Logic and the set theory

Lecture 11,12: Quantifiers (The set theory) in How to Prove It.

S. Choi
Department of Mathematical Science
KAIST, Daejeon, South Korea

Fall semester, 2011

About this lecture

- Sets (HTP Sections 1.3, 1.4)

About this lecture

- Sets (HTP Sections 1.3, 1.4)
- Quantifiers and sets (HTP 2.1)

About this lecture

- Sets (HTP Sections 1.3, 1.4)
- Quantifiers and sets (HTP 2.1)
- Equivalences involving quantifiers (HTP 2.2)

About this lecture

- Sets (HTP Sections 1.3, 1.4)
- Quantifiers and sets (HTP 2.1)
- Equivalences involving quantifiers (HTP 2.2)
- More operations on sets (HTP 2.3)

About this lecture

- Sets (HTP Sections 1.3, 1.4)
- Quantifiers and sets (HTP 2.1)
- Equivalences involving quantifiers (HTP 2.2)
- More operations on sets (HTP 2.3)
- Course homepages:
http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr

About this lecture

- Sets (HTP Sections 1.3, 1.4)
- Quantifiers and sets (HTP 2.1)
- Equivalences involving quantifiers (HTP 2.2)
- More operations on sets (HTP 2.3)
- Course homepages:
http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- A mathematical introduction to logic, H. Enderton, Academic Press.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- A mathematical introduction to logic, H. Enderton, Academic Press.
- http://plato.stanford.edu/contents.html has much resource.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- A mathematical introduction to logic, H. Enderton, Academic Press.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press.

Some helpful references

- http://en.wikipedia.org/wiki/Truth_table,

Some helpful references

- http://en.wikipedia.org/wiki/Truth_table,
- http://logik.phl.univie.ac.at/~chris/gateway/ formular-uk-zentral.html, complete (i.e. has all the steps)

Some helpful references

- http://en.wikipedia.org/wiki/Truth_table,
- http://logik.phl.univie.ac.at/~chris/gateway/ formular-uk-zentral.html, complete (i.e. has all the steps)
- http:
//svn.oriontransfer.org/TruthTable/index.rhtml, has xor, complete.

Sets

- A set is a collection....This naive notion is fairly good.

Sets

- A set is a collection....This naive notion is fairly good.
- The set theory is compatible with logic.

Sets

- A set is a collection....This naive notion is fairly good.
- The set theory is compatible with logic.
- Symbols $\in,\{ \}$. (belong, included)

Sets

- A set is a collection....This naive notion is fairly good.
- The set theory is compatible with logic.
- Symbols $\in,\{ \}$. (belong, included)
- $\{\},\{\{ \}\},\{\{\{ \}\}\}\}$

Sets

- A set is a collection....This naive notion is fairly good.
- The set theory is compatible with logic.
- Symbols $\in,\{ \}$. (belong, included)
- $\{\},\{\{ \}\},\{\{\{ \}\}\}\}$
- $\{a\}$. We hold that $a \in\{a, b, c, \ldots\}$.

Sets

- A set is a collection....This naive notion is fairly good.
- The set theory is compatible with logic.
- Symbols $\in,\{ \}$. (belong, included)
- $\{\},\{\{ \}\},\{\{\{ \}\}\}\}$
- $\{a\}$. We hold that $a \in\{a, b, c, \ldots\}$.
- The main thrust of the set theory is the theory of description by Russell.

Sets

- A set is a collection....This naive notion is fairly good.
- The set theory is compatible with logic.
- Symbols $\in,\{ \}$. (belong, included)
- $\{\},\{\{ \}\},\{\{\{ \}\}\}\}$
- $\{a\}$. We hold that $a \in\{a, b, c, \ldots\}$.
- The main thrust of the set theory is the theory of description by Russell.
- $P(x): x$ is a variable. $P(x)$ is the statement that x is a prime number

Sets

- A set is a collection....This naive notion is fairly good.
- The set theory is compatible with logic.
- Symbols $\in,\{ \}$. (belong, included)
- $\{\},\{\{ \}\},\{\{\{ \}\}\}\}$
- $\{a\}$. We hold that $a \in\{a, b, c, \ldots\}$.
- The main thrust of the set theory is the theory of description by Russell.
- $P(x): x$ is a variable. $P(x)$ is the statement that x is a prime number
- $y \in\{x \mid P(x)\}$ is equivalent to $P(y)$. That is the truth set of P.

