1 Introduction

About this lecture

- Proof strategies
- Proofs involving negations and conditionals.
- Proofs involving quantifiers
- Proofs involving conjunctions and biconditionals (up to here in this lecture.)
- Proofs involving disjunctions
- Existence and uniqueness proof
- More examples of proofs..
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic. html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- A mathematical introduction to logic, H. Enderton, Academic Press.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press.
- Thinking about Mathematics: The Philosophy of Mathematics, S. Shapiro, Oxford. 2000.

Some helpful references

- http://en.wikipedia.org/wiki/Truth_table,
- http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral. html, complete (i.e. has all the steps)
- http://svn.oriontransfer.org/TruthTable/index.rhtml, has xor, complete.

2 Proof strategies

Proof strategies

- A mathematician and/or logicians use many methods to obtain results: These includes guessing, finding examples and counter-examples, experimenting with computations, analogies, physical experiments, and thought experiments (like pictures).
- Sometimes proofs involve constructions, i.e., the proof of polynomial root existences by Gauss.
- However, the only results that the mathematicians accept are given by logical deductions from the set theoretical foundations. (This includes finding counter-examples by guessing)
- There are some controversies as to whether the ZFC is the only foundation.
- Other fields such as numerical mathematics, physics, and so on have different standards.
- Because of these differences of standards, it is often very hard to communicate with other fields.
- Finding proofs are hard: example: Fermat's conjecture...
- Finding a proof is an art. However, there are hints.
- Most proofs that you have to do have no more than 5-6 steps.
- In this book, the proof strategies are divided into
- for a given of form: $\neg P, P \land Q.P \lor Q.P \to Q, P \leftrightarrow Q, \forall x P(x), \exists x P(x), \exists ! x P(x).$
- for a goal of form: $\neg P, P \land Q, P \lor Q, P \rightarrow Q, P \leftrightarrow Q, \forall x P(x), \forall n \in \mathbb{N}P(n), \exists x P(x), \exists ! x P(x).$
- We use a "structural method" in this book. The method is that of divide and conquer or "Top down" approach.
- This means breaking down the proof into smaller and smaller pieces which are easier to prove or already proven by someone else.
- Never assert anything until you can justify it fully using hypothesis or the conclusions reached earlier.
- The basic assumption we will have in mathematics is the ZFC.
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, and \mathbb{R} are the important sets.

3 Proofs involving negations and conditionals.

To prove the form $P \rightarrow Q$

- First method: Assume P and prove Q. Or add P to the list of hypothesis and prove Q.
- Given Goal $----- P \rightarrow Q$ -----• Change to Given Goal ----- Q----- P
- Example $0 < a < b \rightarrow a^2 < b^2$.

 $\begin{array}{ccc} \text{Given} & \text{Goal} \\ --- & 0 < a < b \rightarrow a^2 < b^2 \\ --- & \end{array}$

• Change to

Given	Goal
	$a^2 < b^2$
0 < a < b	

Given	Goal
0 < a < b	$a^2 < b^2$
$0 < a^2 < ab$	
$0 < ab < b^2$	

To prove $P \rightarrow Q$

•

•

- $P \to Q \leftrightarrow \neg Q \to \neg P$.
- Second method: Assume $\neg Q$ and prove $\neg P$.

• Change to

Given	Goal
	$\neg P$
$\neg Q$	

• Example: Let a > b. Then if $ac \le bc$, then $c \le 0$.

• Given Goal a, b, c are real numbers $(ac \le bc) \rightarrow (c \le 0)$ a > b• Given Goal a, b, c are real numbers ac > bc

 $\begin{array}{l} a > b \\ c > 0 \end{array}$

Write this in English

.

•

- Theorem: Let a > b. Then if $ac \le bc$, then $c \le 0$.
- Proof: We will prove this by contrapositives. To prove $ac \leq bc \rightarrow c \leq 0$. It is sufficient to prove $c > 0 \rightarrow ac > bc$. Suppose c > 0. Then ac > bc by a > b.

To prove a goal of the form $\neg P$.

- First method: Try to re-express $\neg P$ in some other form. (in a positive form)
- Example: Suppose that $A \cap C \subset B$ and $a \in C$. Prove $a \notin A B$.
 - $\begin{array}{ll} \mbox{Given} & \mbox{Goal} \\ A \cap C \subset B & a \notin A B \\ a \in C \end{array}$
- We change $a \notin A B$.
- $a \notin A B \leftrightarrow \neg (a \in A \land b \notin B)$. $\leftrightarrow (a \notin A \lor a \in B)$. $\leftrightarrow (a \in A \to a \in B)$.

$$\begin{array}{ll} \mbox{Given} & \mbox{Goal} \\ A \cap C \subset B & a \in A \rightarrow a \in B \\ a \in C \end{array}$$

 $\begin{array}{ll} \mbox{Given} & \mbox{Goal} \\ A \cap C \subset B & a \in B \\ a \in C \\ a \in A \end{array}$

- Theorem: Suppose that $A \cap C \subset B$ and $a \in C$. Prove $a \notin A B$.
- Proof: To show a ∉ A − B, it is equivalent to show a ∈ A → a ∈ B. (See above). Assume a ∈ A. Since A ∩ C ⊂ B and a ∈ C, it follows that a ∈ B.

