb{R}$ } is the set of properly embedded leaves of a foliation $\tilde{\mathcal{D}}_{f,r_0}$ of R_{f,r_0} by disks meeting $S_{f,r}$ for each $r, r_0 < r < 1$, transversally.

•
$$g^{t_0}(D_{f,r_0,t}) = D_{f,r_0,t+t_0}$$

•
$$D_{f,r_0,t'} \cap D_{f,r_0,t} = \emptyset$$
 for $t, t', t \neq t'$.

▶ $\operatorname{Cl}(D_{f,r_0,t}) \cap \mathbb{S}_+$ is given as a geodesic ending at the parabolic fixed point of g.

Margulis space-time with parabolics

Part 1: Proper action of a parabolic cyclic group

Parabolic ruled surfaces and transverse foliations

Figure: Three reddish leaves of foliation S_{f,r_0} and three bluish leaves of D_{f,r_0} where $f(r) = \frac{3}{4} \frac{r}{\sqrt{1-r^2}}$ and $\mu = 1$. See [4].

Tameness of the parabolic quotient spaces

Tameness of E/ $\langle \gamma \rangle$

Definition 3.3

The quotient $R_{f,r_0}/\langle g \rangle$ is homeomorphic to a solid torus and is foliated by S_{f,r_0} induced by \tilde{S}_{f,r_0} and \mathcal{D}_{f,r_0} induced by $\tilde{\mathcal{D}}_{f,r_0}$. The leaves of S_{f,r_0} are annuli of form $S_{f,r}/\langle g \rangle$, and the leaves of \mathcal{D}_{f,r_0} are the embedded images of $D_{f,r_0,t}$ for $t \in \mathbb{R}$. The embedded image of $R_{f,r_0}/\langle g \rangle$ in E/ Γ are foliated also.

Tameness of the parabolic quotient spaces

Tameness of $E/\langle \gamma \rangle$

Definition 3.3

The quotient $R_{f,r_0} / \langle g \rangle$ is homeomorphic to a solid torus and is foliated by S_{f,r_0} induced by \tilde{S}_{f,r_0} and \mathcal{D}_{f,r_0} induced by $\tilde{\mathcal{D}}_{f,r_0}$. The leaves of S_{f,r_0} are annuli of form $S_{f,r} / \langle g \rangle$, and the leaves of \mathcal{D}_{f,r_0} are the embedded images of $D_{f,r_0,t}$ for $t \in \mathbb{R}$. The embedded image of $R_{f,r_0} / \langle g \rangle$ in E/ Γ are foliated also.

Theorem 3.4 (Parabolic Tameness)

Let γ be a parabolic affine transformation with a positive Charette-Drumm invariant. Then $E/\langle \gamma \rangle$ is homeomorphic to a solid torus.

Tameness of the parabolic quotient spaces

Tameness of $E/\langle \gamma \rangle$

Definition 3.3

The quotient $R_{f,r_0} / \langle g \rangle$ is homeomorphic to a solid torus and is foliated by S_{f,r_0} induced by \tilde{S}_{f,r_0} and \mathcal{D}_{f,r_0} induced by $\tilde{\mathcal{D}}_{f,r_0}$. The leaves of S_{f,r_0} are annuli of form $S_{f,r} / \langle g \rangle$, and the leaves of \mathcal{D}_{f,r_0} are the embedded images of $D_{f,r_0,t}$ for $t \in \mathbb{R}$. The embedded image of $R_{f,r_0} / \langle g \rangle$ in E/ Γ are foliated also.

Theorem 3.4 (Parabolic Tameness)

Let γ be a parabolic affine transformation with a positive Charette-Drumm invariant. Then $E/\langle \gamma \rangle$ is homeomorphic to a solid torus.

Remark 3

We may use a γ -invariant foliation of E by crooked planes from the results of Charette-Kim [2]. We will give a topological proof later.

Goldman-Labourie-Margulis decomposition and estimations of cocycles

Anosov property of the geodesic flows

- Let Γ be as above with parabolics so that $M = E/\Gamma$ is a Margulis space-time.
- \blacktriangleright Define V as a quotient budle of $\tilde{V}:=U\mathbb{S}_+\times\mathbb{R}^{2,1}$ under the diagonal action

$$\gamma(x, \mathbf{v}) = (D\gamma(x), \mathcal{L}(\gamma)(\mathbf{v})), x \in \mathbb{US}_+, \mathbf{v} \in \mathbb{R}^{2,1}, \gamma \in \Gamma.$$

Goldman-Labourie-Margulis decomposition and estimations of cocycles

Anosov property of the geodesic flows

- ▶ Let Γ be as above with parabolics so that $M = E/\Gamma$ is a Margulis space-time.
- \blacktriangleright Define V as a quotient budle of $\tilde{V}:=U\mathbb{S}_+\times\mathbb{R}^{2,1}$ under the diagonal action

$$\gamma(x, \mathbf{v}) = (D\gamma(x), \mathcal{L}(\gamma)(\mathbf{v})), x \in \mathbb{US}_+, \mathbf{v} \in \mathbb{R}^{2,1}, \gamma \in \Gamma.$$

- \blacktriangleright The vector bundle \bm{V} has a fiberwise Riemannian metric $\left\|\cdot\right\|_{\rm fiber}$ where Γ acts as isometries.
- ▶ Define $\widetilde{\mathscr{V}} := \mathbb{S}_+ \times \mathbb{R}^{2,1}$ and the bundle $\mathscr{V} := \widetilde{\mathscr{V}} / \Gamma$ with the action

$$\gamma(x, \mathbf{v}) = (D\gamma(x), \mathcal{L}(\gamma)(\mathbf{v})), x \in \mathbb{S}_+, \mathbf{v} \in \mathbb{R}^{2,1}, \gamma \in \Gamma.$$

