1 Introduction

About this lecture

- Proof strategies
- Proofs involving negations and conditionals.
- Proofs involving quantifiers
- Proofs involving conjunctions and biconditionals (up to here in this lecture.)
- Proofs involving disjunctions
- Existence and uniqueness proof
- More examples of proofs..
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic. html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- A mathematical introduction to logic, H. Enderton, Academic Press.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press.
- Thinking about Mathematics: The Philosophy of Mathematics, S. Shapiro, Oxford. 2000.

Some helpful references

- http://en.wikipedia.org/wiki/Truth_table,
- http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral. html, complete (i.e. has all the steps)
- http://svn.oriontransfer.org/TruthTable/index.rhtml, has xor, complete.

2 Proof strategies

Proof strategies

- A mathematician and/or logicians use many methods to obtain results: These includes guessing, finding examples and counter-examples, experimenting with computations, analogies, physical experiments, and thought experiments (like pictures).
- Sometimes proofs involve constructions, i.e., the proof of polynomial root existences by Gauss.
- However, the only results that the mathematicians accept are given by logical deductions from the set theoretical foundations. (This includes finding counterexamples by guessing)
- There are some controversies as to whether the ZFC is the only foundation.
- Other fields such as numerical mathematics, physics, and so on have different standards.
- Because of these differences of standards, it is often very hard to communicate with other fields.
- Finding proofs are hard: example: Fermat's conjecture...
- Finding a proof is an art. However, there are hints.
- Most proofs that you have to do have no more than 5-6 steps.
- In this book, the proof strategies are divided into
- for a given of form: $\neg P, P \wedge Q \cdot P \vee Q \cdot P \rightarrow Q, P \leftrightarrow Q, \forall x P(x), \exists x P(x), \exists!x P(x)$.
- for a goal of form: $\neg P, P \wedge Q, P \vee Q, P \rightarrow Q, P \leftrightarrow Q, \forall x P(x), \forall n \in$ $\mathbb{N} P(n), \exists x P(x), \exists!x P(x)$.
- We use a "structural method" in this book. The method is that of divide and conquer or "Top down" approach.
- This means breaking down the proof into smaller and smaller pieces which are easier to prove or already proven by someone else.
- Never assert anything until you can justify it fully using hypothesis or the conclusions reached earlier.
- The basic assumption we will have in mathematics is the ZFC.
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, and \mathbb{R} are the important sets.

3 Proofs involving negations and conditionals.

To prove the form $P \rightarrow Q$

- First method: Assume P and prove Q. Or add P to the list of hypothesis and prove Q.
\bullet

Given	Goal
----	$P \rightarrow Q$

- Change to

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
---- & Q \\
---- & \\
P &
\end{array}
$$

- Example $0<a<b \rightarrow a^{2}<b^{2}$.
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
--- & 0<a<b \rightarrow a^{2}<b^{2}
\end{array}
$$

- Change to

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
---- & a^{2}<b^{2} \\
---- & \\
0<a<b &
\end{array}
$$

\bullet

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
0<a<b & a^{2}<b^{2} \\
0<a^{2}<a b & \\
0<a b<b^{2} &
\end{array}
$$

To prove $P \rightarrow Q$

- $P \rightarrow Q \leftrightarrow \neg Q \rightarrow \neg P$.
- Second method: Assume $\neg Q$ and prove $\neg P$.
-

Given	Goal
----	$P \rightarrow Q$

- Change to

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
---- & \neg P \\
---- & \\
\neg Q &
\end{array}
$$

- Example: Let $a>b$. Then if $a c \leq b c$, then $c \leq 0$.
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
a, b, c \text { are real numbers } & (a c \leq b c) \rightarrow(c \leq 0) \\
a>b &
\end{array}
$$

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
a, b, c \text { are real numbers } & a c>b c \\
a>b & \\
c>0 &
\end{array}
$$

Write this in English

- Theorem: Let $a>b$. Then if $a c \leq b c$, then $c \leq 0$.
- Proof: We will prove this by contrapositives. To prove $a c \leq b c \rightarrow c \leq 0$. It is sufficient to prove $c>0 \rightarrow a c>b c$. Suppose $c>0$. Then $a c>b c$ by $a>b$.

To prove a goal of the form $\neg P$.

