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Margulis space-time with parabolics
Part 0: Introduction

Main results

Margulis space-times

I Isom+(E) the group of Lorentzian isometries on the flat Lorentzian space E.

I A discrete affine group Γ acting properly on E is either solvable or is free of rank
≥ 2.

I Γ is a proper affine free group of rank ≥ 2.
I Assume for convenience L(Γ) ⊂ SO(2, 1)o . Γ is a proper affine deformation.
I Assume L(Γ) is a free group of rank g, g ≥ 2 in SO(2, 1)o acting freely and

discretely on H2.
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Margulis space-time with parabolics
Part 0: Introduction

Main results

Real projective structures

I A real projective structure on a manifold is given by a maximal atlas of charts to
RPn, n ≥ 1, with transition maps in PGL(n + 1,R).

I Suppose that Σ is a real projective surface with holonomy in the image of L(Γ) in
PSO(2, 1).

I A parabolic annulus in Σ is a properly embedded compact annulus with a
parabolic holonomy.
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Margulis space-time with parabolics
Part 0: Introduction

Main results

Main Theorem

Theorem 2.1
Suppose that Γ is a proper affine free group of rank g, g ≥ 2, with parabolics and
linear parts in SO(2, 1)o . Then

I E/Γ is diffeomorphic to the interior of a compact handlebody of genus g.
I Moreover, it is the interior of a real projective 3-manifold M with a totally

geodesic real projective surface as boundary.
I M deformation retracts to a compact handlebody obtained by removing a union

of finitely many solid-torus-end-neighborhoods.

Remark 1
The tameness part is also claimed by Danciger, Kassel, and Guéritaud [5]. Also, the
tameness without parabolics was also solved by Choi-Goldman and this group.
Crooked plane conjecture for nonparabolic case was solved by this group also.



5/40

Margulis space-time with parabolics
Part 0: Introduction

Main results

Main Theorem

Theorem 2.1
Suppose that Γ is a proper affine free group of rank g, g ≥ 2, with parabolics and
linear parts in SO(2, 1)o . Then

I E/Γ is diffeomorphic to the interior of a compact handlebody of genus g.

I Moreover, it is the interior of a real projective 3-manifold M with a totally
geodesic real projective surface as boundary.

I M deformation retracts to a compact handlebody obtained by removing a union
of finitely many solid-torus-end-neighborhoods.

Remark 1
The tameness part is also claimed by Danciger, Kassel, and Guéritaud [5]. Also, the
tameness without parabolics was also solved by Choi-Goldman and this group.
Crooked plane conjecture for nonparabolic case was solved by this group also.



5/40

Margulis space-time with parabolics
Part 0: Introduction

Main results

Main Theorem

Theorem 2.1
Suppose that Γ is a proper affine free group of rank g, g ≥ 2, with parabolics and
linear parts in SO(2, 1)o . Then

I E/Γ is diffeomorphic to the interior of a compact handlebody of genus g.
I Moreover, it is the interior of a real projective 3-manifold M with a totally

geodesic real projective surface as boundary.

I M deformation retracts to a compact handlebody obtained by removing a union
of finitely many solid-torus-end-neighborhoods.

Remark 1
The tameness part is also claimed by Danciger, Kassel, and Guéritaud [5]. Also, the
tameness without parabolics was also solved by Choi-Goldman and this group.
Crooked plane conjecture for nonparabolic case was solved by this group also.



5/40

Margulis space-time with parabolics
Part 0: Introduction

Main results

Main Theorem

Theorem 2.1
Suppose that Γ is a proper affine free group of rank g, g ≥ 2, with parabolics and
linear parts in SO(2, 1)o . Then

I E/Γ is diffeomorphic to the interior of a compact handlebody of genus g.
I Moreover, it is the interior of a real projective 3-manifold M with a totally

geodesic real projective surface as boundary.
I M deformation retracts to a compact handlebody obtained by removing a union

of finitely many solid-torus-end-neighborhoods.

Remark 1
The tameness part is also claimed by Danciger, Kassel, and Guéritaud [5]. Also, the
tameness without parabolics was also solved by Choi-Goldman and this group.
Crooked plane conjecture for nonparabolic case was solved by this group also.