Goldman-Labourie-Margulis decomposition and estimations of cocycles

Anosov property of the geodesic flows

- Let Γ be as above with parabolics so that $M = E/\Gamma$ is a Margulis space-time.
- \blacktriangleright Define V as a quotient budle of $\tilde{V}:=U\mathbb{S}_+\times\mathbb{R}^{2,1}$ under the diagonal action

$$\gamma(x, \mathbf{v}) = (D\gamma(x), \mathcal{L}(\gamma)(\mathbf{v})), x \in U\mathbb{S}_+, \mathbf{v} \in \mathbb{R}^{2,1}, \gamma \in \Gamma.$$

- \blacktriangleright The vector bundle \bm{V} has a fiberwise Riemannian metric $\|\cdot\|_{\rm fiber}$ where Γ acts as isometries.
- ▶ Define $\widetilde{\mathscr{V}} := \mathbb{S}_+ \times \mathbb{R}^{2,1}$ and the bundle $\mathscr{V} := \widetilde{\mathscr{V}} / \Gamma$ with the action

$$\gamma(x, \mathbf{v}) = (D\gamma(x), \mathcal{L}(\gamma)(\mathbf{v})), x \in \mathbb{S}_+, \mathbf{v} \in \mathbb{R}^{2,1}, \gamma \in \Gamma.$$

- ▶ Let $\Phi_t : US_+ \to US_+$ denote the geodesic flow on US_+ defined by the hyperbolic metric.
- Let

$$D\Phi_t: U\mathbb{S}_+ \times \mathbb{R}^{2,1} \to U\mathbb{S}_+ \times \mathbb{R}^{2,1}$$

denote the flow acting trivially on the second factor and as the geodesic flow on $U\mathbb{S}_+.$

Goldman-Labourie-Margulis decomposition and estimations of cocycles

Decomposition of ${\bf V}$

Given $((\mathbf{x}), \mathbf{u}) \in US_+$,

- Define /(((x)), u) ⊂ S₊ to be the oriented complete geodesic passing through ((x)) in the direction of u, and
- ▶ Define $\mathbf{v}_{+,(\{k\},j)} = 1/\sqrt{2}\mathbf{j} + 1/\sqrt{2}\mathbf{k}$ and $\mathbf{v}_{-,(\{k\},j)} = -1/\sqrt{2}\mathbf{j} + 1/\sqrt{2}\mathbf{k}$ endpoints of the geodesic $I((\{k\}), \mathbf{j}) \subset \mathbb{S}_+$.

Goldman-Labourie-Margulis decomposition and estimations of cocycles

Decomposition of V

Given $((\mathbf{x}), \mathbf{u}) \in US_+$,

- ▶ Define $I(((x)), u) \subset S_+$ to be the oriented complete geodesic passing through ((x)) in the direction of u, and
- ▶ Define $\mathbf{v}_{+,(\mathbf{(k)},\mathbf{j})} = 1/\sqrt{2}\mathbf{j} + 1/\sqrt{2}\mathbf{k}$ and $\mathbf{v}_{-,(\mathbf{(k)},\mathbf{j})} = -1/\sqrt{2}\mathbf{j} + 1/\sqrt{2}\mathbf{k}$ endpoints of the geodesic /(((\mathbf{k})), \mathbf{j}) ⊂ S₊.
- ▶ Define $\mathbf{v}_{+,([x]),u)}$ and $\mathbf{v}_{-,([x]),u)}$ respectively to be the images of $\mathbf{v}_{+,([k],j)}$ and $\mathbf{v}_{-,([k],j)}$ under $\mathcal{L}(g)$ if

$$\mathcal{L}(g)((\mathbf{k})) = \mathbf{x}$$
 and $Dg(\mathbf{j}) = \mathbf{u}$.

Goldman-Labourie-Margulis decomposition and estimations of cocycles

We give as a basis

$$\left\{ \mathbf{v}_{+,((\mathbf{x}),\mathbf{u})}, \mathbf{v}_{-,((\mathbf{x}),\mathbf{u})}, \mathbf{v}_{0,((\mathbf{x}),\mathbf{u})} \coloneqq \frac{\mathbf{v}_{-,((\mathbf{x}),\mathbf{u})} \times \mathbf{v}_{+,((\mathbf{x}),\mathbf{u})}}{\left\| \mathbf{v}_{-,((\mathbf{x}),\mathbf{u})} \times \mathbf{v}_{+,((\mathbf{x}),\mathbf{u})} \right\|} \right\}$$
(4.1)

for the fiber over ((x)) where \times is the Lorentzian crossproduct.

- ▶ Let \tilde{V}_0 be the 1-dimensional subbundle of US₊ × $\mathbb{R}^{2,1}$ containing $v_{0,((x),u)}$.
- ▶ Let \tilde{V}_+ be the 1-dimensional subbundle of US₊ × $\mathbb{R}^{2,1}$ containing $v_{+,((x),u)}$.
- ▶ Let \tilde{V}_{-} be the 1-dimensional subbundle of US₊ × $\mathbb{R}^{2,1}$ containing $v_{-,((x),u)}$.

Goldman-Labourie-Margulis decomposition and estimations of cocycles

Exponential stretching and contracting

Recall from Section 4.4 of [7] that the flow Φ_t acts on V, and V splits into three Φ_t -invariant line bundles V_+ , V_- and V_0 , which are images of \tilde{V}_+ , \tilde{V}_- and \tilde{V}_0 .

