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About this lecture

@ Sets (HTP Sections 1.3, 1.4)

@ Quantifiers and sets (HTP 2.1)

@ Equivalences involving quantifiers (HTP 2.2)
@ More operations on sets (HTP 2.3)
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@ Grading and so on in the moodle. Ask questions in moodle.
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Introduction

Some helpful references

@ http://en.wikipedia.org/wiki/Truth_table,

@ http://logik.phl.univie.ac.at/~chris/gateway/
formular-uk-zentral.html, complete (i.e. has all the steps)
@ http:

//svn.oriontransfer.org/TruthTable/index.rhtml,
has xor, complete.
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Sets

@ A setis a collection....This naive notion is fairly good.
@ The set theory is compatible with logic.

@ Symbols €, {}. (belong, included)

o {{1{{}r{{{}}}}

@ {a}. Weholdthata e {a,b,c,...}.

@ The main thrust of the set theory is the theory of description by
Russell.

@ P(x): x is a variable. P(x) is the statement that x is a prime
number

@ y € {x|P(x)} is equivalent to P(y). That is the truth set of P.
@ Sets « Properties

@ D(p,q): pis divisible by g.

@ A set B= {x|x is a prime number }.

@ x € B. What does this mean?
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@ There exists a set which has no elements. (Existence)

@ Two sets are equal if and only if they have the same elements.
(Extensionality)

@ There exists a set B = {x € A|P(x)} if Ais a set.
(Comprehension)

@ For any two sets, there exists a set that they both belong to. That
is, if Aand B are sets, there is {A, B}. (Pairing)

@ For any collection of sets, there exists a unique set that contains
all the elements that belong to at least one set in the collection.
(Union)
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Axioms of the set theory (Naive version)

@ Given each set, there exists a collection of sets that contains
among its elements all the subset of the given set. (Power set)

@ An inductive set exists (Infinity)

@ Let P(x, y) be a property that for every x, there exists unique y so
that P(x, y) holds. Then for every set A, there is a set B such that
for every x € A, there is y € B so that P(x, y) holds. (Substitution)
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Axioms of the set theory (Naive version)

@ Given each set, there exists a collection of sets that contains
among its elements all the subset of the given set. (Power set)

@ An inductive set exists (Infinity)

@ Let P(x, y) be a property that for every x, there exists unique y so
that P(x, y) holds. Then for every set A, there is a set B such that
for every x € A, there is y € B so that P(x, y) holds. (Substitution)

@ Zermelo-Fraenkel theory has more axioms...The axiom of
foundation, the axiom of choice.(ZFC)
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Example

e {x|x2>9}.

@ R = {x|x is areal number. }.

@ Q = {x|x is a rational number.}

@ Z = {x|x is an integer.}.

@ N = {x|x is a natual number.}.

@ y e {x e AlP(x)}is equivalentto y € AA P(y).
@ () is the empty set.
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Operations on sets

@ Ac Bifandonly if Vx(x € A— x € B).
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Operations on sets

@ Ac Bifandonly if Vx(x € A— x € B).
@ AnB={x|xe ANX € B}.

@ AUB={x|x e Avx e B}.

e ANBC AUB.

e A-B={x|lxc AAXx ¢ B}.
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Operations on sets

@ Ac Bifandonly if Vx(x € A— x € B).
@ AnB={x|xe ANX € B}.

@ AUB={x|x e Avx e B}.

e ANBC AUB.

e A-B={x|lxc AAXx ¢ B}.

@ A= (ifandonly if =3x(x € A).
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Set theoretic problem
@ When is the set empty?
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Set theoretic problem

@ When is the set empty?

@ How can one verify two sets are disjoint, same, smaller, bigger, or
none of the above?

@ Answer: We use logic and the model theory.

@ ACBmeansxc A— x e B.

@ Equality of Aand Bmeans x € Aif and only if x € B.

@ AU(BNnC)=(AuB)Nn(AUC)?

@ xc Au(BnOC)

@ xcAv(xeBAaxe).
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Set theoretic problem

@ When is the set empty?

@ How can one verify two sets are disjoint, same, smaller, bigger, or
none of the above?

@ Answer: We use logic and the model theory.

@ ACBmeansxc A— x e B.

@ Equality of Aand Bmeans x € Aif and only if x € B.

@ AU(BNnC)=(AuB)Nn(AUC)?

@ xc Au(BnOC)

@ xcAv(xeBAaxe).

@ (xeAvxeB)A(xe AV xe C). DM.