Sets

- A set is a collection....This naive notion is fairly good.
- The set theory is compatible with logic.
- Symbols $\in,\{ \}$. (belong, included)
- $\{\},\{\{ \}\},\{\{\{ \}\}\}\}$
- $\{a\}$. We hold that $a \in\{a, b, c, \ldots\}$.
- The main thrust of the set theory is the theory of description by Russell.
- $P(x): x$ is a variable. $P(x)$ is the statement that x is a prime number
- $y \in\{x \mid P(x)\}$ is equivalent to $P(y)$. That is the truth set of P.
- Sets \leftrightarrow Properties

Sets

- A set is a collection....This naive notion is fairly good.
- The set theory is compatible with logic.
- Symbols $\in,\{ \}$. (belong, included)
- $\{\},\{\{ \}\},\{\{\{ \}\}\}\}$
- $\{a\}$. We hold that $a \in\{a, b, c, \ldots\}$.
- The main thrust of the set theory is the theory of description by Russell.
- $P(x): x$ is a variable. $P(x)$ is the statement that x is a prime number
- $y \in\{x \mid P(x)\}$ is equivalent to $P(y)$. That is the truth set of P.
- Sets \leftrightarrow Properties
- $D(p, q): p$ is divisible by q.

Sets

- A set is a collection....This naive notion is fairly good.
- The set theory is compatible with logic.
- Symbols $\in,\{ \}$. (belong, included)
- $\{\},\{\{ \}\},\{\{\{ \}\}\}\}$
- $\{a\}$. We hold that $a \in\{a, b, c, \ldots\}$.
- The main thrust of the set theory is the theory of description by Russell.
- $P(x): x$ is a variable. $P(x)$ is the statement that x is a prime number
- $y \in\{x \mid P(x)\}$ is equivalent to $P(y)$. That is the truth set of P.
- Sets \leftrightarrow Properties
- $D(p, q): p$ is divisible by q.
- A set $B=\{x \mid x$ is a prime number $\}$.

Sets

- A set is a collection....This naive notion is fairly good.
- The set theory is compatible with logic.
- Symbols $\in,\{ \}$. (belong, included)
- $\{\},\{\{ \}\},\{\{\{ \}\}\}\}$
- $\{a\}$. We hold that $a \in\{a, b, c, \ldots\}$.
- The main thrust of the set theory is the theory of description by Russell.
- $P(x): x$ is a variable. $P(x)$ is the statement that x is a prime number
- $y \in\{x \mid P(x)\}$ is equivalent to $P(y)$. That is the truth set of P.
- Sets \leftrightarrow Properties
- $D(p, q): p$ is divisible by q.
- A set $B=\{x \mid x$ is a prime number $\}$.
- $x \in B$. What does this mean?

Axioms of the set theory (Naive version)

- There exists a set which has no elements. (Existence)

Axioms of the set theory (Naive version)

- There exists a set which has no elements. (Existence)
- Two sets are equal if and only if they have the same elements. (Extensionality)

Axioms of the set theory (Naive version)

- There exists a set which has no elements. (Existence)
- Two sets are equal if and only if they have the same elements. (Extensionality)
- There exists a set $B=\{x \in A \mid P(x)\}$ if A is a set. (Comprehension)

Axioms of the set theory (Naive version)

- There exists a set which has no elements. (Existence)
- Two sets are equal if and only if they have the same elements. (Extensionality)
- There exists a set $B=\{x \in A \mid P(x)\}$ if A is a set.
(Comprehension)
- For any two sets, there exists a set that they both belong to. That is, if A and B are sets, there is $\{A, B\}$. (Pairing)