Goldman-Labourie-Margulis decomposition and estimations of cocycles

Exponential stretching and contracting

Recall from Section 4.4 of [7] that the flow Φ_t acts on V, and V splits into three Φ_t -invariant line bundles V_+ , V_- and V_0 , which are images of \tilde{V}_+ , \tilde{V}_- and \tilde{V}_0 .

Our choice of $\|\cdot\|_{\text{fiber}}$ shows that $D\Phi_t$ acts as uniform contraction in \mathbf{V}_+ as $t \to \infty, -\infty$, i.e.,

$$\begin{split} \|D\Phi_{t}(\mathbf{v}_{+})\|_{\text{fiber}} &\cong \exp(-t) \|\mathbf{v}_{+}\|_{\text{fiber}} \text{ for } \mathbf{v}_{+} \in \tilde{\mathbf{V}}_{+}, \\ \|D\Phi_{t}(\mathbf{v}_{-})\|_{\text{fiber}} &\cong \exp(t) \|\mathbf{v}_{-}\|_{\text{fiber}} \text{ for } \mathbf{v}_{-} \in \tilde{\mathbf{V}}_{-}, \\ \|D\Phi_{t}(\mathbf{v}_{0})\|_{\text{fiber}} &\cong \|\mathbf{v}_{0}\|_{\text{fiber}} \text{ for } \mathbf{v}_{0} \in \tilde{\mathbf{V}}_{0}. \end{split}$$
(4.2)

Margulis space-time with parabolics

Part 2: Geometric estimations and convergences

Goldman-Labourie-Margulis decomposition and estimations of cocycles

Digram for bundles

The frames on US₊ and on US. The circles bound horodisks covering the cusp neighborhoods below. The compact set $\mathscr K$ is a some small compact set where the closed geodesics pass through.

Translations vectors and orbits of a proper affine deformations

de Rham isomorphism

- \blacktriangleright The $\mathscr V\text{-valued}$ forms are differential forms with values in the fiber spaces of $\mathscr V.$
- The $\widetilde{\mathscr{V}}$ -valued forms on \mathbb{S}_+ are simply the $\mathbb{R}^{2,1}$ -valued forms on \mathbb{S}_+ .

L-Translations vectors and orbits of a proper affine deformations

de Rham isomorphism

- The \mathscr{V} -valued forms are differential forms with values in the fiber spaces of \mathscr{V} .
- The $\widetilde{\mathscr{V}}$ -valued forms on \mathbb{S}_+ are simply the $\mathbb{R}^{2,1}$ -valued forms on \mathbb{S}_+ .
- The group Γ acts by

$$\gamma^*(\mathbf{v}\otimes d\mathbf{x}) = \mathcal{L}(\gamma)^{-1}(\mathbf{v})\otimes d(\mathbf{x}\circ\gamma), \gamma\in\Gamma.$$
(4.3)

▶ Write g as $g(x) = A_g x + \mathbf{b}_g$, $x \in \mathsf{E}$. Then $\mathbf{b} : \Gamma \to \mathbb{R}^{2,1}$ given by

$$g \mapsto \mathbf{b}_g$$
 for every g

is a cocycle representing an element of

$$H^1(\pi_1(\mathsf{S}),\mathbb{R}^{2,1})=H^1(\mathsf{S},\mathscr{V})$$

using the de Rham isomorphism.

Translations vectors and orbits of a proper affine deformations

de Rham isomorphism

- The \mathscr{V} -valued forms are differential forms with values in the fiber spaces of \mathscr{V} .
- The $\widetilde{\mathscr{V}}$ -valued forms on \mathbb{S}_+ are simply the $\mathbb{R}^{2,1}$ -valued forms on \mathbb{S}_+ .
- The group Γ acts by

$$\gamma^*(\mathbf{v}\otimes d\mathbf{x}) = \mathcal{L}(\gamma)^{-1}(\mathbf{v})\otimes d(\mathbf{x}\circ\gamma), \gamma\in\Gamma.$$
(4.3)

▶ Write g as $g(x) = A_g x + \mathbf{b}_g$, $x \in \mathsf{E}$. Then $\mathbf{b} : \mathsf{\Gamma} \to \mathbb{R}^{2,1}$ given by

$$g \mapsto \mathbf{b}_g$$
 for every g

is a cocycle representing an element of

$$H^1(\pi_1(\mathsf{S}),\mathbb{R}^{2,1})=H^1(\mathsf{S},\mathscr{V})$$

using the de Rham isomorphism.

 \blacktriangleright Let η denote the smooth $\mathscr V\text{-valued}$ 1-form on S representing the cocycle ${\bf b}$ in the de-Rham sense.

L-Translations vectors and orbits of a proper affine deformations

Estimating cocycle values \mathbf{b}_g

We obtain

$$\mathbf{b}_{g} := \int_{[0, t_{g}]} D\Phi((x_{g}, \mathbf{u}_{g}), t)^{-1} \left(\tilde{\eta} \left(\frac{d\Phi((x_{g}, \mathbf{u}_{g}), t)}{dt} \right) \right) dt$$
(4.4)

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 26/40

where $\Phi((x_g, \mathbf{u}_g), [0, t_g])$ for $x_g \in \mathcal{K}$ and a unit vector \mathbf{u}_g at x_g , covers a closed curve representing g.

L-Translations vectors and orbits of a proper affine deformations

Estimating cocycle values \mathbf{b}_g

We obtain

$$\mathbf{b}_g := \int_{[0,t_g]} D\Phi((x_g, \mathbf{u}_g), t)^{-1} \left(\tilde{\eta} \left(\frac{d\Phi((x_g, \mathbf{u}_g), t)}{dt} \right) \right) dt$$
(4.4)

where $\Phi((x_g, \mathbf{u}_g), [0, t_g])$ for $x_g \in \mathcal{K}$ and a unit vector \mathbf{u}_g at x_g , covers a closed curve representing g.