@ Thus, x c AU(BNC) < (xc AvxeB)n(xe Avx e C).
@ One can use Venn diagrams....
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More set theoretic problem

@ Compare (A—B)—C,(A—B)n(A-C),(A-B)U(A—-C).
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More set theoretic problem

@ Compare (A—B)—C,(A—B)n(A-C),(A-B)U(A—-C).
e xc(A-B)Ax¢C. (xe ANx ¢ B)A¢C.

@ (xceAAx¢B)A(xe AnX ¢ C).

e (A-B)n(A-20).

@ Wecanshow (A—B)—Cc (A-B)U(A-0C).
@Is(A-B)U(A-C)c(A-B)-C?

@ Use logic to find examples.
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More set theoretic problem

@ Comparing (A—B)—Cand (A—-B)U(A- C).
e xc(A-B)Ax¢Cand(xc AAnx ¢ B)A ¢ C.
@ (xeAAx¢B)V(xeAAx¢CC).
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More set theoretic problem

@ Comparing (A—B)—Cand (A—-B)U(A- C).

e xc(A-B)Ax¢Cand(xc AAnx ¢ B)A ¢ C.

@ (xeAAx¢B)V(xeAAx¢CC).

o Vx((xe AAx¢B)V(xe AAx¢ C)) - (xecAAx¢ B)Ax ¢ C)
is invalid.
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More set theoretic problem

@ Comparing (A—B)—Cand (A—-B)U(A- C).

e xc(A-B)Ax¢Cand(xc AAnx ¢ B)A ¢ C.

@ (xeAAx¢B)V(xeAAx¢CC).

o Vx((xe AAx¢B)V(xe AAx¢ C)) - (xecAAx¢ B)Ax ¢ C)
is invalid.

@ Find the counter-example...(Using what?)
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Quantifiers and sets

@ An B c B - C. Translate this to logic

o Vx((xe ANxeB)— (xe BAx ¢ C)).

@ If AcC B, then Aand C — B are disjoint.

@ Vx(xe A—»xeB)— -Ix(xec Arx e (C— B)).
e Vx(xe A»xeB)— -Ix(xe AANxe CAXx ¢ B).
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Examples

if and only if a > —2.

@ For every number a, the equation ax? + 4x — 2 = 0 has a solution
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@ For every number a, the equation ax? + 4x — 2 = 0 has a solution
if and only if a > —2.

@ Use R.
@ Va(a> -2 — Ix e R(ax® + 4x — 2 =0)).
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Examples

@ For every number a, the equation ax? + 4x — 2 = 0 has a solution
if and only if a > —2.

@ UseR.
@ Va(a> -2 — Ix e R(ax® + 4x — 2 =0)).
@ |Is this true? How does one verify this...

S. Choi (KAIST) Logic and set theory October 2, 2011 14 /1



Equivalences involving quantifiers
@ —Vx P(x) < Ix—-P(x).
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Equivalences involving quantifiers
@ —Vx P(x) < Ix—-P(x).

@ —Ix P(x) < Yx—P(x).
@ Negation of A C B.
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Equivalences involving quantifiers

Equivalences involving quantifiers

-Vx  P(x) <> Ix-P(x).
-3x  P(x) <> Vx=P(x).
Negation of A C B.
-Vx(x € A— x € B).
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-Vx  P(x) <> Ix-P(x).

-3x  P(x) <> Vx=P(x).
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dx—(x ¢ AV x € B). MI. (conditional law)
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Equivalences involving quantifiers

-Vx  P(x) <> Ix-P(x).

-3x  P(x) <> Vx=P(x).

Negation of A C B.

-Vx(x € A— x € B).

dx—-(x € A— x € B).

dx=(x ¢ AV x € B). MI. (conditional law)
dx(x €e ANx ¢ B). DM.

There exists an element of A not in B.
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@ Ix € A P(x)is defined as 3x(x € AN P(x)).
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@ dx € A P(x)is defined as 3x(x € AA P(x)).

@ Vx € A P(x)is defined as Vx(x € A— P(x)).
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@ dx € A P(x)is defined as 3x(x € AA P(x)).

@ Vx € A P(x)is defined as Vx(x € A— P(x)).
@ Vxe A P(x) <+ Ix € A-P(x).
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Equivalences involving quantifiers

@ dx € A P(x)is defined as 3x(x € AA P(x)).
@ Vx € A P(x)is defined as Vx(x € A— P(x)).
@ Vxe A P(x) <+ Ix € A-P(x).