To prove a goal of the form $\neg P$.

- Second method: Assume P and find a contradiction:
- As above: Show $A \cap C \subset B$, $a \in C$. Prove $a \notin A B$.
- Given Goal $A \cap C \subset B$ $a \notin A - B$ $a \in C$ • • Given Goal $A \cap C \subset B$ contradiction $a \in C$ $a \in A - B$

To prove a goal of the form $\neg P$.

 $\begin{array}{ccc} \text{Given} & \text{Goal} \\ A \cap C \subset B & \text{contradiction} \\ a \in C \\ a \in A - B \\ a \in (A \cap C) - B \\ a \in \emptyset \end{array}$

To use a given of the form $\neg P$.

- First method: If we are doing a proof by contradiction, then use P as the goal.
- •

•

$$\begin{array}{ccc} \text{Given} & \text{Goal} \\ \neg P & contradiction \\ - - - - \end{array}$$

• Change to

.

Given	Goal
$\neg P$	P

• Second method: re-express in some other form (positive form)

To use the given of the form $P \rightarrow Q$

- Use modus ponens $P, P \rightarrow Q \vdash Q$.
- Use modus tollens $P \rightarrow Q, \neg Q \vdash \neg P$.
- Example: Suppose $A \subset B, a \in A$, and a and b are not both elements of B. Prove $b \notin B$.

$$\begin{array}{ccc} \text{Given} & \text{Goal} \\ A \subset B & b \notin B \\ a \in A \\ \neg(a \in B \land b \in B) \end{array}$$

Given Goal

$$A \subset B$$
 $b \notin B$
 $a \in A$
 $(a \in B \rightarrow b \notin B)$

- Given Goal $A \subset B$ $b \notin B$ $a \in A$ $(a \in B \rightarrow b \notin B)$ $a \in B$
- Theorem: Suppose $A \subset B, a \in A$, and a and b are not both elements of B. Then $b \notin B$.
- Proof: Since *a* and *b* are not both elements of *B*, it follows that if *a* is an element of *B*, then *b* is not an element of *B*. Since *a* ∈ *A*, we have *a* ∈ *B*. Thus *b* is not an element of *B*. □

4 Proofs involving quantifiers

To show a goal of the form $\forall x P(x)$

• We introduce some arbitrary variable x in the assumption and prove P(x).

•	Given 	Goal $\forall x P(x)$	
•	Given 		Goal $P(x)$
	x is an arbitrary v	variable.	

Examples

- A, B, C are sets. $A B \subset C$. Prove $A C \subset B$.
 - $\begin{array}{ccc} \text{Given} & \text{Goal} \\ A B \subset C & A C \subset B \end{array}$
 - Given Goal $\forall x(x \in A - B \rightarrow x \in C) \quad \forall x(x \in A - C \rightarrow x \in B)$
 - Given Goal $\forall x (x \in A - B \rightarrow x \in C) \quad x \in A - C \rightarrow x \in B$ x arbitrary

Examples

•

.

 $\begin{array}{ccc} \text{Given} & \text{Goal} \\ \forall x (x \in A - B \rightarrow x \in C) & x \in B \\ x \text{ arbitrary} \\ x \in A - C \end{array}$

- •
- Given Goal $\forall x (x \in A - B \rightarrow x \in C)$ contradiction $x \in A$ $x \notin C$ $x \notin B$

$$\begin{array}{ccc} \text{Given} & \text{Goal} \\ \forall x (x \in A - B \rightarrow x \in C) & x \in C \\ x \in A \\ x \notin C \\ x \notin B \end{array}$$

• Read the English proof also.

To prove a goal of form $\exists x P(x)$

• We guess x and show P(x).

Given Goal

$$----- \exists x P(x)$$

 $----- \qquad Goal$
 $----- \qquad P(x)$
 $----- \qquad P(x)$

x the value you decided

•
$$\exists x, |x^2 - 1| < 1/2.$$

•

Given	Goal	
$x \in \mathbb{R}$	$\exists x, x^2 - 1 < 1/2$	

 $\begin{array}{lll} \begin{array}{lll} \mbox{Given} & \mbox{Goal} \\ x \in \mathbb{R} & \exists x, |x^2 - 1| < 1/2 \\ x = 1.1 & (x^2 = 1.21, |x^2 - 1| = 0.21 < 1/2) \end{array}$

