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Deforming convex RP3-structures on 3-orbifolds

Introduction

Orbifolds and RPn -structures

Orbifolds

By an n-dimensional orbifold, we mean a Hausdorff second countable topological

space with a fine open cover {Ui , i ∈ I} with models (Ũi ,Gi ) where Gi is a finite group

acting on the open subset Ũi of Rn and a map pi : Ũi → Ui inducing homeomorphism

Ũi/Gi → Ui where

I for each i, j , x ∈ Ui ∩ Uj , there exists Uk with x ∈ Uk ⊂ Ui ∩ Uj .

I an inclusion Uj → Ui induces an equivariant map Ũj → Ũi with respect to

Gj → Gi .

I A RPn-structure on an orbifold is given by having charts from Ui s to open subsets

of RPn with transition maps in PGL(n + 1,R).

A good orbifold: M/Γ where Γ is a discrete group with a properly discontinuous action.
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Introduction

Orbifolds and RPn -structures

Projective, affine, and hyperbolic geometry

I RPn = P(Rn+1) = (Rn+1 − {O})/ ∼ where ~v ∼ ~w iff ~v = s~w for s ∈ R− {O}.

I The group of projective automorphisms is PGL(n + 1,R).

I RPn − RPn−1
∞ is an affine space An where the group of projective automorphisms

of An is exactly Aff (An).

An ↪→ RPn,Aff (An) ↪→ PGL(n + 1,R).

I R1,n with Lorentzian metric q(~v) := −x2
0 + x1

1 + · · ·+ x2
n .

I The upper part of q = −1 is the model of the hyperbolic n-space Hn.

I The cone q < 0 corresponds to the convex open n-ball in Bn ↪→ An ⊂ RPn

correspond to Hn in a one-to-one manner.

I Isom(Hn) = Aut(Bn) = PO(1, n) ↪→ PGL(n + 1,R).
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Introduction

Orbifolds and RPn -structures

Real projective structures on orbifolds

I Suppose that a discrete group Γ act on a manifold M properly discontinuously.

I

An RPn-structure on M/Γ with simply connected M is given by an immersion
D : M → RPn equivariant with respect to a homomorphism h : Γ→ PGL(n + 1,R)

where Γ is the fundamental group of M/Γ.
I The pair (D, h) is only determined up to the action by g ∈ PGL(n + 1,R) given by

g(D, h(·)) = (g ◦ D, gh(·)g−1).

I Conversely, [(D, h)] determines the RPn-structure.

I For example, let M be an interior of a conic in RPn. Then Γ ⊂ PO(1, n) and M/Γ is a

hyperbolic orbifold and a convex RPn-orbifold. We can deform these to nonhyperbolic but

convex RPn-orbifolds sometimes (Kac-Vinberg ...). – The subject of this talk.
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Introduction

Orbifolds and RPn -structures

I An RPn-structure on M/Γ is convex if D(M) is a convex domain in an affine subspace

An ⊂ RPn. In this case, we will identify M with D(M) for a particular choice of D and Γ with its

image under h.

I A properly convex domain is a convex domain that is a precompact domain in some affine

subspace. A convex domain is properly convex iff it does not contain a complete real line.

I An RPn-structure on M/Γ is properly convex if so is D(M).
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Introduction

Orbifolds and RPn -structures
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Figure: The developing images of convex RPn-structures on 2-orbifolds deformed from hyperbolic

ones: S2(3, 3, 5) and D2(2, 7)
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Introduction

Orbifolds and RPn -structures

Motivations to study RPn-structures

I The study of lattices are very much established with many techniques.

I Flexible geometric structures parametrize representations in many cases and they

do not correspond to lattice situations mostly.

I Real projective structures and conformal structures are often the most flexible

finite-dimensional types we can study. Other geometries are subgeometries.