@ proof: =Vx(x € A — P(x)).
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Equivalences involving quantifiers

@ dx € A P(x)is defined as 3x(x € AA P(x)).
@ Vx € A P(x)is defined as Vx(x € A— P(x)).
-Vx €A P(x) <« Ix € A-P(x).
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@ dx € A P(x)is defined as 3x(x € AA P(x)).
@ Vx € A P(x)is defined as Vx(x € A— P(x)).
-Vx €A P(x) <« Ix € A-P(x).

proof: =Vx(x € A — P(x)).

Ix—(x € A— P(x)).

Ix—(x ¢ AV P(x)).

Ix(x € AN =P(x)).
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Equivalences involving quantifiers

@ dx € A P(x)is defined as 3x(x € AA P(x)).
@ Vx € A P(x)is defined as Vx(x € A— P(x)).
-Vx €A P(x) <« Ix € A-P(x).

proof: =Vx(x € A — P(x)).

Ix—(x € A— P(x)).

Ix—(x ¢ AV P(x)).

Ix(x € AN =P(x)).

dx € A-P(x).

These are all equivalent statements
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@ ~Ix e A P(x) < Vx € A-P(x).
@ proof: =3x(x € AN P(x)).

@ Vx—(x € AN P(x)).

@ Vx(x ¢ AV —=P(x)).
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Equivalences involving quantifiers

@ ~Ix e A P(x) < Vx € A-P(x).

@ proof: =3x(x € AN P(x)).

@ Vx—(x € AN P(x)).

@ Vx(x ¢ AV —=P(x)).

@ Vx(x € A— —P(x).

@ Vx € A-P(x).

@ These are all equivalent statements
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Indexed sets

@ Let / be the set of indices i =1,2,3, ...
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Indexed sets

@ Let / be the set of indices i =1,2,3, ...
@ p=2,p=3,p3=5,.
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Indexed sets

@ Let / be the set of indices i = 1,2,3, ...

@ p=2,p=3,p3=5,.
@ {p1,p2,...} = {pili € I} is another set, called, an indexed set.
(Actually this is an axiom)
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Indexed sets

@ Let / be the set of indices i = 1,2,3, ...

@ p=2,p=3,p3=5,.
@ {py,po,...} = {pj|li € I} is another set, called, an indexed set.
(Actually this is an axiom)
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e {n"Plne N}, {nP|nc zZ}.
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Indexed sets

@ Let / be the set of indices i = 1,2,3, ...

@ p=2,p=3,p3=5,.
@ {py,po,...} = {pj|li € I} is another set, called, an indexed set.
(Actually this is an axiom)

@ In fact / could be any set.
e {n"Plne N}, {nP|nc zZ}.
o {Vx|x € Q}
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Family of sets

@ A set whose elements are sets is said to be a family of sets.
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Family of sets

@ A set whose elements are sets is said to be a family of sets.
@ We can also write {A;|i € I} for A; a set and / an index set.

o F={{}{{}}, {{}}}}

@ Given a set A, the power set is defined: P(A) = {x|x C A}.
@ x € P(A)is equivalentto x Cc Aandto Vy(y € x — y € A).
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The power set

@ P(A) C P(B). Analysis
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The power set

@ P(A) C P(B). Analysis

@ Vx(x € P(A) — x € P(B)).

o Vx((Vy(yex - yecA)— (Yy(yex—yeBh))).
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The power set

@ P(A) C P(B). Analysis

@ Vx(x € P(A) — x € P(B)).

o Vx((Vy(yex—yecA)— (Vy(y ex—yeh))).
@ If AC B, thenis P(A) C P(B)?
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The power set

@ P(A) C P(B). Analysis

@ Vx(x € P(A) — x € P(B)).

o Vx((Vy(yex—yecA)— (Vy(y ex—yeh))).

e If AcC B, thenis P(A) Cc P(B)?

@ To check this what should we do? Use our inference rules....
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More operations on sets

@ ACBFYX((Vy(yex - yeA)— (Yy(yex—yeB)).
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@ 1.Vx(xe A—xeB). A

@ ACBFYX((Vy(yex - yeA)— (Yy(yex—yeB)).
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@ 1.Vx(xe A—xeB). A

@ ACBFVX((Vy(yex—=yecA)— (Vy(y e x—yehB)).
@ 2:Vy(yca—yecAH.
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More operations on sets

@ ACBFVX((Vy(yex—=yecA)— (Vy(y e x—yehB)).
@ 1.Vx(xe A—xeB). A

@ 2:Vy(yca—yecAH.