Define

$$\tilde{\eta}_{\omega}(((x)), \mathbf{u}) = \Pi_{\widetilde{\mathbf{V}}_{\omega}}(\tilde{\eta}(((x)), \mathbf{u})),$$
(4.5)

<□ ▶ < @ ▶ < E ▶ < E ▶ E りへで 26/40

where $\omega = +, -, 0$.

L-Translations vectors and orbits of a proper affine deformations

Estimating cocycle values \mathbf{b}_g

We obtain

$$\mathbf{b}_g := \int_{[0,t_g]} D\Phi((x_g, \mathbf{u}_g), t)^{-1} \left(\tilde{\eta} \left(\frac{d\Phi((x_g, \mathbf{u}_g), t)}{dt} \right) \right) dt$$
(4.4)

where $\Phi((x_g, \mathbf{u}_g), [0, t_g])$ for $x_g \in \mathcal{K}$ and a unit vector \mathbf{u}_g at x_g , covers a closed curve representing g.

Define

$$\tilde{\eta}_{\omega}(((\mathbb{x})), \mathbf{u}) = \prod_{\widetilde{\mathbf{V}}_{\omega}} (\tilde{\eta}(((\mathbb{x})), \mathbf{u})),$$
(4.5)

where $\omega = +, -, 0$.

We define invariants:

$$\mathbf{b}_{g,\omega} := \Pi_{\widetilde{\mathbf{V}}_{\omega}}(\mathbf{b}_{g}) = \int_{[0,t_{g}]} D\Phi((x_{g},\mathbf{u}_{g}),t)^{-1} \left(\tilde{\eta}_{\omega} \left(\frac{d\Phi((x_{g},\mathbf{u}_{g}),t)}{dt} \right) \right) dt, \quad (4.6)$$

Translations vectors and orbits of a proper affine deformations

▶ Let $\mathbf{H}_j \subset S_+, j = 1, 2, ...$, denote the horodisks Let p_j denote the parabolic fixed point corresponding to \mathbf{H}_j .

Translations vectors and orbits of a proper affine deformations

- ▶ Let $\mathbf{H}_j \subset S_+, j = 1, 2, ...$, denote the horodisks Let p_j denote the parabolic fixed point corresponding to \mathbf{H}_j .
- Each **H**_j has coordinates x_j, y_j from the upper half-space model where p_j becomes ∞ , and **H**_j is given by $y_j > 1$.
- We may choose the 1-form η in the same cohomology class so that η' , its lift to \mathbb{S}_+ , is on any cusp neighborhood:

$$\mathbf{p}_j dx_j \text{ where } (\!(\mathbf{p}_j)\!) = p_j. \tag{4.7}$$

Translations vectors and orbits of a proper affine deformations

- ▶ Let $\mathbf{H}_j \subset S_+, j = 1, 2, ...$, denote the horodisks Let p_j denote the parabolic fixed point corresponding to \mathbf{H}_j .
- Each **H**_j has coordinates x_j, y_j from the upper half-space model where p_j becomes ∞ , and **H**_j is given by $y_j > 1$.
- We may choose the 1-form η in the same cohomology class so that η' , its lift to \mathbb{S}_+ , is on any cusp neighborhood:

$$\mathbf{p}_j dx_j \text{ where } (\!(\mathbf{p}_j)\!) = p_j. \tag{4.7}$$

Theorem 4.1

Assume the positivity of Margulis and Charette-Drumm invariants, and $\mathcal{L}(\Gamma) \subset SO(2,1)^{\circ}$. For every sequence $\{g_i\}$ with $l(g_i) \to \infty$ of elements of $\Gamma_{\mathscr{K}}$, the following hold:

- $\blacktriangleright \|\mathbf{b}_{g_i}\|_E \to \infty.$
- $\{\|\mathbf{b}_{g_i}-\|_E\} < C$ for a uniform constant C > 0 independent of *i*.
- ► $\mathbf{d}(((\mathbf{b}_{g_i})), \operatorname{Cl}(\zeta_{a_{g_i}})) \to 0.$

Margulis space-time with parabolics

Part 2: Geometric estimations and convergences

Translations vectors and orbits of a proper affine deformations

Corollary 4.2

Let M be a Margulis space-time E/Γ with holonomy group Γ with parabolics. Let $K \subset E$ be a compact subset. Let $y \in \mathbb{S}_+$, and let $\gamma_i \in \Gamma$ be a sequence such that $\gamma_i(y) \to y_\infty$ for $y_\infty \in \partial \mathbb{S}_+$. Then for every $\epsilon > 0$, there exists I_0 such that

 $\gamma_i(K) \subset N_{\mathbf{d},\epsilon}(\operatorname{Cl}(\zeta_{y_{\infty}}))$ for $i > I_0$.

Equivalently, any sequence $\{\gamma_i(z_i)|z_i \in K\}$ accumulates only to $Cl(\zeta_{y_{\infty}})$.

Exhaustions

Proposition 5.1 (Scott-Tucker)

Let E/Γ be a Margulis space-time with parabolics. Then E/Γ has a sequence of handlebodies

$$M_{(1)} \subset M_{(2)} \subset \cdots \subset M_{(i)} \subset M_{(i+1)} \subset \cdots$$

so that $M_0 = \bigcup_{i=1}^{\infty} M_{(i)}$. They have the following properties:

- $\pi_1(M_{(1)}) \rightarrow \pi_1(M)$ is an isomorphism.
- The inverse image M
 (i) of M(i) in M
 [˜] is connected.
- $\pi_1(M_{(i)}) \rightarrow \pi_1(M)$ is surjective.
- ► for each compact subset $K \subset E/\Gamma$, there exists an integer I so that for i > I, $K \subset M_{(i)}$.