6/40

Margulis space-time with parabolics
Part 0: Introduction

Main results

I We conjecture that the Margulis space-time with parabolics deforms immediately
to one without parbolics. However, this requires result of
Goldman-Labourie-Margulis-Minsky [8] which they have not written up.

I The Crooked-plane conjecture is also claimed by DGK [5] and this should also
imply the relative compactification.

I The main advantage of our approach is to see the 3-dimensional picture such as
axes of transformations and globally hyperbolic subspaces bounded by Cauchy
hypersurfaces. Also, relative compactification is easy to see.

I Also, these show that every flat complete Lorentz manifold of any dimension is
tame. (Goldman-Labourie [6])
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Margulis space-time with parabolics
Part 0: Introduction

Preliminary

Real projective geometry of Margulis space-times

I Define
S(V ) := V \ {0}/ ∼+ where x ∼+ y iff x = sy for s ∈ R+.

There is a double cover S(V )→ P(V ) with the antipodal map A : S(V )→ S(V ).
I ((v)) denotes the equivalence class of v.

I SL±(V ) acts on S(V ) effectively and transitively, and is Aut(S(V )).
I E equals an open hemisphere in S3 = S(R4) by sending

(x1, x2, x3) to ((1, x1, x2, x3)) for x1, x2, x3 ∈ R.

I ∂E = ∂H is a great 2-sphere S given by x0 = 0.
I S = S+ ∪ S= ∪ S0.
I S+ is the Klein model of the hyperbolic plane.
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Margulis space-time with parabolics
Part 0: Introduction

Preliminary

Hausdorff convergences

I S3 = S(R4) has Fubini-Study metric d.
I The Hausdorff distance between two compact sets A and B is

dH(A,B) = inf{δ|δ > 0,B ⊂ Nd,δ(A),A ⊂ Nd,δ(B)}.

Proposition 2.1 (see Benedetti-Petronio)
A sequence {Ai} of compact sets converges to A in the Hausdorff topology if and only
if

I If there is a sequence {xij }, xij ∈ Aij , where xij → x for ij →∞, then x ∈ A.
I If x ∈ A, then there exists a sequence {xi}, xi ∈ Ai , such that xi → x.
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Margulis space-time with parabolics
Part 1: Proper action of a parabolic cyclic group

Proper parabolic actions

Linear parabolic action

I A linear endomorphism N : V → V is a skew-adjoint endomorphism of V if

B(Nx, y) = −B(x,Ny).

I We classify skew-adjoint linear parabolic transformations.

Corollary 3.1
Given a skew-adjoint endomorphism N : V → V . Then there exists a coordinate
system given by a, b, c satisfying

I I B(a, b) = 0 = B(b, c),B(a, c) = −1,
I c = N(b), b = N(a), and
I b is a unit spacelike vector, c ∈ KerN is casual null, and a is null.

I The coordinate system is is canonical for a skew-symmetric nilpotent
endomorphism N with respect to B : V × V → R.
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Margulis space-time with parabolics
Part 1: Proper action of a parabolic cyclic group

Proper parabolic actions

Proper affine parabolic action

I Let γ be an affine transformation with skew-adjoint parabolic linear part exp(N).

I Using the frame given as above and translating, γ lies in a one-parameter group

Ψ(t) := exp t

 0 1 0 0
0 0 1 0
0 0 0 µ
0 0 0 0

 =

 1 t t2/2 µt3/6
0 1 t µt2/2
0 0 1 µt
0 0 0 1

 (3.1)

for µ ∈ R.
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Margulis space-time with parabolics
Part 1: Proper action of a parabolic cyclic group

Proper parabolic actions

Proper affine parabolic action

I This one-parameter subgroup {Ψ(t), t ∈ R} leaves invariant the two polynomials

F2(x , y , z) = z2 − 2µy and F3(x , y , z) = z3 − 3µyz + 3µ2x , (3.2)

and the diffeomorphism F (x , y , z) := (F3(x , y , z),F2(x , y , z), z)

F ◦Ψ(t) ◦ F−1 : (x , y , z)→ (x , y , z + µt) . (3.3)

I All the orbits are twisted cubic curves.
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Margulis space-time with parabolics
Part 1: Proper action of a parabolic cyclic group

Proper parabolic actions

Margulis invariants

I Let Γ be a proper affine deformation of a free group.
I For non-parabolic γ ∈ Γ \ {I}, we define

I x+(γ) as an eigenvector of L(γ) in the casual null directions with eigenvalue > 1,
I x−(γ) as an eigenvector of L(γ) in the casual null direction with eigenvalue < 1, and
I x0(γ) as the spacelike positive eigenvector of L(γ) of eigenvalue 1 given by

x0(γ) =
x−(γ)× x+(γ)
||x−(γ)× x+(γ)||

.