To use a given of form $\exists x P(x)$ or $\forall x P(x)$

- $\exists x P(x)$: Introduce new variable x_0 . $P(x_0)$ is true (existential instantiation)
- $\forall x P(x)$: wait until a particular value a for x to pop-up and use P(a).
- Example: \mathcal{F}, \mathcal{G} families of sets. Suppose that $\mathcal{F} \cap \mathcal{G} \neq \emptyset$. Then $\bigcap \mathcal{F} \subset \bigcup \mathcal{G}$.
 - $\begin{array}{ll} \text{Given} & \text{Goal} \\ \mathcal{F} \cap \mathcal{G} \neq \emptyset & \forall x (x \in \bigcap \mathcal{F} \rightarrow x \in \bigcup \mathcal{G}) \end{array}$

$$\begin{array}{ccc} \operatorname{Given} & \operatorname{Goal} \\ \mathcal{F} \cap \mathcal{G} \neq \emptyset & x \in \bigcup \mathcal{G} \\ x \in \bigcap \mathcal{F} & & \\ \end{array}$$

$$\begin{array}{ccc} \operatorname{Given} & \operatorname{Goal} \\ \exists A(A \in \mathcal{F} \cap \mathcal{G}) & \exists A \in \mathcal{G}(x \in A) \\ \forall A \in \bigcap \mathcal{F}(x \in A) & \\ \end{array}$$

$$\begin{array}{ccc} \operatorname{Given} & \operatorname{Goal} \\ A_0 \in \mathcal{F} & \exists A \in \mathcal{G}(x \in A) \\ A_0 \in \mathcal{G} & \\ \forall A \in \bigcap \mathcal{F}(x \in A) \\ x \in A_0 & \\ \end{array}$$

$$\begin{array}{ccc} \text{Given} & \text{Goal} \\ A_0 \in \mathcal{F} & \exists A \in \mathcal{G}(x \in A) \\ A_0 \in \mathcal{G} \\ \forall A \in \bigcap \mathcal{F}(x \in A) \\ x \in A_0 & (\text{Use } A = A_0) \end{array}$$

- Theorem: Suppose \mathcal{F} and \mathcal{G} are families of sets. $\mathcal{F} \cap \mathcal{G} = \emptyset$. Then $\bigcap \mathcal{F} \subset \bigcup \mathcal{G}$.
- Proof: Suppose $x \in \bigcap \mathcal{F}$. Since $\mathcal{F} \cap \mathcal{G} \neq \emptyset$. Let A_0 be the common element. Then $A_0 \in \mathcal{F}$. Thus, $x \in A_0$ as $A_0 \in \mathcal{F}$. Since $A_0 \in \mathcal{G}$, then $x \in \bigcup G$. \Box

Proofs involving conjunctions and biconditionals

- To prove a goal of the form $P \wedge Q$: Prove P and Q separately.
- To use $P \wedge Q$: Regard as P and Q.
- To prove a goal $P \leftrightarrow Q$: Prove $P \rightarrow Q$ and $Q \rightarrow P$.
- To use $P \leftrightarrow Q$: Treat as two givens $P \rightarrow Q$ and $Q \rightarrow P$.

Example

•

- Prove $\forall x \neg P(x) \leftrightarrow \neg \exists x P(x)$.
- Prove \rightarrow : $\forall x \neg P(x) \rightarrow \neg \exists x P(x)$

•	Given $\forall x \neg P(x)$ $\exists x P(x)$	Goal contradiction
•	Given $\forall x \neg P(x)$ $P(x_0)$	Goal contradiction
•	Given $\forall \neg P(x)$ $P(x_0)$ $\neg P(x_0)$	Goal contradiction

Example

- Prove $\forall x \neg P(x) \leftrightarrow \neg \exists x P(x)$.
- Prove $\leftarrow: \neg \exists x P(x) \rightarrow \forall x \neg P(x)$

•	Given $\neg \exists x P(x)$	Goal $\forall x \neg P(x)$
•	Given $\neg \exists x P(x)$ x arbitra	Goal x) $\neg P(x)$ ry
•	Given $\neg \exists x P(x)$ x arbitrary P(x)	Goal contradiction
•		

$$\begin{array}{ccc} \text{Given} & \text{Goal} \\ \neg \exists x P(x) & \exists x P(x) \\ x \text{ arbitrary} \\ P(x) \end{array}$$

- Theorem: $\forall x \neg P(x) \leftrightarrow \neg \exists x P(x)$.
- Proof: (\rightarrow) Suppose $\forall x \neg P(x)$ and suppose $\exists x P(x)$. We choose x_0 such that $P(x_0)$ is true. Since $\forall x \neg P(x)$, we know $\neg P(x_0)$. This is a contradiction. Thus, $\forall x \neg P(x) \rightarrow \neg \exists x P(x)$.

• Proof: (\leftarrow) Suppose $\neg \exists x P(x)$. Let x be arbitrary. Suppose that P(x). Then $\exists x P(x)$. This is a contradiction. Thus $\neg P(x)$ is true. Since x was arbitrary, we have $\forall x \neg P(x)$.