Axioms of the set theory (Naive version)

- There exists a set which has no elements. (Existence)
- Two sets are equal if and only if they have the same elements. (Extensionality)
- There exists a set $B=\{x \in A \mid P(x)\}$ if A is a set. (Comprehension)
- For any two sets, there exists a set that they both belong to. That is, if A and B are sets, there is $\{A, B\}$. (Pairing)
- For any collection of sets, there exists a unique set that contains all the elements that belong to at least one set in the collection. (Union)

Axioms of the set theory (Naive version)

- Given each set, there exists a collection of sets that contains among its elements all the subset of the given set. (Power set)

Axioms of the set theory (Naive version)

- Given each set, there exists a collection of sets that contains among its elements all the subset of the given set. (Power set)
- An inductive set exists (Infinity)

Axioms of the set theory (Naive version)

- Given each set, there exists a collection of sets that contains among its elements all the subset of the given set. (Power set)
- An inductive set exists (Infinity)
- Let $P(x, y)$ be a property that for every x, there exists unique y so that $P(x, y)$ holds. Then for every set A, there is a set B such that for every $x \in A$, there is $y \in B$ so that $P(x, y)$ holds. (Substitution)

Axioms of the set theory (Naive version)

- Given each set, there exists a collection of sets that contains among its elements all the subset of the given set. (Power set)
- An inductive set exists (Infinity)
- Let $P(x, y)$ be a property that for every x, there exists unique y so that $P(x, y)$ holds. Then for every set A, there is a set B such that for every $x \in A$, there is $y \in B$ so that $P(x, y)$ holds. (Substitution)
- Zermelo-Fraenkel theory has more axioms...The axiom of foundation, the axiom of choice.(ZFC)

Example

- $\left\{x \mid x^{2}>9\right\}$.

Example

- $\left\{x \mid x^{2}>9\right\}$.
- $\mathbb{R}=\{x \mid x$ is a real number. $\}$.

Example

- $\left\{x \mid x^{2}>9\right\}$.
- $\mathbb{R}=\{x \mid x$ is a real number. $\}$.
- $\mathbb{Q}=\{x \mid x$ is a rational number. $\}$

Example

- $\left\{x \mid x^{2}>9\right\}$.
- $\mathbb{R}=\{x \mid x$ is a real number. $\}$.
- $\mathbb{Q}=\{x \mid x$ is a rational number. $\}$
- $\mathbb{Z}=\{x \mid x$ is an integer. $\}$.

Example

- $\left\{x \mid x^{2}>9\right\}$.
- $\mathbb{R}=\{x \mid x$ is a real number. $\}$.
- $\mathbb{Q}=\{x \mid x$ is a rational number. $\}$
- $\mathbb{Z}=\{x \mid x$ is an integer. $\}$.
- $\mathbb{N}=\{x \mid x$ is a natual number. $\}$.

Example

- $\left\{x \mid x^{2}>9\right\}$.
- $\mathbb{R}=\{x \mid x$ is a real number. $\}$.
- $\mathbb{Q}=\{x \mid x$ is a rational number. $\}$
- $\mathbb{Z}=\{x \mid x$ is an integer. $\}$.
- $\mathbb{N}=\{x \mid x$ is a natual number. $\}$.
- $y \in\{x \in A \mid P(x)\}$ is equivalent to $y \in A \wedge P(y)$.

Example

- $\left\{x \mid x^{2}>9\right\}$.
- $\mathbb{R}=\{x \mid x$ is a real number. $\}$.
- $\mathbb{Q}=\{x \mid x$ is a rational number. $\}$
- $\mathbb{Z}=\{x \mid x$ is an integer. $\}$.
- $\mathbb{N}=\{x \mid x$ is a natual number. $\}$.
- $y \in\{x \in A \mid P(x)\}$ is equivalent to $y \in A \wedge P(y)$.
- \emptyset is the empty set.