I The Margulis invariant is given

α(γ) = B(γ(x)− x , x0(γ)), x ∈ E (3.4)

independent of the choice of x .
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Margulis space-time with parabolics
Part 1: Proper action of a parabolic cyclic group

Proper parabolic actions

Charette-Drumm invariants cd(·)

Definition 3.1
An eigenvector v of eigenvalue 1 of parabolic transformation g is positive relative to g
if

I {v, x,L(g)x} is positively oriented when
I x is any null or timelike vector which is not an eigenvector of g .

Definition 3.2

I Let F (L(g)) be the eigensubspace of L(g) of eigenvalue 1.
I Define α̃(γ) : F (L(γ))→ R by

α̃(γ)(·) = B(γ(x)− x , ·), x ∈ E.

I cd(γ) > 0 if α̃(γ) is positive on positive eigenvectors in F (L(γ)) \ {0} ([1]).

Lemma 3.1
µ > 0 if and only if γ = Φ1 has a positive Charette-Drumm invariant. Implying 〈γ〉
acts properly on E.
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Margulis space-time with parabolics
Part 1: Proper action of a parabolic cyclic group

Parabolic ruled surfaces and transverse foliations

Constructing transversal foliations

I Ψ(t) : E→ E is generated by a vector field

φ := y∂x + z∂y + µ∂z

with the square of the Lorentzian norm ||φ||2 = z2 − 2µy .

I Invariants of g t are

F2(x , y , z) = z2 − 2µy and F3(x , y , z) = z3 − 3µyz + 3µ2x .

I We define Ψ(t, s) = g t(l(s)) so that

l(s) = (0, y0, 0) + s(a, 0, c) = (sa, y0, sc), φ(l(s)) = (y0, sc, µ).

φ is never parallel to (a, 0, c) for y0
µ
< a

c .
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Part 1: Proper action of a parabolic cyclic group

Parabolic ruled surfaces and transverse foliations

Figure: Two parabolic ruled surfaces. See [3].
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Parabolic ruled surfaces and transverse foliations

Two transverse foliations.

I Assume 0 < κ1 ≤ κ2 < min{1, 3
2µ}.

I Let f : (0, 1)→ R be a strictly increasing analytic function satisfying

κ1µ
r

√
1− r2

≤ f (r) ≤ κ2µ
r

√
1− r2

.

I Let Hf be the space of compact segments u passing E with the following
I ∂u in the horodisk E ⊂ Cl(S+) containing ((1, 0, 0)) in the boundary and in the

antipodal set E− ⊂ Cl(S−),

I u ∩ E is equivalent under g t for some t to l(s) given by lf ,r (s) = (sa, yf (r), sc), s ∈ R,
where

yf (r) := f (r), a = r , c =
√

1− r2, r ∈ (0, 1).

I For r ∈ (0, 1), let Sf ,r denote the parabolic ruled surface given by⋃
t,s∈R

g t(lf ,r (s)).
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Part 1: Proper action of a parabolic cyclic group

Parabolic ruled surfaces and transverse foliations

Remark 2
Define Df ,r0,t for t ∈ R denote the surface⋃

s∈R,r∈[r0,1)

g t(lf ,r (s)).

Theorem 3.2
Let r0 ∈ (0, 1). Then the following hold :

I Sf ,r for r ∈ [r0, 1) are properly embedded leaves of a foliation S̃f ,r0 of the region
Rf ,r0 , closed in E, bounded by Sf ,r0 where g t acts on.

I {Df ,r0,t , t ∈ R} is the set of properly embedded leaves of a foliation D̃f ,r0 of Rf ,r0
by disks meeting Sf ,r for each r, r0 < r < 1, transversally.