Boundedness in the parabolic sectors

Proposition 5.2

Let \hat{R}_i denote the subdomain of the parabolic region R_i bounded by two crooked-boundary disks D_1 and D_2 whose closures contains $\operatorname{Cl}(\zeta_{p_j})$ for a parabolic fixed point p_i with the parabolic generator γ_i acting on R_i . Assume that $D_i \cap R_j$, i = 1, 2, is a ruled disk of the form of Theorem 3.2. Suppose that $D_1 \cap R_j$ and $\gamma_i^{\delta}(D_1) \cap R_i$ for $\delta = 1$ or -1 bounds a region in R_i containing \hat{R}_i .

Boundedness in the parabolic sectors

Proposition 5.2

Let \hat{R}_j denote the subdomain of the parabolic region R_j bounded by two crooked-boundary disks D_1 and D_2 whose closures contains $\operatorname{Cl}(\zeta_{p_j})$ for a parabolic fixed point p_j with the parabolic generator γ_j acting on R_j . Assume that $D_i \cap R_j$, i = 1, 2, is a ruled disk of the form of Theorem 3.2. Suppose that $D_1 \cap R_j$ and $\gamma_i^{\delta}(D_1) \cap R_j$ for $\delta = 1$ or -1 bounds a region in R_j containing \hat{R}_j .

- Then $\hat{R}_j \cap \tilde{M}_{(J)}$ is also compact for each j.
- Furthermore, we may assume that

$$ilde{M}_{(J)} \cap R_j = \emptyset ext{ for } j = 1, \dots, c_0,$$

(ロト (日) (三) (三) (三) (30/40)

by choosing R_j sufficiently far away.

Boundedness in the parabolic sectors

Proposition 5.2

Let \hat{R}_j denote the subdomain of the parabolic region R_j bounded by two crooked-boundary disks D_1 and D_2 whose closures contains $\operatorname{Cl}(\zeta_{p_j})$ for a parabolic fixed point p_j with the parabolic generator γ_j acting on R_j . Assume that $D_i \cap R_j$, i = 1, 2, is a ruled disk of the form of Theorem 3.2. Suppose that $D_1 \cap R_j$ and $\gamma_i^{\delta}(D_1) \cap R_j$ for $\delta = 1$ or -1 bounds a region in R_j containing \hat{R}_j .

- Then $\hat{R}_j \cap \tilde{M}_{(J)}$ is also compact for each j.
- Furthermore, we may assume that

$$ilde{M}_{(J)} \cap R_j = \emptyset ext{ for } j = 1, \dots, c_0,$$

by choosing R_j sufficiently far away.

Proof

We use exhaustions and Corollary 4.2

Choices of the candidate fundamental domain ${\bf F}$ bounded by almost crooked-disks ${\cal D}_j$

Now going to E/Γ with exhaustions $M_{(J)}$ as above.

Lemma 5.3

We can choose the mutually disjoint collection $\mathcal{D}_j \subset \mathsf{E}$ of properly embedded open disks and a tubular neighborhood $T_j \subset \operatorname{Cl}(\mathcal{D}_j)$ of $\partial \mathcal{D}_j$ for each $j, j = 1, \ldots, 2\mathbf{g}$, that form a matching set $\{T_j | j = 1, \ldots, 2\mathbf{g}\}$ for a collection \mathcal{S}_0 of generators of Γ . Finally, $\partial \mathcal{D}_j = d_j \cup \mathcal{A}(d_j) \cup \bigcup_{x \in \partial d_j} \operatorname{Cl}(\zeta_x)$ for a lift d_j of \hat{d}_j . Choices of the candidate fundamental domain ${\bf F}$ bounded by almost crooked-disks ${\cal D}_j$

Now going to E/Γ with exhaustions $M_{(J)}$ as above.

Lemma 5.3

We can choose the mutually disjoint collection $\mathcal{D}_j \subset \mathsf{E}$ of properly embedded open disks and a tubular neighborhood $T_j \subset \operatorname{Cl}(\mathcal{D}_j)$ of $\partial \mathcal{D}_j$ for each $j, j = 1, \ldots, 2\mathbf{g}$, that form a matching set $\{T_j | j = 1, \ldots, 2\mathbf{g}\}$ for a collection \mathcal{S}_0 of generators of Γ . Finally, $\partial \mathcal{D}_j = d_j \cup \mathcal{A}(d_j) \cup \bigcup_{x \in \partial d_j} \operatorname{Cl}(\zeta_x)$ for a lift d_j of \hat{d}_j .

- Here, of course, the disk collection is not a matching set under S_0 .
- D_j , j = 1, 2, ..., 2g, bound a region **F** closed in E with a compact closure in Cl(E), a finite-sided polytope in the topological sense.

Margulis space-time with parabolics

Part 3: Topology of 3-manifolds

 \square Finding the fundamental domain

Figures

(a) $\tilde{M}_{(J)}$ meeting with disks

(b) The fundamental domain bounded by disks

Tameness

Proposition 5.4 (Boundedness of $M_{(J)}$ in disks)

Let J be an arbitrary positive integer. For any crooked-boundary disk D, $D \cap \tilde{M}_{(J)}$ is compact, i.e., bounded, and has only finitely many components.

Proof.

Follows from Cor 4.2 and Prop. 5.2.