Operations on sets

- $A \subset B$ if and only if $\forall x(x \in A \rightarrow x \in B)$.

Operations on sets

- $A \subset B$ if and only if $\forall x(x \in A \rightarrow x \in B)$.
- $A \cap B=\{x \mid x \in A \wedge x \in B\}$.

Operations on sets

- $A \subset B$ if and only if $\forall x(x \in A \rightarrow x \in B)$.
- $A \cap B=\{x \mid x \in A \wedge x \in B\}$.
- $A \cup B=\{x \mid x \in A \vee x \in B\}$.

Operations on sets

- $A \subset B$ if and only if $\forall x(x \in A \rightarrow x \in B)$.
- $A \cap B=\{x \mid x \in A \wedge x \in B\}$.
- $A \cup B=\{x \mid x \in A \vee x \in B\}$.
- $A \cap B \subset A \cup B$.

Operations on sets

- $A \subset B$ if and only if $\forall x(x \in A \rightarrow x \in B)$.
- $A \cap B=\{x \mid x \in A \wedge x \in B\}$.
- $A \cup B=\{x \mid x \in A \vee x \in B\}$.
- $A \cap B \subset A \cup B$.
- $A-B=\{x \mid x \in A \wedge x \notin B\}$.

Operations on sets

- $A \subset B$ if and only if $\forall x(x \in A \rightarrow x \in B)$.
- $A \cap B=\{x \mid x \in A \wedge x \in B\}$.
- $A \cup B=\{x \mid x \in A \vee x \in B\}$.
- $A \cap B \subset A \cup B$.
- $A-B=\{x \mid x \in A \wedge x \notin B\}$.
- $A=\emptyset$ if and only if $\neg \exists x(x \in A)$.

Set theoretic problem

- When is the set empty?

Set theoretic problem

- When is the set empty?
- How can one verify two sets are disjoint, same, smaller, bigger, or none of the above?

Set theoretic problem

- When is the set empty?
- How can one verify two sets are disjoint, same, smaller, bigger, or none of the above?
- Answer: We use logic and the model theory.

Set theoretic problem

- When is the set empty?
- How can one verify two sets are disjoint, same, smaller, bigger, or none of the above?
- Answer: We use logic and the model theory.
- $A \subset B$ means $x \in A \rightarrow x \in B$.

Set theoretic problem

- When is the set empty?
- How can one verify two sets are disjoint, same, smaller, bigger, or none of the above?
- Answer: We use logic and the model theory.
- $A \subset B$ means $x \in A \rightarrow x \in B$.
- Equality of A and B means $x \in A$ if and only if $x \in B$.

Set theoretic problem

- When is the set empty?
- How can one verify two sets are disjoint, same, smaller, bigger, or none of the above?
- Answer: We use logic and the model theory.
- $A \subset B$ means $x \in A \rightarrow x \in B$.
- Equality of A and B means $x \in A$ if and only if $x \in B$.
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$?

Set theoretic problem

- When is the set empty?
- How can one verify two sets are disjoint, same, smaller, bigger, or none of the above?
- Answer: We use logic and the model theory.
- $A \subset B$ means $x \in A \rightarrow x \in B$.
- Equality of A and B means $x \in A$ if and only if $x \in B$.
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$?
- $x \in A \cup(B \cap C)$

Set theoretic problem

- When is the set empty?
- How can one verify two sets are disjoint, same, smaller, bigger, or none of the above?
- Answer: We use logic and the model theory.
- $A \subset B$ means $x \in A \rightarrow x \in B$.
- Equality of A and B means $x \in A$ if and only if $x \in B$.
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$?
- $x \in A \cup(B \cap C)$
- $x \in A \vee(x \in B \wedge x \in C)$.

Set theoretic problem

- When is the set empty?
- How can one verify two sets are disjoint, same, smaller, bigger, or none of the above?
- Answer: We use logic and the model theory.
- $A \subset B$ means $x \in A \rightarrow x \in B$.
- Equality of A and B means $x \in A$ if and only if $x \in B$.
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$?
- $x \in A \cup(B \cap C)$
- $x \in A \vee(x \in B \wedge x \in C)$.
- $(x \in A \vee x \in B) \wedge(x \in A \vee x \in C)$. DM.