I g t0 (Df ,r0,t) = Df ,r0,t+t0 .
I Df ,r0,t′ ∩ Df ,r0,t = ∅ for t, t′, t 6= t′.
I Cl(Df ,r0,t) ∩ S+ is given as a geodesic ending at the parabolic fixed point of g.
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Part 1: Proper action of a parabolic cyclic group

Parabolic ruled surfaces and transverse foliations

Figure: Three reddish leaves of foliation Sf ,r0 and three bluish leaves of Df ,r0 where
f (r) = 3

4
r√
1−r2

and µ = 1. See [4].
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Tameness of the parabolic quotient spaces

Tameness of E/〈γ〉

Definition 3.3
The quotient Rf ,r0/〈g〉 is homeomorphic to a solid torus and is foliated by Sf ,r0
induced by S̃f ,r0 and Df ,r0 induced by D̃f ,r0 . The leaves of Sf ,r0 are annuli of form
Sf ,r/〈g〉, and the leaves of Df ,r0 are the embedded images of Df ,r0,t for t ∈ R. The
embedded image of Rf ,r0/〈g〉 in E/Γ are foliated also.

Theorem 3.4 (Parabolic Tameness)
Let γ be a parabolic affine transformation with a positive Charette-Drumm invariant.
Then E/〈γ〉 is homeomorphic to a solid torus.

Remark 3
We may use a γ-invariant foliation of E by crooked planes from the results of
Charette-Kim [2]. We will give a topological proof later.
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Margulis space-time with parabolics
Part 2: Geometric estimations and convergences

Goldman-Labourie-Margulis decomposition and estimations of cocycles

Anosov property of the geodesic flows

I Let Γ be as above with parabolics so that M = E/Γ is a Margulis space-time.
I Define V as a quotient budle of Ṽ := US+ × R2,1 under the diagonal action

γ(x , v) = (Dγ(x),L(γ)(v)), x ∈ US+, v ∈ R2,1, γ ∈ Γ.

I The vector bundle V has a fiberwise Riemannian metric ||·||fiber where Γ acts as
isometries.

I Define Ṽ := S+ × R2,1 and the bundle V := Ṽ /Γ with the action

γ(x , v) = (Dγ(x),L(γ)(v)), x ∈ S+, v ∈ R2,1, γ ∈ Γ.

I Let Φt : US+ → US+ denote the geodesic flow on US+ defined by the hyperbolic
metric.

I Let
DΦt : US+ × R2,1 → US+ × R2,1

denote the flow acting trivially on the second factor and as the geodesic flow on
US+.
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Goldman-Labourie-Margulis decomposition and estimations of cocycles

Decomposition of V

Given (((x)) , u) ∈ US+,
I Define l(((x)) , u) ⊂ S+ to be the oriented complete geodesic passing through ((x))

in the direction of u, and
I Define v+,(((k)),j) = 1/

√
2j + 1/

√
2k and v−,(((k)),j) = −1/

√
2j + 1/

√
2k endpoints

of the geodesic l(((k)) , j) ⊂ S+.

I Define v+,(((x)),u) and v−,(((x)),u) respectively to be the images of v+,(((k)),j) and
v−,(((k)),j) under L(g) if

L(g) ((k)) = x and Dg(j) = u.
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Goldman-Labourie-Margulis decomposition and estimations of cocycles

We give as a basis{
v+,(((x)),u), v−,(((x)),u), v0,(((x)),u) :=

v−,(((x)),u) × v+,(((x)),u)∣∣∣∣v−,(((x)),u) × v+,(((x)),u)
∣∣∣∣
}

(4.1)

for the fiber over ((x)) where × is the Lorentzian crossproduct.

I Let Ṽ0 be the 1-dimensional subbundle of US+ × R2,1 containing v0,(((x)),u).
I Let Ṽ+ be the 1-dimensional subbundle of US+ × R2,1 containing v+,(((x)),u).
I Let Ṽ− be the 1-dimensional subbundle of US+ × R2,1 containing v−,(((x)),u).
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Goldman-Labourie-Margulis decomposition and estimations of cocycles

Exponential stretching and contracting

Recall from Section 4.4 of [7] that the flow Φt acts on V, and V splits into three
Φt -invariant line bundles V+, V− and V0, which are images of Ṽ+, Ṽ− and Ṽ0.