Tameness

Proposition 5.4 (Boundedness of $M_{(J)}$ in disks)

Let J be an arbitrary positive integer. For any crooked-boundary disk D, $D \cap \tilde{M}_{(J)}$ is compact, i.e., bounded, and has only finitely many components.

Proof.

Follows from Cor 4.2 and Prop. 5.2.

Definition 5.1

We modify T_j so that it is disjoint from the compact set in D_j

$$\bigcup_{\substack{(k,l)
eq (j,j+\mathbf{g}) \mod 2\mathbf{g}}} \mathcal{D}_j \cap \gamma_k(\mathcal{D}_l),$$

which we call an unintended set.

Tameness

Proposition 5.4 (Boundedness of $M_{(J)}$ in disks)

Let J be an arbitrary positive integer. For any crooked-boundary disk D, $D \cap \tilde{M}_{(J)}$ is compact, i.e., bounded, and has only finitely many components.

Proof.

Follows from Cor 4.2 and Prop. 5.2.

Definition 5.1

We modify T_j so that it is disjoint from the compact set in D_j

$$\bigcup_{\substack{(k,l)
eq (j,j+\mathbf{g}) \mod 2\mathbf{g}}} \mathcal{D}_j \cap \gamma_k(\mathcal{D}_l),$$

which we call an unintended set.

• Now we consider K_0 be the set

$$\bigcup_{j=1}^{2\mathbf{g}} \bigcup_{(k,l)\neq (j,j+\mathbf{g}) \mod 2\mathbf{g}} (\mathcal{D}_j \cap \gamma_k(\mathcal{D}_l)) \,.$$

which is a compact set by the finiteness. We also add to K_0 the following sets: $2 \circ 33/40$

$$\tilde{M}_{(J)} \supset N_{\mathbf{d},\epsilon} \left(K_0 \right) \tag{5.1}$$

for an ϵ -neighborhood, $\epsilon > 0$.

$$\tilde{M}_{(J)} \supset N_{\mathbf{d},\epsilon} \left(K_0 \right) \tag{5.1}$$

・ロト <
同 ト <
三 ト <
三 ト 、
三 の へ (* 34/40)
</p>

for an ϵ -neighborhood, $\epsilon > 0$.

Lemma 5.5

 $\tilde{M}_{(J)} \cap D_i$ is a union of finitely many compact planar surfaces. Then $\bigcup_{i=1}^{2g} D_i \cap \partial \tilde{M}_{(J)}$ maps to a union of embedded simple closed circles in $\partial M_{(J)}$ bounding immersed planar surfaces in $M_{(J)}$.

$$\tilde{M}_{(J)} \supset N_{\mathbf{d},\epsilon} \left(K_0 \right) \tag{5.1}$$

for an ϵ -neighborhood, $\epsilon > 0$.

Lemma 5.5

 $\tilde{M}_{(J)} \cap D_i$ is a union of finitely many compact planar surfaces. Then $\bigcup_{i=1}^{2g} D_i \cap \partial \tilde{M}_{(J)}$ maps to a union of embedded simple closed circles in $\partial M_{(J)}$ bounding immersed planar surfaces in $M_{(J)}$.

Proof.

This follows since they form the boundary of a fundamental region of $\partial \tilde{M}_{(J)}$.

・ロト <
同 ト <
三 ト <
三 ト 、
三 の へ (* 34/40)
</p>

$$\tilde{M}_{(J)} \supset N_{\mathbf{d},\epsilon} \left(K_0 \right) \tag{5.1}$$

for an ϵ -neighborhood, $\epsilon > 0$.

Lemma 5.5

 $\tilde{M}_{(J)} \cap D_i$ is a union of finitely many compact planar surfaces. Then $\bigcup_{i=1}^{2g} D_i \cap \partial \tilde{M}_{(J)}$ maps to a union of embedded simple closed circles in $\partial M_{(J)}$ bounding immersed planar surfaces in $M_{(J)}$.

Proof.

This follows since they form the boundary of a fundamental region of $\partial \tilde{M}_{(J)}$.

Proposition 5.6 (Outside Tameness)

Let M denote E/Γ where $\mathcal{L}(\Gamma) \subset SO(2, 1)^{\circ}$. Let \mathbf{F} be the domain bounded by $\bigcup_{i=1}^{2^{\mathbf{g}}} \mathcal{D}_i$. Then $\mathbf{F} \setminus \tilde{M}_{(J)}$ is a fundamental domain of $M \setminus M_{(J)}$, and M is tame. Furthermore, $\bigsqcup_{i=1}^{2^{\mathbf{g}}} \mathcal{D}_i \setminus \tilde{M}_{(J)}$ embeds to a disjoint union of properly embedded surfaces in M.

- ▶ By Dehn's lemma applied to $M_{(J)}$, each component of $\mathcal{D}_i \cap \partial \tilde{M}_{(J)}$ bounds a disk mapping to a mutually disjoint collection of embedded disks in $M_{(J)}$.
- ▶ We modify \mathcal{D}_i by replacing each component of $\mathcal{D}_i \cap \tilde{M}_{(J)}$ with lifts of these disks.

- ▶ By Dehn's lemma applied to $M_{(J)}$, each component of $\mathcal{D}_i \cap \partial \tilde{M}_{(J)}$ bounds a disk mapping to a mutually disjoint collection of embedded disks in $M_{(J)}$.
- ▶ We modify \mathcal{D}_i by replacing each component of $\mathcal{D}_i \cap \tilde{M}_{(J)}$ with lifts of these disks.
- We define A_i := ⋃_{x∈ai} ζ_x, an open domain where ζ_x is the accordant semi-circle for x. We define

$$ilde{\Sigma} := \mathbb{S}_+ \cup \mathbb{S}_- \cup igcup_{i \in \mathcal{I}} (A_i \cup a_i \cup \mathcal{A}(a_i))$$

for the antipodal map \mathcal{A} .