I Orbifolds with convex RPn-structures have Hilbert metrics with many properties of

CAT (0)-spaces and the theory is compatible with the geometric group theory. (no

angles... ) (N. Kuiper, Benzecri, Colbois, Venicos, Verovic,.. )

I There are "many" more orbifolds with RPn-structures than homogeneous

Riemannian ones.
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Introduction

Orbifolds and RPn -structures

Motivations to study RP3-structures on 3-orbifolds
I Real projective structures on surfaces and 2-orbifolds are “understood":

I There is a constructive classification from the convex decomposition theorem and the

annulus decomposition theorem:
I There is always a decomposition into convex subsurfaces and annuli. Convex

subsurfaces and annuli with geodesic boundary are classifiable. (Sullivan-Thurston,

Goldman, Choi)

Cooper, Long, and Thistlethwaite

There is a numerical study on the RP3-structures obtained by deforming hyperbolic

3-manifolds in the Hodgson-Weeks census of 5000. About 5 percents are deformable.

Some of the computations are exact and includes many interesting examples.

II For the reflection 3-orbifolds, a study of orderable reflection orbifolds by Vinberg,

Benoist, Choi, Hodgson, Lee, and Marquis.

I Question (CLT): Does every hyperbolic 3-orbifold deform up to finite covers?
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Introduction

Deformation spaces and holonomy maps

Deformation spaces of convex RPn-structures

I Given an orbifold S, a convex RPn-structure is given by a diffeomorphism

f : S → Ω/Γ for a convex domain Ω in RPn and Γ a subgroup of PGL(n + 1,R).

I This induces a diffeomorphism D : S̃ → Ω equivariant with respect to

h : π1(S)→ Γ.

I The deformation space CDef(S) of convex RPn-structures

is {(D, h)}/ ∼ where (D, h) ∼ (D′, h′) if there is an isotopy f̃ : S̃ → S̃ such that

D′ = D ◦ f̃ and h′(f̃ gf̃−1) = h(g) for each g ∈ π1(S) or D′ = k ◦ D and

h′(·) = kh(·)k−1 for k ∈ PGL(n + 1,R).

I Alternatively, CDef(S) = {f : S → Ω/Γ}/ ∼ where f ∼ g for f : S → Ω/Γ and

g : S → Ω′/Γ′ if there exists a projective diffeomorphism k : Ω/Γ→ Ω′/Γ′ so that

k ◦ f is homotopic to g.

9/53



Deforming convex RP3-structures on 3-orbifolds

Introduction

Deformation spaces and holonomy maps

The hol map: The local homeomorphism property
Koszul’s work

The closed version is a classical theorem that the holonomy representations locally

parametrize the geometric structures and vice versa. We state the radial end version.

Theorem A

Let O be a closed n-orbifold (or noncompact tame with radial ends), (suppose that O
has the end fundamental group conditions. ) Then the following map is a local

homeomorphism:

hol : Def(E)(O)→ rep(E)(π1(O), PGL(n + 1,R))

in the stable subspace.

Proof.

This follows as in the compact cases using the bump functions. However, we may need

the bump functions extending to the ends for radial ends.
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Introduction

Convexity and convex domains

Convexity.

I We begin by discussing the convexity:

I The usual version is for closed orbifolds.

Proposition

I An RPn-orbifold (with nonempty radial end) is convex if and only if the developing map

sends the universal cover to a convex open domain in RPn.
I An RPn-orbifold (with nonempty radial end) is properly convex if and only if the

developing map sends the universal cover to a properly convex open domain in a

compact domain in an affine patch of RPn.
I If a convex RPn-orbifold (with nonempty radial end) is not properly convex, then its

holonomy is reducible.
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Introduction

Convexity and convex domains

Benoist’s "maximally complete" results

Benoist in his papers "Convexes divisibles I-IV":

Proposition (Benoist)

Suppose that a discrete subgroup Γ of PGL(n + 1,R) acts on a properly convex

n-dimensional open domain Ω so that Ω/Γ is compact. Then the following statements

are equivalent.

I Every finite index subgroup of Γ has a finite center.

I Every FI subgroup of Γ has a trivial center.

I Every FI subgroup of Γ is irreducible in PGL(n + 1,R). (or strongly irreducible).

I The Zariski closure of Γ is semisimple.

I Γ does not contain a normal infinite nilpotent subgroup.

I Γ does not contain a normal infinite abelian subgroup.
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Introduction

Convexity and convex domains

Benoist’s result continued

I The group with the above property is said to be the group with trivial virtual center.