Our choice of ||·||fiber shows that DΦt acts as uniform contraction in V+ as
t →∞,−∞, i.e.,

||DΦt(v+)||fiber ∼= exp(−t) ||v+||fiber for v+ ∈ Ṽ+,

||DΦt(v−)||fiber ∼= exp(t) ||v−||fiber for v− ∈ Ṽ−,

||DΦt(v0)||fiber ∼= ||v0||fiber for v0 ∈ Ṽ0. (4.2)
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Goldman-Labourie-Margulis decomposition and estimations of cocycles

Digram for bundles

The frames on US+ and on US. The circles bound horodisks covering the cusp
neighborhoods below. The compact set K is a some small compact set where the
closed geodesics pass through.
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Translations vectors and orbits of a proper affine deformations

de Rham isomorphism

I The V -valued forms are differential forms with values in the fiber spaces of V .
I The Ṽ -valued forms on S+ are simply the R2,1-valued forms on S+.

I The group Γ acts by

γ∗(v⊗ dx) = L(γ)−1(v)⊗ d(x ◦ γ), γ ∈ Γ. (4.3)

I Write g as g(x) = Agx + bg , x ∈ E. Then b : Γ→ R2,1 given by

g 7→ bg for every g

is a cocycle representing an element of

H1(π1(S),R2,1) = H1(S,V )

using the de Rham isomorphism.
I Let η denote the smooth V -valued 1-form on S representing the cocycle b in the

de-Rham sense.
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Translations vectors and orbits of a proper affine deformations

Estimating cocycle values bg

I We obtain

bg :=
∫

[0,tg ]
DΦ((xg , ug ), t)−1

(
η̃

(dΦ((xg , ug ), t)
dt

))
dt (4.4)

where Φ((xg , ug ), [0, tg ]) for xg ∈ K and a unit vector ug at xg , covers a closed
curve representing g .

I Define
η̃ω(((x)) , u) = Π

Ṽω
(η̃(((x)) , u)), (4.5)

where ω = +,−, 0.
I We define invariants:

bg,ω := Π
Ṽω

(bg ) =
∫

[0,tg ]
DΦ((xg , ug ), t)−1

(
η̃ω

(dΦ((xg , ug ), t)
dt

))
dt, (4.6)
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Translations vectors and orbits of a proper affine deformations

I Let Hj ⊂ S+, j = 1, 2, . . . , denote the horodisks Let pj denote the parabolic fixed
point corresponding to Hj .

I Each Hj has coordinates xj , yj from the upper half-space model where pj becomes
∞, and Hj is given by yj > 1.

I We may choose the 1-form η in the same cohomology class so that η′, its lift to
S+, is on any cusp neighborhood:

pjdxj where ((pj )) = pj . (4.7)

Theorem 4.1
Assume the positivity of Margulis and Charette-Drumm invariants, and
L(Γ) ⊂ SO(2, 1)o . For every sequence {gi} with l(gi )→∞ of elements of ΓK , the
following hold :

I ||bgi ||E →∞.
I {||bgi−||E} < C for a uniform constant C > 0 independent of i.
I d(((bgi )) ,Cl(ζagi ))→ 0.



27/40

Margulis space-time with parabolics
Part 2: Geometric estimations and convergences

Translations vectors and orbits of a proper affine deformations

I Let Hj ⊂ S+, j = 1, 2, . . . , denote the horodisks Let pj denote the parabolic fixed
point corresponding to Hj .

I Each Hj has coordinates xj , yj from the upper half-space model where pj becomes
∞, and Hj is given by yj > 1.

I We may choose the 1-form η in the same cohomology class so that η′, its lift to
S+, is on any cusp neighborhood:

pjdxj where ((pj )) = pj . (4.7)

Theorem 4.1
Assume the positivity of Margulis and Charette-Drumm invariants, and
L(Γ) ⊂ SO(2, 1)o . For every sequence {gi} with l(gi )→∞ of elements of ΓK , the
following hold :

I ||bgi ||E →∞.
I {||bgi−||E} < C for a uniform constant C > 0 independent of i.
I d(((bgi )) ,Cl(ζagi ))→ 0.