@3:bca—bcA
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More operations on sets

@ ACBFVX((Vy(yex—=yecA)— (Vy(y e x—yehB)).
@ 1.Vx(xe A—xeB). A

@ 2:Vy(yca—yecAH.

@3:bca—bcA

@4:bcA—beB.
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More operations on sets

@ ACBFVX((Vy(yex—=yecA)— (Vy(y e x—yehB)).
@ 1.Vx(xe A— x e B). A
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@4:bcA—beB.

@5:bca—beB
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More operations on sets

@ ACBFVX((Vy(yex—=yecA)— (Vy(y e x—yehB)).
@ 1.Vx(xe A— x e B). A

@ 2:Vy(yca—yecAH.

@3:bca—becA

@4:bcA—beB.

@5:bca—beB

@ 6.:Vy(yca—yeB).

7. (Wyyea—-yecA)—->Vy(yea—yeB).26

@ 8. Vx((Vy(yex—yecA)—>Vy(yca—yeB)).
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o Vx((Vy(yex—-yecA)—>Vy(yex—yeB)FAcCB.
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o Vx((Vy(yex—-yecA)—>Vy(yex—yeB)FAcCB.
o 1.Vx((Vy(yex—yecA)— (Wyex—yeB)))A.
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o Vx((Vy(yex—-yecA)—>Vy(yex—yeB)FAcCB.
o 1.Vx((Vy(yex—yecA)— (Wyex—yeB)))A.
@ 2:acAH.
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More operations on sets

o Vx((Vy(yex—-yecA)—>Vy(yex—yeB)FAcCB.
o 1.Vx((Vy(yex—yecA)— (Wyex—yeB)))A.

@ 2:acAH.

@ 3.:: ac {a}. H (used as a hypothesis)
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More operations on sets

o Vx((Vy(yex—-yecA)—>Vy(yex—yeB)FAcCB.
o 1.Vx((Vy(yex—yecA)— (Wyex—yeB)))A.

@ 2:acAH.

@ 3.:: ac {a}. H (used as a hypothesis)

@ 4:acA
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More operations on sets

Vx((Vy(yex—yeceA) - Vy(yex—yeB)FACB.
1.Vx((Vy(y ex -y € A)) = (Yy(y e x = y € B))) A.
2:acAH.

3.:: a € {a}. H (used as a hypothesis)

4.::acA

5.ac{a} »acA 34
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More operations on sets

o Vx((Vy(yex—-yecA)—>Vy(yex—yeB)FAcCB.
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More operations on sets

o Vx((Vy(yex—-yecA)—>Vy(yex—yeB)FAcCB.
o 1.Vx((Vy(yex—yecA)— (Wyex—yeB)))A.
@ 2:acAH.

@ 3.:: ac {a}. H (used as a hypothesis)

@ 4.:acA

@ 5:ac{a} vacA 34

° 6. (Vy(y e{at >y e A)— (Vy(ye{at - yeB))
@ 7:(ae{a} vac A —(ae{a} »acB).

@ 8:ac{al ~acB.

@ 9.: a € {a} (True statement)

@ 9.:acB

@ 10.ac A— acB.
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@ F = {Cs|s € S} a family of sets.
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@ F = {Cs|s € S} a family of sets.

@ Define | J F as the set of elements in at least one element of F.
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More operations on sets

@ F = {Cs|s € S} a family of sets.
@ Define | F as the set of elements in at least one element of F.
o JUF={x]FAAc FAxcA)}={x|3Ac F(x € A)}.
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More operations on sets

@ F = {Cs|s € S} a family of sets.
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More operations on sets

@ F = {Cs|s € S} a family of sets.

@ Define | F as the set of elements in at least one element of F.
o UF={x]3AAc FAxecA}={x|3Ac F(x € A)}.

@ Define () F as the set of common elements of elements of F.
e NF={x|VA(Ac F - xec A)} ={x[VAe F(x € A)}.

@ Alternate notations: F = {A;|i € I}.

@ NF = Ai = {x|Vie l(x € A)}.

@ UF =UAi=1{x3iclxecA)}
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Example

@ x € P(UF). Analysis:

e xCF.

eVy(yex—yelUF).

o Vy(y e x — 3JAc F(y € A).

@ Provethat x € F +x € P(UF).
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Example

@ x € P(UF). Analysis:

e xCF.
eVy(yex—yelUF).

Vy(y € x —» 3JA e F(y € A)).
@ Provethat x € F +x € P(UF).