I Theorem (Benoist)

Let Γ be a discrete subgroup of PGL(n + 1,R) with a trivial virtual center. Suppose that

a discrete subgroup Γ of PGL(n + 1,R) acts on a properly convex n-dimensional open

domain Ω so that Ω/Γ is compact. Then every representation of a component of

Hom(Γ, PGL(n + 1,R)) containing the inclusion representation also acts on a properly

convex n-dimensional open domain cocompactly.
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Coxeter 3-orbifolds

Coxeter 3-orbifolds

We will concentrate on 3-dimensional orbifolds whose base spaces are convex

polyhedra and whose sides are silvered and each edge is given an order. For example:

a hyperbolic polyhedron with edge angles of form π/m for positive integers m.

The fundamental group of the orbifold will be a Coxeter group with a presentation

Ri , i = 1, 2, . . . , f , (Ri Rj )
nij = 1

where Ri is associated with silvered sides and Ri Rj has order nij associated with the

edge formed by the i-th and j-th side meeting.
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Coxeter 3-orbifolds

Coxeter orbifold structure

Let P be a fixed 3-dimensional convex polyhedron. Let us assign orders at each edge.

We let e be the number of edges and e2 be the numbers of edges of order-two. Let f

be the number of sides.

We keep vertices of P of form (2, 2, n), n ≥ 2, (2, 3, 3), (2, 3, 4), (2, 3, 5), i.e., orders of

spherical triangular groups and remove others. This makes P into an open

3-dimensional orbifold with ends. (For higher-dimensional polyhedrons, we do similar

operations.)

Let P̂ denote the differentiable orbifold with sides silvered and the edge orders realized

as assigned from P with vertices removed. We say that P̂ has a Coxeter orbifold

structure.
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Coxeter 3-orbifolds

Vinberg’s results...

I Vinberg studied these as linear reflection goups. His main results is that a closed

RPn-orbifold P̂ is properly convex, i.e., P̂ is a quotient of a precompact convex

domain in an affine subspace of RPn.

I A linear reflection group is determined by the polytope given by equations ai ≡ 0

for i = 1, .., f and the reflection points bi , i = 1, .., f .

I Cartan matrix: (aij = ai (bj )) satisfies
I aij ≤ 0, i 6= j, and if aij = 0, then aji = 0.
I aii = 2, aij aji ≥ 4, or aij aji = 4 cos2(π/nij ).

I In general, symmetric Cartan matrices can be deformed to nonsymmetric Cartan

matrices (aij = ai (bj ))ij and they correspond to the deformations.

I The rank of the matrix equals one + the dimension of the Coxeter orbifold. The

cyclic invariants ai1 i2 ai2 i3 · · · aik i1 for distinct indices are complete invariants.

I Kac and Vinberg found examples of convex RPn-orbifolds that are not Riemannian

hyperbolic based on hyperbolic reflection triangle groups and deforming.
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Coxeter 3-orbifolds

Orderable Coxeter 3-orbifolds and the deformation spaces

Deformation spaces

I The deformation space D(P̂) of projective structures on an orbifold P̂ is the space

of all projective structures on P̂ quotient by isotopy group actions of P̂.

I A point p of D(P̂) always determines a fundamental polyhedron P up to projective

automorphisms.

I We wish to understand the space where the fundamental polyhedron is always

projectively equivalent to P.

This is the restricted deformation space of P̂ and we denote it by DP(P̂).
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Coxeter 3-orbifolds

Orderable Coxeter 3-orbifolds and the deformation spaces

Orderable Coxeter 3-orbifolds
We say that the polytope P is orderable if we can order the sides of P so that each side

meets sides of higher index in less than or equal to 3 edges.

Definition

Let P̂ be the orbifold obtained from P by silvering sides and removing vertices as

above. We also say that the orbifold P̂ is orderable if the sides of P can be ordered so

that each side has no more than three edges which are either of order 2 or included in

a side of higher index.

Theorem

Let P be a convex polyhedron and P̂ be given a normal-type Coxeter orbifold structure.

Let k(P) be the dimension of the group of projective automorphisms acting on P.

Suppose that P̂ is orderable. Then the restricted deformation space of projective

structures on the orbifold P̂ is a smooth manifold of dimension 3f − e − e2 − k(P) if it

is not empty.
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Coxeter 3-orbifolds

Orderable Coxeter 3-orbifolds and the deformation spaces

Proof.

The basic idea is to control the reflection points in order. Basically, this is the

"underdetermined case" in terms of algebraic equations. (Others are usually

"overdetermined cases".)