27/40

Margulis space-time with parabolics
Part 2: Geometric estimations and convergences

Translations vectors and orbits of a proper affine deformations

I Let Hj ⊂ S+, j = 1, 2, . . . , denote the horodisks Let pj denote the parabolic fixed
point corresponding to Hj .

I Each Hj has coordinates xj , yj from the upper half-space model where pj becomes
∞, and Hj is given by yj > 1.

I We may choose the 1-form η in the same cohomology class so that η′, its lift to
S+, is on any cusp neighborhood:

pjdxj where ((pj )) = pj . (4.7)

Theorem 4.1
Assume the positivity of Margulis and Charette-Drumm invariants, and
L(Γ) ⊂ SO(2, 1)o . For every sequence {gi} with l(gi )→∞ of elements of ΓK , the
following hold :

I ||bgi ||E →∞.
I {||bgi−||E} < C for a uniform constant C > 0 independent of i.
I d(((bgi )) ,Cl(ζagi ))→ 0.



28/40

Margulis space-time with parabolics
Part 2: Geometric estimations and convergences

Translations vectors and orbits of a proper affine deformations

Corollary 4.2
Let M be a Margulis space-time E/Γ with holonomy group Γ with parabolics. Let
K ⊂ E be a compact subset. Let y ∈ S+, and let γi ∈ Γ be a sequence such that
γi (y)→ y∞ for y∞ ∈ ∂S+. Then for every ε > 0, there exists I0 such that

γi (K) ⊂ Nd,ε(Cl(ζy∞ )) for i > I0.

Equivalently, any sequence {γi (zi )|zi ∈ K} accumulates only to Cl(ζy∞ ).
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Finding the fundamental domain

Exhaustions

Proposition 5.1 (Scott-Tucker)
Let E/Γ be a Margulis space-time with parabolics. Then E/Γ has a sequence of
handlebodies

M(1) ⊂ M(2) ⊂ · · · ⊂ M(i) ⊂ M(i+1) ⊂ . . .

so that M0 =
⋃∞

i=1 M(i). They have the following properties :
I π1(M(1))→ π1(M) is an isomorphism.
I The inverse image M̃(i) of M(i) in M̃ is connected.
I π1(M(i))→ π1(M) is surjective.
I for each compact subset K ⊂ E/Γ, there exists an integer I so that for i > I,

K ⊂ M(i).
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Finding the fundamental domain

Boundedness in the parabolic sectors

Proposition 5.2
Let R̂j denote the subdomain of the parabolic region Rj bounded by two
crooked-boundary disks D1 and D2 whose closures contains Cl(ζpj ) for a parabolic
fixed point pj with the parabolic generator γj acting on Rj . Assume that
Di ∩Rj , i = 1, 2, is a ruled disk of the form of Theorem 3.2. Suppose that D1 ∩Rj and
γδj (D1) ∩ Rj for δ = 1 or −1 bounds a region in Rj containing R̂j .

I Then R̂j ∩ M̃(J) is also compact for each j.
I Furthermore, we may assume that

M̃(J) ∩ Rj = ∅ for j = 1, . . . , c0,

by choosing Rj sufficiently far away.

Proof
We use exhaustions and Corollary 4.2
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Finding the fundamental domain

Choices of the candidate fundamental domain F bounded by almost
crooked-disks Dj

Now going to E/Γ with exhaustions M(J) as above.

Lemma 5.3
We can choose the mutually disjoint collection Dj ⊂ E of properly embedded open
disks and a tubular neighborhood Tj ⊂ Cl(Dj ) of ∂Dj for each j, j = 1, . . . , 2g, that
form a matching set {Tj |j = 1, . . . , 2g} for a collection S0 of generators of Γ. Finally,
∂Dj = dj ∪ A(dj ) ∪

⋃
x∈∂dj

Cl(ζx ) for a lift dj of d̂j .