Set theoretic problem

- When is the set empty?
- How can one verify two sets are disjoint, same, smaller, bigger, or none of the above?
- Answer: We use logic and the model theory.
- $A \subset B$ means $x \in A \rightarrow x \in B$.
- Equality of A and B means $x \in A$ if and only if $x \in B$.
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$?
- $x \in A \cup(B \cap C)$
- $x \in A \vee(x \in B \wedge x \in C)$.
- $(x \in A \vee x \in B) \wedge(x \in A \vee x \in C)$. DM.
- Thus, $x \in A \cup(B \cap C) \leftrightarrow(x \in A \vee x \in B) \wedge(x \in A \vee x \in C)$.

Set theoretic problem

- When is the set empty?
- How can one verify two sets are disjoint, same, smaller, bigger, or none of the above?
- Answer: We use logic and the model theory.
- $A \subset B$ means $x \in A \rightarrow x \in B$.
- Equality of A and B means $x \in A$ if and only if $x \in B$.
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$?
- $x \in A \cup(B \cap C)$
- $x \in A \vee(x \in B \wedge x \in C)$.
- $(x \in A \vee x \in B) \wedge(x \in A \vee x \in C)$. DM.
- Thus, $x \in A \cup(B \cap C) \leftrightarrow(x \in A \vee x \in B) \wedge(x \in A \vee x \in C)$.
- One can use Venn diagrams....

More set theoretic problem

- Compare $(A-B)-C,(A-B) \cap(A-C),(A-B) \cup(A-C)$.

More set theoretic problem

- Compare $(A-B)-C,(A-B) \cap(A-C),(A-B) \cup(A-C)$.
- $x \in(A-B) \wedge x \notin C$. $(x \in A \wedge x \notin B) \wedge \notin C$.

More set theoretic problem

- Compare $(A-B)-C,(A-B) \cap(A-C),(A-B) \cup(A-C)$.
- $x \in(A-B) \wedge x \notin C .(x \in A \wedge x \notin B) \wedge \notin C$.
- $(x \in A \wedge x \notin B) \wedge(x \in A \wedge x \notin C)$.

More set theoretic problem

- Compare $(A-B)-C,(A-B) \cap(A-C),(A-B) \cup(A-C)$.
- $x \in(A-B) \wedge x \notin C .(x \in A \wedge x \notin B) \wedge \notin C$.
- $(x \in A \wedge x \notin B) \wedge(x \in A \wedge x \notin C)$.
- $(A-B) \cap(A-C)$.

More set theoretic problem

- Compare $(A-B)-C,(A-B) \cap(A-C),(A-B) \cup(A-C)$.
- $x \in(A-B) \wedge x \notin C .(x \in A \wedge x \notin B) \wedge \notin C$.
- $(x \in A \wedge x \notin B) \wedge(x \in A \wedge x \notin C)$.
- $(A-B) \cap(A-C)$.
- We can show $(A-B)-C \subset(A-B) \cup(A-C)$.

More set theoretic problem

- Compare $(A-B)-C,(A-B) \cap(A-C),(A-B) \cup(A-C)$.
- $x \in(A-B) \wedge x \notin C .(x \in A \wedge x \notin B) \wedge \notin C$.
- $(x \in A \wedge x \notin B) \wedge(x \in A \wedge x \notin C)$.
- $(A-B) \cap(A-C)$.
- We can show $(A-B)-C \subset(A-B) \cup(A-C)$.
- Is $(A-B) \cup(A-C) \subset(A-B)-C$?