The total deformation space fibers over the open subspace of polytopes

combinatorially equivalent to P.
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Coxeter 3-orbifolds

Iterated-truncation tetrahedron (ecimaedre combinatoire)

Iterated-truncation tetrahedron (ecimaedre combinatoire)

Theorem of L. Marquis

We start with a tetrahedron and cut off a vertex. We iterate this. This gives us a convex

polytope with trivalent vertices, i.e., truncation orbifolds. Then the deformation space is

diffeomorphic to Re+−3 when the orbifold satisfies Andreev’s conditions.

The proof is basically very combinatorial and algebraic over R. (generalizations?)

Choudhury, Lee, Choi

In fact, OCH are only five types: tetrahedron, prism, and three other. There are

infinitely many orderable noncompact Coxeter 3-orbifolds admitting hyperbolic

structures.

The orderbility is more general then truncation orbifold conditions; however, for

compact ones, they are the same.
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Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

I Now we are interested in nonorderable cases and some overdetermined cases as

well.

I For ideal or hyperideal hyperbolic Coxeter 3-orbifolds with all edge orders ≥ 3,

Lee, Hodgson, and Choi showed that the restricted deformation space of convex

RP3-structures is locally a smooth cell of dimension 6 at the hyperbolic point.

I The deformation space has dimension e − 3 and smooth at the hyperbolic point.

I The proof involves Weil-Prasad infinitesimal rigidity:
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Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

The equations to solve

I We now fix orders nij for the codimension 2 faces of P and consider the restricted
deformation space of the corresponding Coxeter orbifold P̂. Now the αi ’s will be
fixed, and bi ’s are variables ; Vinberg’s result leads us to solve the following
system of polynomial equations:

I For each i = 1, . . . , f ,

aii = αi (bi ) = 2, (1)

I If Fi and Fj are adjacent in P and nij > 2,

aij aji = αi (bj )αj (bi ) = 4 cos2(π/nij ), (2)

I If Fi and Fj are adjacent in P and nij = 2,

aij = αi (bj ) = 0 and aji = αj (bi ) = 0. (3)

I Note the difference between the cases nij = 2 and nij > 2.

I If nij > 2 always, then actually with αi ’s fixed, the differential coincide with the

differential for solving for hyperbolic structures where ai is Lorentz dual to bi .
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Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

Numerical experiments on cubes and dodecahedrons

Following up on the Cooper-Long-Thistlethwaite approach, Choi, Hodgson, Lee

showed

Theorem

Consider the compact hyperbolic cubes such that each dihedral angle is π/2 or π/3.

Up to symmetries, there exist 34 cubes satisfying this condition. For the corresponding

hyperbolic Coxeter orbifolds,

I 10 are projectively deformable relative to the mirrors

I and the remaining 24 are projectively rigid relative to the mirrors.

I The deformations of the three orbifolds are not projective bendings.

Some of these with many 2s are shown to be rigid by "a linear test". We use

computations packages and some of these need Gröbner basis techniques.
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Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

The cubes

Figure: Some of the cubes we studied: cu15, cu21, cu33, cu34
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Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

Notation

I Each ei is an edge order, corresponding to a dihedral angle π/ei ,

I O = the number of variables − the number of Vinberg equations,

I I = dim of infinitesimal restricted deformation space of rp structures,

I A = the dimension of local restricted deformation space of rp structures,

I L = Is it possible to apply the linear test of rigidity? (yes or no), and the maximum

level needed,

I J = Does the calculation of the Jacobian D give a full description of the local

restricted deformation space? (yes or no),

I S = min of the singular values of the Jacobian D.

I G = order of the group of symmetries,

I C = number of (essential) circuits in the dual graph consisting of edges of order 3

I B = number of totally geodesic 2-dimensional suborbifold (nonfacial)
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Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

Labels of edges of cubes
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Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