I Here, of course, the disk collection is not a matching set under S0.
I Dj , j = 1, 2, . . . , 2g, bound a region F closed in E with a compact closure in

Cl(E), a finite-sided polytope in the topological sense.
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Figures

(a) M̃(J) meeting with disks (b) The fundamental domain bounded by disks
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Finding the fundamental domain

Tameness
Proposition 5.4 (Boundedness of M(J) in disks)
Let J be an arbitrary positive integer. For any crooked-boundary disk D, D ∩ M̃(J) is
compact, i.e., bounded, and has only finitely many components.

Proof.
Follows from Cor 4.2 and Prop. 5.2.

Definition 5.1
We modify Tj so that it is disjoint from the compact set in Dj⋃

(k,l)6=(j,j+g) mod 2g

Dj ∩ γk(Dl ),

which we call an unintended set.

I Now we consider K0 be the set
2g⋃
j=1

⋃
(k,l)6=(j,j+g) mod 2g

(Dj ∩ γk(Dl )) .

which is a compact set by the finiteness. We also add to K0 the following sets:
I the disks of form Dj \ T o

j , and
I the disks of form γ(Dj \ T o

j ), γ ∈ S0.



33/40

Margulis space-time with parabolics
Part 3: Topology of 3-manifolds

Finding the fundamental domain

Tameness
Proposition 5.4 (Boundedness of M(J) in disks)
Let J be an arbitrary positive integer. For any crooked-boundary disk D, D ∩ M̃(J) is
compact, i.e., bounded, and has only finitely many components.

Proof.
Follows from Cor 4.2 and Prop. 5.2.

Definition 5.1
We modify Tj so that it is disjoint from the compact set in Dj⋃

(k,l) 6=(j,j+g) mod 2g

Dj ∩ γk(Dl ),

which we call an unintended set.

I Now we consider K0 be the set
2g⋃
j=1

⋃
(k,l)6=(j,j+g) mod 2g

(Dj ∩ γk(Dl )) .

which is a compact set by the finiteness. We also add to K0 the following sets:
I the disks of form Dj \ T o

j , and
I the disks of form γ(Dj \ T o

j ), γ ∈ S0.



33/40

Margulis space-time with parabolics
Part 3: Topology of 3-manifolds

Finding the fundamental domain

Tameness
Proposition 5.4 (Boundedness of M(J) in disks)
Let J be an arbitrary positive integer. For any crooked-boundary disk D, D ∩ M̃(J) is
compact, i.e., bounded, and has only finitely many components.

Proof.
Follows from Cor 4.2 and Prop. 5.2.

Definition 5.1
We modify Tj so that it is disjoint from the compact set in Dj⋃

(k,l) 6=(j,j+g) mod 2g

Dj ∩ γk(Dl ),

which we call an unintended set.

I Now we consider K0 be the set
2g⋃
j=1

⋃
(k,l) 6=(j,j+g) mod 2g

(Dj ∩ γk(Dl )) .

which is a compact set by the finiteness. We also add to K0 the following sets:
I the disks of form Dj \ T o

j , and
I the disks of form γ(Dj \ T o

j ), γ ∈ S0.



34/40

Margulis space-time with parabolics
Part 3: Topology of 3-manifolds

Finding the fundamental domain

By Proposition 5.1, we choose M(J) in our exhaustion sequence of M so that

M̃(J) ⊃ Nd,ε (K0) (5.1)

for an ε-neighborhood, ε > 0.

Lemma 5.5
M̃(J) ∩ Di is a union of finitely many compact planar surfaces. Then

⋃2g
i=1Di ∩ ∂M̃(J)

maps to a union of embedded simple closed circles in ∂M(J) bounding immersed
planar surfaces in M(J).

Proof.
This follows since they form the boundary of a fundamental region of ∂M̃(J).

Proposition 5.6 (Outside Tameness)
Let M denote E/Γ where L(Γ) ⊂ SO(2, 1)o . Let F be the domain bounded by⋃2g

i=1Di . Then F \ M̃(J) is a fundamental domain of M \M(J), and M is tame.
Furthermore,

⊔2g
i=1Di \ M̃(J) embeds to a disjoint union of properly embedded

surfaces in M.
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Finding the fundamental domain

I By Dehn’s lemma applied to M(J), each component of Di ∩ ∂M̃(J) bounds a disk
mapping to a mutually disjoint collection of embedded disks in M(J).