- First method: Try to re-express $\neg P$ in some other form. (in a positive form)
- Example: Suppose that $A \cap C \subset B$ and $a \in C$. Prove $a \notin A-B$.
\bullet

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
A \cap C \subset B & a \notin A-B \\
a \in C &
\end{array}
$$

- We change $a \notin A-B$.
- $a \notin A-B \leftrightarrow \neg(a \in A \wedge b \notin B) . \leftrightarrow(a \notin A \vee a \in B) . \leftrightarrow(a \in A \rightarrow a \in B)$.
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
A \cap C \subset B & a \in A \rightarrow a \in B \\
a \in C &
\end{array}
$$

\bullet

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
A \cap C \subset B & a \in B \\
a \in C & \\
a \in A &
\end{array}
$$

- Theorem: Suppose that $A \cap C \subset B$ and $a \in C$. Prove $a \notin A-B$.
- Proof: To show $a \notin A-B$, it is equivalent to show $a \in A \rightarrow a \in B$. (See above). Assume $a \in A$. Since $A \cap C \subset B$ and $a \in C$, it follows that $a \in B$.

To prove a goal of the form $\neg P$.

- Second method: Assume P and find a contradiction:
- As above: Show $A \cap C \subset B, a \in C$. Prove $a \notin A-B$.
-

Given	Goal
$A \cap C \subset B$	$a \notin A-B$
$a \in C$	

\bullet

Given	Goal
$A \cap C \subset B$	contradiction
$a \in C$	
$a \in A-B$	

To prove a goal of the form $\neg P$.

-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
A \cap C \subset B & \text { contradiction } \\
a \in C & \\
a \in A-B & \\
a \in(A \cap C)-B & \\
a \in \emptyset &
\end{array}
$$

To use a given of the form $\neg P$.

- First method: If we are doing a proof by contradiction, then use P as the goal.
-

Given	Goal
$\neg P$	contradiction

- Change to

- Second method: re-express in some other form (positive form)

To use the given of the form $P \rightarrow Q$

- Use modus ponens $P, P \rightarrow Q \vdash Q$.
- Use modus tollens $P \rightarrow Q, \neg Q \vdash \neg P$.
- Example: Suppose $A \subset B, a \in A$, and a and b are not both elements of B. Prove $b \notin B$.
\bullet

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
A \subset B & b \notin B \\
a \in A & \\
\neg(a \in B \wedge b \in B) &
\end{array}
$$

-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
A \subset B & b \notin B \\
a \in A & \\
(a \in B \rightarrow b \notin B) &
\end{array}
$$

-

$$
\begin{array}{rlr}
\text { Given } & \text { Goal } \\
A \subset B & b \notin B \\
a \in A & \\
(a \in B & \rightarrow b \notin B) & \\
a \in B &
\end{array}
$$

- Theorem: Suppose $A \subset B, a \in A$, and a and b are not both elements of B. Then $b \notin B$.
- Proof: Since a and b are not both elements of B, it follows that if a is an element of B, then b is not an element of B. Since $a \in A$, we have $a \in B$. Thus b is not an element of B.

4 Proofs involving quantifiers

To show a goal of the form $\forall x P(x)$

- We introduce some arbitrary variable x in the assumption and prove $P(x)$.
-

Given	Goal
----	$\forall x P(x)$

\bullet

Given	Goal
----	$P(x)$

x is an arbitrary variable.

Examples

- A, B, C are sets. $A-B \subset C$. Prove $A-C \subset B$.

Given	Goal
$A-B \subset C$	$A-C \subset B$

\bullet

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall x(x \in A-B \rightarrow x \in C) & \forall x(x \in A-C \rightarrow x \in B)
\end{array}
$$

\bullet

$$
\begin{gathered}
\text { Given } \\
\forall x(x \in A-B \rightarrow x \in C) \\
x \text { arbitrary }
\end{gathered} \quad x \in A-C \rightarrow x \in B
$$

Examples

\bullet

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall x(x \in A-B \rightarrow x \in C) & x \in B \\
x \text { arbitrary } & \\
x \in A-C &
\end{array}
$$

-

Given Goal
$\forall x(x \in A-B \rightarrow x \in C) \quad$ contradiction
$x \in A$
$x \notin C$
$x \notin B$
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall x(x \in A-B \rightarrow x \in C) & x \in C \\
x \in A & \\
x \notin C & \\
x \notin B &
\end{array}
$$

- Read the English proof also.

To prove a goal of form $\exists x P(x)$

- We guess x and show $P(x)$.
\bullet

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
---- & \exists x P(x)
\end{array}
$$

$$

$$

-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
---- & P(x) \\
---- & \\
x \text { the value you decided } &
\end{array}
$$

- $\exists x,\left|x^{2}-1\right|<1 / 2$.
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
x \in \mathbb{R} & \exists x,\left|x^{2}-1\right|<1 / 2
\end{array}
$$

-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
x \in \mathbb{R} & \exists x,\left|x^{2}-1\right|<1 / 2 \\
x=1.1 & \left(x^{2}=1.21,\left|x^{2}-1\right|=0.21<1 / 2\right)
\end{array}
$$