The some of results

name e1e2 · · · e11e12 O I A L J G C B

cu1 232222232223 -3 0 0 yes, level 2 · 2 0 0

cu2 232222232233 -2 0 0 yes, level 3 · 1 0 0

cu3 232222232322 -3 0 0 yes, level 1 · 6 0 0

cu4 232222232323 -2 0 0 yes, level 2 · 1 0 0

cu5 232222232333 -1 0 0 yes, level 3 · 1 0 0

cu6 232222233322 -2 0 0 yes, level 2 · 2 0 0

cu7 232222233332 -1 0 0 yes, level 3 · 1 0 0

cu8 232222322223 -3 0 0 yes, level 2 · 2 0 0

cu9 232222322332 -2 0 0 yes, level 2 · 1 0 0

cu10 232222323223 -2 0 0 yes, level 3 · 2 0 0

cu11 232222323322 -2 0 0 yes, level 2 · 2 0 0

cu12 232222323323 -1 0 0 yes, level 3 · 1 0 0

cu13 232222323332 -1 0 0 yes, level 2 · 2 0 0

cu14 232222333322 -1 0 0 yes, level 3 · 1 0 0

Table: The list of cubes up to cu14

See http://mathsci.kaist.ac.kr/~manifold/cudo.zip for the computation files.
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Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

name e1e2 · · · e11e12 O I A L J G C B

cu15 232222333332 0 0 0 no yes 1 1 0

cu16 232223233322 -1 0 0 yes, level 3 · 2 0 0

cu17 232223322323 -1 1 1 no no 2 1 1

cu18 232223323323 0 1 1 no no 4 1 1

cu19 232223333322 0 0 0 no yes 1 1 0

cu20 232232232233 -1 0 0 yes, level 3 · 2 0 0

cu21 232232232323 -1 1 1 no no 4 1 1

cu22 232232232333 0 1 1 no no 2 1 1

cu23 232232332322 -1 0 0 yes, level 3 · 2 0 0

cu24 232232332323 0 0 0 no yes 1 1 0

cu25 232232332332 0 0 0 no yes 1 1 0

cu26 232233332223 0 1 0 no no 2 1 0

cu27 232233332323 1 2 1 no no 2 2 1

cu28 232322232233 -1 0 0 no yes 2 1 0

cu29 232323232323 0 1 0 no no 4 1 2

cu30 232323323323 1 1 1 no yes 4 2 1

cu31 232323332323 1 1 1 no yes 2 2 0

cu32 232323333322 1 1 1 no yes 2 2 0

cu33 232333332323 2 3 2 no no 8 3 2

cu34 233223233322 0 1 1 no no 12 1 3

Table: The list of cubes
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Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

Discussions

I If L and J are no, we use Gröbner basis to find exact solutions.

I cu31, cu32, and cu34 are only orbifolds here with deformations relative to mirrors

that are not projective bendings.

I cu17, cu18, cu21, cu22, cu27, cu30 have 1-dimensional deformations relative to

mirrors that are projective bendings.

I For cu33, there are two parameters of projective bendings giving a 2-dimensional

space of bendings by Theorem 5.3 of Johnson-Millson [3]. The deformation space

is singular according to Lemma 6.1 in [3]. The Gröbner basis has a squared term.

I For cu29 and cu34, the totally geodesic suborbifolds do not yield any projective

bendings.
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Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

Dodecahedrons

Theorem

Consider the compact hyperbolic dodecahedra such that each dihedral angle is π/2 or

π/3, and each face has at most two dihedral angles equal to π/2.

I Up to symmetries, there exist 13 dodecahedra satisfying these conditions.

I For the corresponding hyperbolic Coxeter orbifolds, only 1 has projective

deformations relative to the mirrors, which are not projective bendings, and

I the remaining 12 are projectively rigid relative to the mirrors.
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Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

Dodecahedron
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Figure: do13 with five-fold rotational symmetry about the axis.
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Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

I This is the dodecahedral orbifold with a 1-dimensional restricted deformation

space that we found. It is orderable up to rotational symmetry. In fact, we have

deformability of orderable polytopes up to rotational symmetry.

I Clearly we need to work out more examples to figure out what is the precise

condition where there are deformations which are bendings or not. More

theoretical approach is called for.

Weak orderability

There is a recent work by Gye-Seon Lee and myself: Projective deformations of weakly

orderable hyperbolic Coxeter orbifolds, arXiv:1207.3527. This is a generalization

working on “whole deformation space”.
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Convex RPn -orbifolds with radial ends

Tillman’s example

S. Tillman’s example
I There is a census of small hyperbolic orbifolds with graph-singularity. (See the paper by D.

Heard, C. Hodgson, B. Martelli, and C. Petronio [2])

I There is a complete hyperbolic structure on the orbifold based on S3 with handcuff singularity

with two points removed. The singularity orders are three. This is obtained by gluing a pair of

faces of a tetrahedron around a pair of disjoint edges.