I We modify Di by replacing each component of Di ∩ M̃(J) with lifts of these disks.

I We define Ai :=
⋃

x∈ai
ζx , an open domain where ζx is the accordant semi-circle

for x . We define
Σ̃ := S+ ∪ S− ∪

⋃
i∈I

(Ai ∪ ai ∪ A(ai ))

for the antipodal map A.
I Σ := Σ̃/Γ is a real projective surface, i.e., the ideal RP2-surface.

Proposition 5.7
There exists a fundamental domain R closed in E bounded by Dj , j = 1, . . . , 2g.
Moreover, Cl(R) ∩ (E ∪ Σ̃) is the fundamental domain of a manifold (E ∪ Σ̃)/Γ with
boundary Σ. Here, R and Cl(R) are 3-cells, and E/Γ is homeomorphic to the interior
of a handlebody of genus g.
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Relative compactification

Let P =
⋃
γ∈Γ

⋃
i=1,...,m0

γ(Pi ), and let PR := (P1 ∪ · · · ∪ Pm0 ) ∩R.

Proposition 5.8
We can choose the sufficiently far away parabolic regions

P1, . . . ,Pm0

meeting R nicely so that they are disjoint in E. Then the following hold :

I γ(Pi ) ∩R 6= ∅ if and only if γ(Pi ) meets R nicely, and γ(Pi ) = Pj for some j.
I R meets only P1, . . . ,Pm0 among all images γ(Pr ) for γ ∈ Γ, r = 1, . . . ,m0.
I Moreover, for every pair γ, η ∈ Γ,

γ(Pj ) ∩ η(Pk) = ∅ or γ(Pj ) = η(Pk), j, k = 1, . . . ,m0.
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Relative compactification

I First, we recall our bordifying surface:

Σ̃0 := S+ ∪ S− ∪
⋃
i∈I

(Ai ∪ ai ∪ A(ai )).

I Σ := Σ̃0/Γ and N := (E ∪ Σ̃)/Γ.

I We define P to be a union of mutually disjoint parabolic regions of form γ(Pi )
for γ ∈ Γ, i = 1, . . . ,m0.

I We take the closure Cl(P) of P and take the relative interior P′ in the closed
hemisphere H.

I Let ∂EP′ denote ∂P ∩ E. Then define Ñ′ := E ∪ Σ̃ \ P′.
I Γ acts properly discontinuously on Ñ′. Thus, N′ := Ñ′/Γ is a manifold.
I The manifold boundary ∂N′ of N′ is

((Σ̃ \ P′) ∪ ∂EP′)/Γ.

Define P′′ = P′/Γ.
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Relative compactification

I Also, ∂N(P′′) := (∂EP′)/Γ is a union of a finite number of disjoint annuli. ∂N′ is
homeomorphic to (Σ \ P′′) ∪ ∂NP′′.

I Recall that the union of facial-disks Di , i = 1, . . . , 2g, bounds the fundamental
domain R in H.

I

2g⋃
i=1

Cl(Di ) ∩ (E ∪ Σ̃ \ P′)

bounds a fundamental domain

Cl(R) ∩ (E ∪ Σ̃ \ P′).

I N′ := (E ∪ Σ̃ \ P′)/Γ is compact and is homeomorphic to a handlebody of genus
g by Theorem 5.2 of Hempel [9].

I N deformation retracts to N′ as above since φ does not act on any component of
P′.
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I Also, ∂N(P′′) := (∂EP′)/Γ is a union of a finite number of disjoint annuli. ∂N′ is
homeomorphic to (Σ \ P′′) ∪ ∂NP′′.

I Recall that the union of facial-disks Di , i = 1, . . . , 2g, bounds the fundamental
domain R in H.

I

2g⋃
i=1

Cl(Di ) ∩ (E ∪ Σ̃ \ P′)

bounds a fundamental domain

Cl(R) ∩ (E ∪ Σ̃ \ P′).

I N′ := (E ∪ Σ̃ \ P′)/Γ is compact and is homeomorphic to a handlebody of genus
g by Theorem 5.2 of Hempel [9].

I N deformation retracts to N′ as above since φ does not act on any component of
P′.
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