To use a given of form $\exists x P(x)$ or $\forall x P(x)$

- $\exists x P(x)$: Introduce new variable $x_{0} . P\left(x_{0}\right)$ is true (existential instantiation)
- $\forall x P(x)$: wait until a particular value a for x to pop-up and use $P(a)$.
- Example: \mathcal{F}, \mathcal{G} families of sets. Suppose that $\mathcal{F} \cap \mathcal{G} \neq \emptyset$. Then $\bigcap \mathcal{F} \subset \bigcup \mathcal{G}$.
\bullet

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\mathcal{F} \cap \mathcal{G} \neq \emptyset & \forall x(x \in \bigcap \mathcal{F} \rightarrow x \in \bigcup \mathcal{G})
\end{array}
$$

-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\mathcal{F} \cap \mathcal{G} \neq \emptyset & x \in \bigcup \mathcal{G} \\
x \in \bigcap \mathcal{F} &
\end{array}
$$

-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\exists A(A \in \mathcal{F} \cap \mathcal{G}) & \exists A \in \mathcal{G}(x \in A) \\
\forall A \in \bigcap \mathcal{F}(x \in A) &
\end{array}
$$

-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
A_{0} \in \mathcal{F} & \exists A \in \mathcal{G}(x \in A) \\
A_{0} \in \mathcal{G} & \\
\forall A \in \bigcap \mathcal{F}(x \in A) & \\
x \in A_{0} &
\end{array}
$$

-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
A_{0} \in \mathcal{F} & \exists A \in \mathcal{G}(x \in A) \\
A_{0} \in \mathcal{G} & \\
\forall A \in \bigcap \mathcal{F}(x \in A) & \\
x \in A_{0} & \left(\text { Use } A=A_{0}\right)
\end{array}
$$

- Theorem: Suppose \mathcal{F} and \mathcal{G} are families of sets. $\mathcal{F} \cap \mathcal{G}=\emptyset$. Then $\cap \mathcal{F} \subset \bigcup \mathcal{G}$.
- Proof: Suppose $x \in \bigcap \mathcal{F}$. Since $\mathcal{F} \cap \mathcal{G} \neq \emptyset$. Let A_{0} be the common element. Then $A_{0} \in \mathcal{F}$. Thus, $x \in A_{0}$ as $A_{0} \in \mathcal{F}$. Since $A_{0} \in \mathcal{G}$, then $x \in \bigcup G$.

Proofs involving conjunctions and biconditionals

- To prove a goal of the form $P \wedge Q$: Prove P and Q separately.
- To use $P \wedge Q$: Regard as P and Q.
- To prove a goal $P \leftrightarrow Q$: Prove $P \rightarrow Q$ and $Q \rightarrow P$.
- To use $P \leftrightarrow Q$: Treat as two givens $P \rightarrow Q$ and $Q \rightarrow P$.

Example

- Prove $\forall x \neg P(x) \leftrightarrow \neg \exists x P(x)$.
- Prove $\rightarrow: \forall x \neg P(x) \rightarrow \neg \exists x P(x)$

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall x \neg P(x) & \text { contradiction } \\
\exists x P(x) &
\end{array}
$$

-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall x \neg P(x) & \text { contradiction } \\
P\left(x_{0}\right) &
\end{array}
$$

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall \neg P(x) & \text { contradiction } \\
P\left(x_{0}\right) & \\
\neg P\left(x_{0}\right) &
\end{array}
$$

Example

- Prove $\forall x \neg P(x) \leftrightarrow \neg \exists x P(x)$.
- Prove $\leftarrow: \neg \exists x P(x) \rightarrow \forall x \neg P(x)$
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\neg \exists x P(x) & \forall x \neg P(x)
\end{array}
$$

-

Given	Goal
$\neg \exists x P(x)$	$\neg P(x)$
x arbitrary	

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\neg \exists x P(x) & \text { contradiction } \\
x \text { arbitrary } & \\
P(x) &
\end{array}
$$

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\neg \exists x P(x) & \exists x P(x) \\
x \text { arbitrary } & \\
P(x) &
\end{array}
$$

- Theorem: $\forall x \neg P(x) \leftrightarrow \neg \exists x P(x)$.
- Proof: (\rightarrow) Suppose $\forall x \neg P(x)$ and suppose $\exists x P(x)$. We choose x_{0} such that $P\left(x_{0}\right)$ is true. Since $\forall x \neg P(x)$, we know $\neg P\left(x_{0}\right)$. This is a contradiction. Thus, $\forall x \neg P(x) \rightarrow \neg \exists x P(x)$.
- Proof: (\leftarrow) Suppose $\neg \exists x P(x)$. Let x be arbitrary. Suppose that $P(x)$. Then $\exists x P(x)$. This is a contradiction. Thus $\neg P(x)$ is true. Since x was arbitrary, we have $\forall x \neg P(x)$.