I There is a one-parameter space of deformations of the structures to RP3-structures as seen

by simple matrix computations. There are also numerical computations on complete

hyperbolic cubes due to G. Lee.
I These are all properly and strictly convex and irreducible by our theory to be presented.

3

33

Figure: The handcuff graph
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Convex RPn -orbifolds with radial ends

Tillman’s example

End orbifold

I An RPn-orbifold has radial ends if each end has an end neighborhood foliated by

concurrent geodesics for each chart ending at the common point of concurrency.

I Each end has a neighborhood diffeomorphic to a closed orbifold times an open

interval.

I Given an end, there is an end orbifold associated with the end. The radial foliation

has a transversal RPn−1-structure and hence the end orbifold has an induced

RPn−1-structure of one dimension lower.

I The end orbifold is convex if O is convex. If the end orbifold is properly convex,

then we say that the end is a transversely properly convex end.

I Crampon-Marquis arXiv:1202.5442 and Cooper-Long-Tillman arXiv:1109.0585

also studies finite-covolume cases: i.e.; “cusped cases".
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Convex RPn -orbifolds with radial ends

Classification of ends: rather restrictions on ends

Classification of ends: rather restrictions on ends

I A subdomain K of RPn is said to be horospherical if it is strictly convex and the

boundary ∂K is diffeomorphic to Rn−1 and bdK − ∂K is a single point.

I K is lens-shaped if it is a convex domain and ∂K is a disjoint union of two

smoothly embedded (n − 1)-cells not containing any straight segment in them.

I A cone is a domain in RPn whose closure in RPn has a point in the boundary,

called a cone-point, so that every other point has a segment contained in the

domain with endpoint the cone point and itself.

I A cone-over a lens-shaped domain A is a convex submanifold that contains a
lens-shaped domain A of the same dimension and

I is a union of segments from a cone-point v 6∈ A to points of A,
I the manifold boundary is one of the two boundary components of A, and
I each maximal segment from v meets the two boundary components at unique points.
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Classification of ends: rather restrictions on ends

Figure: The universal covers of horospherical and lens shaped ends. The radial lines form

cone-structures.
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Convex RPn -orbifolds with radial ends

Classification of ends: rather restrictions on ends

I A lens-cone is the union of the segments over a lens-shaped domain.

I A lens is the lens-shaped domain A, not determined uniquely by the lens-cone

itself.

I A totally-geodesic subdomain is a convex domain in a hyperspace.

I A cone-over a totally-geodesic domain A is a cone over a point x not in the

hyperspace.

I An admissible ends are ones modeled on above (or joins) with the fundamental

group a virtual product of abelian and hyperbolic groups. (strictly for convenience)
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Convex RPn -orbifolds with radial ends

Classification of ends: rather restrictions on ends

Our attempts to classify the radial ends (with Y. Carriere and D. Fried)

I We first introduce some eigenvalue conditions on boundary component holonomy

similar to Anosov conditions (structually stable conditions) as studied by many

groups of people: Burger, Iozzi, Wienhard, and Labourie, Guichard.

I Under our assumptions, we aim to show that radial ends are either of
I lens-type,
I horospherical or
I of the joins of these two types with central elements.

I Finally, we aim to show that if O is relatively hyperbolic with respect to end

fundamental groups, then the radial ends are either horospherical or of lens-type.
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Convex RPn -orbifolds with radial ends

Main results: Open and closed properties

Open and closed properties

Theorem B

Let O be a noncompact topologically tame n-orbifold with admissible ends. Suppose

that O satisfies the convex end fundamental group conditions. Then

I In Defi
E,ce(O), the subspace CDefE (O) of IPC-structures is open.

I Suppose further that π1(O) contains no nontrivial nilpotent normal subgroup. The

deformation space CDefE,ce(O) of IPC-structures on O maps homeomorphic to a

union of components of repi
E,ce(π1(O), PGL(n + 1,R)).
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Convex RPn -orbifolds with radial ends

Main results: Open and closed properties

Theorem C

Let O be a strict IPC noncompact topologically tame n-dimensional orbifold with

admissible ends and convex end fundamental group condition. Suppose also that O
has no essential homotopy annulus or torus. Then

I π1(O) is relatively hyperbolic with respect to its end fundamental groups.