More set theoretic problem

- Compare $(A-B)-C,(A-B) \cap(A-C),(A-B) \cup(A-C)$.
- $x \in(A-B) \wedge x \notin C .(x \in A \wedge x \notin B) \wedge \notin C$.
- $(x \in A \wedge x \notin B) \wedge(x \in A \wedge x \notin C)$.
- $(A-B) \cap(A-C)$.
- We can show $(A-B)-C \subset(A-B) \cup(A-C)$.
- Is $(A-B) \cup(A-C) \subset(A-B)-C$?

More set theoretic problem

- Compare $(A-B)-C,(A-B) \cap(A-C),(A-B) \cup(A-C)$.
- $x \in(A-B) \wedge x \notin C .(x \in A \wedge x \notin B) \wedge \notin C$.
- $(x \in A \wedge x \notin B) \wedge(x \in A \wedge x \notin C)$.
- $(A-B) \cap(A-C)$.
- We can show $(A-B)-C \subset(A-B) \cup(A-C)$.
- Is $(A-B) \cup(A-C) \subset(A-B)-C$?
- Use logic to find examples.

More set theoretic problem

- Comparing $(A-B)-C$ and $(A-B) \cup(A-C)$.

More set theoretic problem

- Comparing $(A-B)-C$ and $(A-B) \cup(A-C)$.
- $x \in(A-B) \wedge x \notin C$ and $(x \in A \wedge x \notin B) \wedge \notin C$.

More set theoretic problem

- Comparing $(A-B)-C$ and $(A-B) \cup(A-C)$.
- $x \in(A-B) \wedge x \notin C$ and $(x \in A \wedge x \notin B) \wedge \notin C$.
- $(x \in A \wedge x \notin B) \vee(x \in A \wedge x \notin C)$.

More set theoretic problem

- Comparing $(A-B)-C$ and $(A-B) \cup(A-C)$.
- $x \in(A-B) \wedge x \notin C$ and $(x \in A \wedge x \notin B) \wedge \notin C$.
- $(x \in A \wedge x \notin B) \vee(x \in A \wedge x \notin C)$.
- $\forall x((x \in A \wedge x \notin B) \vee(x \in A \wedge x \notin C)) \rightarrow(x \in A \wedge x \notin B) \wedge x \notin C)$ is invalid.

More set theoretic problem

- Comparing $(A-B)-C$ and $(A-B) \cup(A-C)$.
- $x \in(A-B) \wedge x \notin C$ and $(x \in A \wedge x \notin B) \wedge \notin C$.
- $(x \in A \wedge x \notin B) \vee(x \in A \wedge x \notin C)$.
- $\forall x((x \in A \wedge x \notin B) \vee(x \in A \wedge x \notin C)) \rightarrow(x \in A \wedge x \notin B) \wedge x \notin C)$ is invalid.
- Find the counter-example...(Using what?)

Quantifiers and sets

- $A \cap B \subset B-C$. Translate this to logic

Quantifiers and sets

- $A \cap B \subset B-C$. Translate this to logic
- $\forall x((x \in A \wedge x \in B) \rightarrow(x \in B \wedge x \notin C))$.

Quantifiers and sets

- $A \cap B \subset B-C$. Translate this to logic
- $\forall x((x \in A \wedge x \in B) \rightarrow(x \in B \wedge x \notin C))$.
- If $A \subset B$, then A and $C-B$ are disjoint.

Quantifiers and sets

- $A \cap B \subset B-C$. Translate this to logic
- $\forall x((x \in A \wedge x \in B) \rightarrow(x \in B \wedge x \notin C))$.
- If $A \subset B$, then A and $C-B$ are disjoint.
- $\forall x(x \in A \rightarrow x \in B) \rightarrow \neg \exists x(x \in A \wedge x \in(C-B))$.

Quantifiers and sets

- $A \cap B \subset B-C$. Translate this to logic
- $\forall x((x \in A \wedge x \in B) \rightarrow(x \in B \wedge x \notin C))$.
- If $A \subset B$, then A and $C-B$ are disjoint.
- $\forall x(x \in A \rightarrow x \in B) \rightarrow \neg \exists x(x \in A \wedge x \in(C-B))$.
- $\forall x(x \in A \rightarrow x \in B) \rightarrow \neg \exists x(x \in A \wedge x \in C \wedge x \notin B)$.