• $\Sigma := \tilde{\Sigma} / \Gamma$ is a real projective surface, i.e., the *ideal* \mathbb{RP}^2 -surface.

- ▶ By Dehn's lemma applied to $M_{(J)}$, each component of $\mathcal{D}_i \cap \partial \tilde{M}_{(J)}$ bounds a disk mapping to a mutually disjoint collection of embedded disks in $M_{(J)}$.
- ▶ We modify D_i by replacing each component of $D_i \cap \tilde{M}_{(J)}$ with lifts of these disks.
- ► We define $A_i := \bigcup_{x \in a_i} \zeta_x$, an open domain where ζ_x is the accordant semi-circle for x. We define

$$ilde{\Sigma} := \mathbb{S}_+ \cup \mathbb{S}_- \cup igcup_{i \in \mathcal{I}} (A_i \cup a_i \cup \mathcal{A}(a_i))$$

for the antipodal map \mathcal{A} .

• $\Sigma := \tilde{\Sigma} / \Gamma$ is a real projective surface, i.e., the *ideal* \mathbb{RP}^2 -surface.

Proposition 5.7

There exists a fundamental domain \mathcal{R} closed in E bounded by \mathcal{D}_j , $j = 1, \ldots, 2g$. Moreover, $\operatorname{Cl}(\mathcal{R}) \cap (E \cup \tilde{\Sigma})$ is the fundamental domain of a manifold $(E \cup \tilde{\Sigma})/\Gamma$ with boundary Σ . Here, \mathcal{R} and $\operatorname{Cl}(\mathcal{R})$ are 3-cells, and E/Γ is homeomorphic to the interior of a handlebody of genus g.

Let
$$P = \bigcup_{\gamma \in \Gamma} \bigcup_{i=1,...,m_0} \gamma(\mathcal{P}_i)$$
, and let $\mathcal{P}_{\mathcal{R}} := (\mathcal{P}_1 \cup \cdots \cup \mathcal{P}_{m_0}) \cap \mathcal{R}$.

Proposition 5.8

We can choose the sufficiently far away parabolic regions

 $\mathcal{P}_1,\ldots,\mathcal{P}_{m_0}$

・ロト <
同 ト <
三 ト <
三 ト 、
三 の へ (* 36/40)
</p>

meeting $\mathcal R$ nicely so that they are disjoint in E. Then the following hold:

Let
$$P = \bigcup_{\gamma \in \Gamma} \bigcup_{i=1,...,m_0} \gamma(\mathcal{P}_i)$$
, and let $\mathcal{P}_{\mathcal{R}} := (\mathcal{P}_1 \cup \cdots \cup \mathcal{P}_{m_0}) \cap \mathcal{R}$.

Proposition 5.8

We can choose the sufficiently far away parabolic regions

$$\mathcal{P}_1,\ldots,\mathcal{P}_{m_0}$$

meeting \mathcal{R} nicely so that they are disjoint in E. Then the following hold:

- ▶ $\gamma(\mathcal{P}_i) \cap \mathcal{R} \neq \emptyset$ if and only if $\gamma(\mathcal{P}_i)$ meets \mathcal{R} nicely, and $\gamma(\mathcal{P}_i) = \mathcal{P}_j$ for some j.
- \mathcal{R} meets only $\mathcal{P}_1, \ldots, \mathcal{P}_{m_0}$ among all images $\gamma(\mathcal{P}_r)$ for $\gamma \in \Gamma, r = 1, \ldots, m_0$.

Let
$$P = \bigcup_{\gamma \in \Gamma} \bigcup_{i=1,...,m_0} \gamma(\mathcal{P}_i)$$
, and let $\mathcal{P}_{\mathcal{R}} := (\mathcal{P}_1 \cup \cdots \cup \mathcal{P}_{m_0}) \cap \mathcal{R}$.

Proposition 5.8

We can choose the sufficiently far away parabolic regions

$$\mathcal{P}_1,\ldots,\mathcal{P}_{m_0}$$

meeting \mathcal{R} nicely so that they are disjoint in E. Then the following hold:

- $\gamma(\mathcal{P}_i) \cap \mathcal{R} \neq \emptyset$ if and only if $\gamma(\mathcal{P}_i)$ meets \mathcal{R} nicely, and $\gamma(\mathcal{P}_i) = \mathcal{P}_j$ for some j.
- \mathcal{R} meets only $\mathcal{P}_1, \ldots, \mathcal{P}_{m_0}$ among all images $\gamma(\mathcal{P}_r)$ for $\gamma \in \Gamma, r = 1, \ldots, m_0$.
- Moreover, for every pair $\gamma, \eta \in \Gamma$,

$$\gamma(\mathcal{P}_j) \cap \eta(\mathcal{P}_k) = \emptyset \text{ or } \gamma(\mathcal{P}_j) = \eta(\mathcal{P}_k), j, k = 1, \dots, m_0$$

First, we recall our bordifying surface:

$$ilde{\Sigma}_0 := \mathbb{S}_+ \cup \mathbb{S}_- \cup \bigcup_{i \in \mathcal{I}} (A_i \cup a_i \cup \mathcal{A}(a_i)).$$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ ● ♀ ♀ 37/40

•
$$\Sigma := \tilde{\Sigma}_0 / \Gamma$$
 and $N := (\mathsf{E} \cup \tilde{\Sigma}) / \Gamma$

First, we recall our bordifying surface:

$$ilde{\Sigma}_0 := \mathbb{S}_+ \cup \mathbb{S}_- \cup \bigcup_{i \in \mathcal{I}} (A_i \cup a_i \cup \mathcal{A}(a_i)).$$

•
$$\Sigma := \tilde{\Sigma}_0 / \Gamma$$
 and $N := (\mathsf{E} \cup \tilde{\Sigma}) / \Gamma$.