I In Defi
E,ce(O), the subspace SDefi

E (O) of strict IPC-structures with respect to the

ends is open.

I The deformation space SDefE,ce(O) of strict IPC-structures on O with respect to

the ends maps homeomorphic to a union of components of

repi
E,ce(π1(O), PGL(n + 1,R)).

We will sketch some ideas to prove Theorems B and C.
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Convex RPn -orbifolds with radial ends

The IPC-structures and relative hyperbolicity

Hilbert metrics

I A Hilbert metric on an IPC-structure is defined as a distance metric given by cross

ratios. (We do not assume strictness here.)

I Let Ω be a properly convex domain. Then dΩ(p, q) = log(o, s, q, p) where o and s

are endpoints of the maximal segment in Ω containing p, q.

I This gives us a well-defined Finsler metric.

I Given an IPC-structure on O, there is a Hilbert metric dH on Õ and hence on Õ.

This induces a metric on O.
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Convex RPn -orbifolds with radial ends

The IPC-structures and relative hyperbolicity

Relatively hyperbolicity and strict IPC-structures

I We will use Bowditch’s result to show

Theorem (D)

Let O be a topologically tame strictly IPC-orbifold with radial ends and has no essential

annuli or tori. Then π1(O) is relatively hyperbolic with respect to the end groups

π1(E1), ..., π1(Ek ).

I Fact: Suppose that π1(El ), .., π1(Ek ) are hyperbolic for some 0 ≤ l < k , π1(O) is

relatively hyperbolic with respect to π1(E1), . . . , π1(El−1) iff so it is with respect to

π1(E1), . . . , π1(Ek ). (Drutu)
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Convex RPn -orbifolds with radial ends

The IPC-structures and relative hyperbolicity

I Proof: We denote this quotient space bdÕ1/ ∼ by B.

I We will use Theorem 0.1. of Yaman [5]: We show that π1(O) acts on the set B as

a geometrically finite convergence group.

I The group acts properly discontinuously on the set of triples in B.

I An end group Γx for end vertex x is a parabolic subgroup fixing x since the

elements in Γx fixes only the contracted set in B and since there are no essential

annuli.
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Convex RPn -orbifolds with radial ends

The IPC-structures and relative hyperbolicity

I Proof continued: Let p be a point that is not a horospherical endpoint or a

singleton corresponding an lens-shaped end. We show that p is a conical limit

point.
I We find a sequence of holonomy transformations γi and distinct points a, b ∈ ∂X

so that γi (p)→ a and γi (q)→ b for all q ∈ ∂X − {p}. To do this, we draw a line

l(t) from a point of the fundamental domain to p where as t →∞, l(t)→ p in the

compactification.

q'

q

p'

p

l

m

Figure: A shortest geodesic m to a geodesic l .

I
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Convex RPn -orbifolds with radial ends

The IPC-structures and relative hyperbolicity

Converse

We will prove the partial converse to the above Theorem D:

Theorem (E)

Let O be a topologically tame IPC-orbifold with admissible ends without essential

annuli or tori. Suppose that π1(O) is relatively hyperbolic group with respect to the

admissible end groups π1(E1), ..., π1(Ek ) where Ei are horospherical for i = 1, ...,m

and lens-shaped for i = m + 1, ..., k for 0 ≤ m ≤ k.

I Assume that O is IPC. Then O is strictly IPC.

I Let O1 be obtained by removing the concave neighborhoods of hyperbolic ends.

Then if O is IPC, then O1 is strictly IPC.
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Convex RPn -orbifolds with radial ends

The IPC-structures and relative hyperbolicity

Proof.

Suppose not. We obtain a triangle T with ∂T in ∂Õ1.

Lemma

Suppose that O is a topologically tame properly convex n-orbifold with radial ends that

are properly convex or horospherical and π1(O) is relatively hyperbolic with respect to

its ends. O has no essential tori or essential annuli.

Then every triangle T in Õ with ∂T ⊂ ∂Õ is contained in the closure of a convex hull of

one of its ends.

Proof.