@ xe FEVy(y e x —3Ac F(y € A).
@ 1.xeF. A
°
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2.:aexH.
3.:3dAc F(ac A).
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Example

@ x € P(UF). Analysis:

e xCF.
eVy(yex—yelUF).

o Vy(y e x — 3JAc F(y € A).
Prove that x € F - x € P(UF).
xeFEVy(yex—3Ae F(y € A)).
1.xeF. A

2.:aexH.

3.:3dAc F(ac A).

4. acx— (JAc F(ac A)) 2-3.
@5 Vy(yex— (3Ac F(y € A))
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@ x € P(UF)HF x € F. Is this valid?

@ Try to use refutation tree test.

@ xe P(UF). x¢F.

@ 1.Vy(yex—-3JAcF(ycA)).2 x¢F.
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Example

@ x € P(UF)HF x € F. Is this valid?

@ Try to use refutation tree test.

@ xe P(UF). x¢F.

@ 1.Vy(yex—-3JAcF(ycA)).2 x¢F.

o 1.Vy(yex—3AcF(ycA).2 x¢F.S3.
aex—3dAec FlacA).

S. Choi (KAIST) Logic and set theory October 2, 2011 25/1



Example

@ x € P(UF)HF x € F. Is this valid?

@ Try to use refutation tree test.

@ xe P(UF). x¢F.

@ 1.Vy(yex—-3JAcF(ycA)).2 x¢F.

o 1.Vy(yex—3AcF(ycA).2 x¢F.S3.
aex—3dAec FlacA).

@ 1.Vy(yex—3Aec F(y € A). 2. x ¢ F. 3. check
acx—3JAc FlacA).4(i)ad¢ x4(i) JAac ANAE F).

S. Choi (KAIST) Logic and set theory October 2, 2011 25/1



Example

@ x € P(UF)HF x € F. Is this valid?

@ Try to use refutation tree test.
xePUF). x¢F.
1.Vy(yex —-3Ac F(y € A). 2. x ¢ F.

1.Vy(yex—-3Ac F(y € A). 2. x ¢ F. 3.

aex—3dAec FlacA).

1.Vy(y e x - 3Ae F(y € A)). 2. x ¢ F. 3. check
acx—3dAcF(lacA).4()a¢ x4(i)JAlac ANAE F).
1.Vy(y e x = 3JAe F(y € A)). 2. x ¢ F. 3. check
acex—3JAec F(ac A). 4 (i) a¢ x open 4(ii) check
JA(ae ANA€e F)5 (ii)ac Ay 6 (i) Ay € F.
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Example

@ x € P(UF)F x € F. Is this valid?
@ Try to use refutation tree test.
xePUF). x¢F.
1.Vy(yex —-3Ac F

1.Vy(yex —3Ae F
aex—dJAc FlaeA

(y € A). 2. x ¢ F.

(v €

)-
1.Vy(y e x - 3Ae F(y € A). 2. x ¢ F. 3. check

)- 4 (i)

(

)

A)). 2. x ¢ F. 3.

acx—3dAcF(lacA).4()a¢ x4(i)JAlac ANAE F).

€
4 (
1.Vy(yGX%3Ae]-"yeA)) 2. x ¢ F. 3. check
aex—3dAc Flac A). 4 (i) a¢ x open 4(ii) check
JA(ae ANAe F)5 (ii)aec Ay 6 (i) Ay € F.
How do one obtain a counter-example? x ¢ F and a ¢ x.
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Example

@ x € P(UF)F x € F. Is this valid?
@ Try to use refutation tree test.
xePUF). x¢F.
1.Vy(yex —-3Ac F

1.Vy(yex —3Ae F
aex—dJAc FlaeA

(y € A). 2. x ¢ F.

(v €

)-
1.Vy(y e x - 3Ae F(y € A). 2. x ¢ F. 3. check

)- 4 (i)

(

)

A)). 2. x ¢ F. 3.

€
acx—3dAcF(lacA).4()a¢ x4(i)JAlac ANAE F).
1.Vy(yGX%3Ae]-"yeA)) 2. x ¢ F. 3. check
aex—3dAc Flac A). 4 (i) a¢ x open 4(ii) check
JA(ae ANAe F)5 (ii)aec Ay 6 (i) Ay € F.
@ How do one obtain a counter-example? x ¢ F and a ¢ x.
o F={{1,2},{1,3}}. x={1,2,3}. a=4.
o F={{1,2},{1,3}}. x={1,2,3}. a=3. ae {1,3}. {1,3} e F.
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