- We define P to be a union of mutually disjoint parabolic regions of form γ(P_i) for γ ∈ Γ, i = 1,..., m₀.
- We take the closure Cl(P) of P and take the relative interior P' in the closed hemisphere \mathcal{H} .
- ▶ Let $\partial_{\mathsf{E}} P'$ denote $\partial P \cap \mathsf{E}$. Then define $\tilde{N}' := \mathsf{E} \cup \tilde{\Sigma} \setminus P'$.

First, we recall our bordifying surface:

$$ilde{\Sigma}_0 := \mathbb{S}_+ \cup \mathbb{S}_- \cup \bigcup_{i \in \mathcal{I}} (A_i \cup a_i \cup \mathcal{A}(a_i)).$$

•
$$\Sigma := \tilde{\Sigma}_0 / \Gamma$$
 and $N := (\mathsf{E} \cup \tilde{\Sigma}) / \Gamma$.

- We define P to be a union of mutually disjoint parabolic regions of form γ(P_i) for γ ∈ Γ, i = 1,..., m₀.
- We take the closure Cl(P) of P and take the relative interior P' in the closed hemisphere \mathcal{H} .
- ▶ Let $\partial_{\mathsf{E}} P'$ denote $\partial P \cap \mathsf{E}$. Then define $\tilde{N}' := \mathsf{E} \cup \tilde{\Sigma} \setminus P'$.
- ▶ Γ acts properly discontinuously on \tilde{N}' . Thus, $N' := \tilde{N}' / Γ$ is a manifold.
- The manifold boundary $\partial N'$ of N' is

$$((\tilde{\Sigma} \setminus P') \cup \partial_{\mathsf{E}} P') / \Gamma.$$

Define $P'' = P'/\Gamma$.

- ► Also, $\partial_N(P'') := (\partial_E P')/\Gamma$ is a union of a finite number of disjoint annuli. $\partial N'$ is homeomorphic to $(\Sigma \setminus P'') \cup \partial_N P''$.
- Recall that the union of facial-disks D_i, i = 1,..., 2g, bounds the fundamental domain R in H.

- ► Also, $\partial_N(P'') := (\partial_E P')/\Gamma$ is a union of a finite number of disjoint annuli. $\partial N'$ is homeomorphic to $(\Sigma \setminus P'') \cup \partial_N P''$.
- Recall that the union of facial-disks D_i, i = 1,..., 2g, bounds the fundamental domain R in H.

$$\bigcup_{i=1}^{2\mathsf{g}} \mathrm{Cl}(\mathcal{D}_i) \cap (\mathsf{E} \cup \tilde{\Sigma} \setminus P')$$

bounds a fundamental domain

$$\operatorname{Cl}(\mathcal{R}) \cap (\mathsf{E} \cup \tilde{\Sigma} \setminus P').$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 38/40

•

- ► Also, $\partial_N(P'') := (\partial_E P')/\Gamma$ is a union of a finite number of disjoint annuli. $\partial N'$ is homeomorphic to $(\Sigma \setminus P'') \cup \partial_N P''$.
- Recall that the union of facial-disks D_i, i = 1,..., 2g, bounds the fundamental domain R in H.

$$\bigcup_{i=1}^{2\mathsf{g}} \mathrm{Cl}(\mathcal{D}_i) \cap (\mathsf{E} \cup \tilde{\Sigma} \setminus P')$$

bounds a fundamental domain

$$\operatorname{Cl}(\mathcal{R}) \cap (\mathsf{E} \cup \tilde{\Sigma} \setminus P').$$

- $N' := (E \cup \tilde{\Sigma} \setminus P') / \Gamma$ is compact and is homeomorphic to a handlebody of genus g by Theorem 5.2 of Hempel [9].
- *N* deformation retracts to *N'* as above since ϕ does not act on any component of *P'*.

Bibliography I

Virginie Charette and Todd A. Drumm. The Margulis invariant for parabolic transformations. <i>Proc. Amer. Math. Soc.</i> , 133(8):2439–2447, 2005.
Virginie Charette and Youngju Kim. Foliations of Minkowski 2 + 1 spacetime by crooked planes. Internat. J. Math., 25(9):1450088, 25, 2014.
Suhyoung Choi. convergenceii.nb. mathematica file at mathsci.kaist.ac.kr/~schoi/research.html.
Subyoung Choi.

Foliationsv2.nb. mathematica file at mathsci.kaist.ac.kr/~schoi/research.html.

Jeffrey Danciger, François Guéritaud, and Fanny Kassel. Margulis spacetimes with parabolic elements. in preparation.

William M. Goldman and François Labourie.Geodesics in Margulis spacetimes.Ergodic Theory Dynam. Systems, 32(2):643–651, 2012.

Bibliography II

William M. Goldman, François Labourie, and Gregory Margulis. Proper affine actions and geodesic flows of hyperbolic surfaces. Ann. of Math. (2), 170(3):1051-1083, 2009.

William M. Goldman, François Labourie, Gregory Margulis, and Yair Minsky. Complete flat Lorentz 3-manifolds and laminations on hyperbolic surfaces. in preparation, 2012.

<□▶ <□▶ < 三▶ < 三▶ < 三 < つへ 40/40

John Hempel. 3-manifolds

AMS Chelsea Publishing, Providence, RI, 2004. Reprint of the 1976 original.