Examples

- For every number a, the equation $a x^{2}+4 x-2=0$ has a solution if and only if $a \geq-2$.

Examples

- For every number a, the equation $a x^{2}+4 x-2=0$ has a solution if and only if $a \geq-2$.
- Use \mathbb{R}.

Examples

- For every number a, the equation $a x^{2}+4 x-2=0$ has a solution if and only if $a \geq-2$.
- Use \mathbb{R}.
- $\forall a\left(a \geq-2 \rightarrow \exists x \in \mathbb{R}\left(a x^{2}+4 x-2=0\right)\right)$.

Examples

- For every number a, the equation $a x^{2}+4 x-2=0$ has a solution if and only if $a \geq-2$.
- Use \mathbb{R}.
- $\forall a\left(a \geq-2 \rightarrow \exists x \in \mathbb{R}\left(a x^{2}+4 x-2=0\right)\right)$.
- Is this true? How does one verify this...

Equivalences involving quantifiers

- $\neg \forall x \quad P(x) \leftrightarrow \exists x \neg P(x)$.

Equivalences involving quantifiers

- $\neg \forall x \quad P(x) \leftrightarrow \exists x \neg P(x)$.
- $\neg \exists x \quad P(x) \leftrightarrow \forall x \neg P(x)$.

Equivalences involving quantifiers

- $\neg \forall x \quad P(x) \leftrightarrow \exists x \neg P(x)$.
- $\neg \exists x \quad P(x) \leftrightarrow \forall x \neg P(x)$.
- Negation of $A \subset B$.

Equivalences involving quantifiers

- $\neg \forall x \quad P(x) \leftrightarrow \exists x \neg P(x)$.
- $\neg \exists x \quad P(x) \leftrightarrow \forall x \neg P(x)$.
- Negation of $A \subset B$.
- $\neg \forall x(x \in A \rightarrow x \in B)$.

Equivalences involving quantifiers

- $\neg \forall x \quad P(x) \leftrightarrow \exists x \neg P(x)$.
- $\neg \exists x \quad P(x) \leftrightarrow \forall x \neg P(x)$.
- Negation of $A \subset B$.
- $\neg \forall x(x \in A \rightarrow x \in B)$.
- $\exists x \neg(x \in A \rightarrow x \in B)$.

Equivalences involving quantifiers

- $\neg \forall x \quad P(x) \leftrightarrow \exists x \neg P(x)$.
- $\neg \exists x \quad P(x) \leftrightarrow \forall x \neg P(x)$.
- Negation of $A \subset B$.
- $\neg \forall x(x \in A \rightarrow x \in B)$.
- $\exists x \neg(x \in A \rightarrow x \in B)$.
- $\exists x \neg(x \notin A \vee x \in B)$. MI. (conditional law)

Equivalences involving quantifiers

- $\neg \forall x \quad P(x) \leftrightarrow \exists x \neg P(x)$.
- $\neg \exists x \quad P(x) \leftrightarrow \forall x \neg P(x)$.
- Negation of $A \subset B$.
- $\neg \forall x(x \in A \rightarrow x \in B)$.
- $\exists x \neg(x \in A \rightarrow x \in B)$.
- $\exists x \neg(x \notin A \vee x \in B)$. MI. (conditional law)
- $\exists x(x \in A \wedge x \notin B)$. DM.