Uses asymptotic cone in Drutu-Sapir’s work.
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Convex RPn -orbifolds with radial ends

The IPC-structures and relative hyperbolicity

Proofs of Theorem B and C

I We show that a small change of the structure implies the small change of the

universal covers of the end orbifolds in the Hausdorff metrics.– We can control the

ends.

I We show that the Koszul-Vinberg function can be perturbed to positive definite

functions in the affine suspensions by controlling the ends.– This proves Theorem

B.

I For theorem C, we use "Strict IPC iff rel. hyperbolic".

I As we deform a strict IPC structure, we do not change the rel. hyperbolicity. Thus,

strict IPC property is preserved.
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Open problems for Coxeter orbifolds (with Hodgson and Lee)

Q. 1. Cooper, Hodgson

Let P be a 3-dimensional hyperbolic Coxeter polyhedron, and let P̂ denote its Coxeter

orbifold structure. What precise combinatorial condition tell us it is deformable or not?

I Linear test,

I "weakly orderability" that shows smoothness and the dimension at hyperbolic

points (Lee).

I Related to symmetry or essential suborbifolds (bending) or the dual edge circuit

property?
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Open questions (with Hodgson and Lee)

Q. 2: Solutions at infinity

Let P be a 3-dimensional hyperbolic Coxeter polyhedron, and let P̂ denote its Coxeter

orbifold structure. What is the solution at infinity in DP(P̂)? For example, ∅ or not?

To answer the question 2, we try to find how to compactify the solution space DP(P̂)

using tropical methods and valuations.
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Open questions (with Hodgson and Lee)

Q. 3
What is the global structure of the deformation spaces?

I Even for Coxeter orbifolds? (For an iterated truncation tetrahedron orbifold, the deformation

space is always a cell by (L. Marquis)).

I What are the possible singularities? (bendings along two tot. geo. surfaces give singularity by

Johnson-Millson. smooth if orderable by Choi.)

I Is it noncompact always; or is there a compact deformation space? (due to Benoist, Hodgson)

Q. 4 (Hodgson)

Let P be a 3-dimensional hyperbolic Coxeter polyhedron, and let P̂ denote its Coxeter orbifold

structure. Suppose that ne ≥ 3 is an order of edge e. Is the dimension of DP (P̂) constant when we

change ne into the different values ≥ 3?

No sufficient experimentations yet...Order increases the degree of polynomial equations and hence

more difficult. For oderable ones, this is constant.
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Open questions (with Hodgson and Lee)

Q. 5. Projective Andreev’s theorem? Goldman, Choi

What is a projective version to the Andreev’s theorem for 3-dimensional hyperbolic polyhedron?

Suppose that C is an abstract 3-dimensional polyhedron and orders nij ≥ 2 are given

corresponding to each edge Fij = Fi ∩ Fj of C, where Fi are the faces of C. Which conditions are

necessary and sufficient for the existence of a compact 3-dimensional “projective” polyhedron P

which realizes C with “dihedral angles” π/nij at each edge Fij ?

A cusp-opening is a behavior of ideal boundary becoming a totally geodesic boundary component

of dim 2. This was first observed by Benoist and numerically by Lee and Choi. (Maybe there are

more general behaviors..)

Q. 6. Cusp openning

Does P̂ have cusp openings to totally geodesic boundary at some of the ideal vertices of P? In fact,

we can ask this for any hyperbolic 3-manifolds with cusps. (The cusp opening seems to depend on

P̂ and on themselves. But how?)
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Open questions (with Hodgson and Lee)

Q. 7. Projective Dehn surgery or cone-angle deformations

I Finally, we think that we can do RPn-Dehn-surgeries:

I That is, given an RP4-manifold with radial end diffeomorphic to T 3 × R, we obtain

a closed 4-manifolds by attaching T 2 × D2.

I In fact we can do cone-angle deformation from 0 to ε, ε > 0, where the singularity

is at T 2 × (0, 0) and T 2 × D − {(0, 0)} is smooth.

I An example is obtained from simple computations of a 4-dimensional Coxeter

orbifold that is a prism times [0, 1). (Benoist, Lee, Choi).

I For which subset of Z3, the Dehn surgeries are possible from a complete

hyperbolic 4-manifold to obtain RP4-structures on closed 4-manifolds. (convex,

2-convex, or not convex)
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