Equivalences involving quantifiers

- $\neg \forall x \quad P(x) \leftrightarrow \exists x \neg P(x)$.
- $\neg \exists x \quad P(x) \leftrightarrow \forall x \neg P(x)$.
- Negation of $A \subset B$.
- $\neg \forall x(x \in A \rightarrow x \in B)$.
- $\exists x \neg(x \in A \rightarrow x \in B)$.
- $\exists x \neg(x \notin A \vee x \in B)$. MI. (conditional law)
- $\exists x(x \in A \wedge x \notin B)$. DM.
- There exists an element of A not in B.
- $\exists x \in A \quad P(x)$ is defined as $\exists x(x \in A \wedge P(x))$.
- $\exists x \in A \quad P(x)$ is defined as $\exists x(x \in A \wedge P(x))$.
- $\forall x \in A \quad P(x)$ is defined as $\forall x(x \in A \rightarrow P(x))$.
- $\exists x \in A \quad P(x)$ is defined as $\exists x(x \in A \wedge P(x))$.
- $\forall x \in A \quad P(x)$ is defined as $\forall x(x \in A \rightarrow P(x))$.
- $\neg \forall x \in A \quad P(x) \leftrightarrow \exists x \in A \neg P(x)$.
- $\exists x \in A \quad P(x)$ is defined as $\exists x(x \in A \wedge P(x))$.
- $\forall x \in A \quad P(x)$ is defined as $\forall x(x \in A \rightarrow P(x))$.
- $\neg \forall x \in A \quad P(x) \leftrightarrow \exists x \in A \neg P(x)$.
- proof: $\neg \forall x(x \in A \rightarrow P(x))$.
- $\exists x \in A \quad P(x)$ is defined as $\exists x(x \in A \wedge P(x))$.
- $\forall x \in A \quad P(x)$ is defined as $\forall x(x \in A \rightarrow P(x))$.
- $\neg \forall x \in A \quad P(x) \leftrightarrow \exists x \in A \neg P(x)$.
- proof: $\neg \forall x(x \in A \rightarrow P(x))$.
- $\exists x \neg(x \in A \rightarrow P(x))$.
- $\exists x \in A \quad P(x)$ is defined as $\exists x(x \in A \wedge P(x))$.
- $\forall x \in A \quad P(x)$ is defined as $\forall x(x \in A \rightarrow P(x))$.
- $\neg \forall x \in A \quad P(x) \leftrightarrow \exists x \in A \neg P(x)$.
- proof: $\neg \forall x(x \in A \rightarrow P(x))$.
- $\exists x \neg(x \in A \rightarrow P(x))$.
- $\exists x \neg(x \notin A \vee P(x))$.
- $\exists x \in A \quad P(x)$ is defined as $\exists x(x \in A \wedge P(x))$.
- $\forall x \in A \quad P(x)$ is defined as $\forall x(x \in A \rightarrow P(x))$.
- $\neg \forall x \in A \quad P(x) \leftrightarrow \exists x \in A \neg P(x)$.
- proof: $\neg \forall x(x \in A \rightarrow P(x))$.
- $\exists x \neg(x \in A \rightarrow P(x))$.
- $\exists x \neg(x \notin A \vee P(x))$.
- $\exists x(x \in A \wedge \neg P(x))$.
- $\exists x \in A \quad P(x)$ is defined as $\exists x(x \in A \wedge P(x))$.
- $\forall x \in A \quad P(x)$ is defined as $\forall x(x \in A \rightarrow P(x))$.
- $\neg \forall x \in A \quad P(x) \leftrightarrow \exists x \in A \neg P(x)$.
- proof: $\neg \forall x(x \in A \rightarrow P(x))$.
- $\exists x \neg(x \in A \rightarrow P(x))$.
- $\exists x \neg(x \notin A \vee P(x))$.
- $\exists x(x \in A \wedge \neg P(x))$.
- $\exists x \in A \neg P(x)$.
- $\exists x \in A \quad P(x)$ is defined as $\exists x(x \in A \wedge P(x))$.
- $\forall x \in A \quad P(x)$ is defined as $\forall x(x \in A \rightarrow P(x))$.
- $\neg \forall x \in A \quad P(x) \leftrightarrow \exists x \in A \neg P(x)$.
- proof: $\neg \forall x(x \in A \rightarrow P(x))$.
- $\exists x \neg(x \in A \rightarrow P(x))$.
- $\exists x \neg(x \notin A \vee P(x))$.
- $\exists x(x \in A \wedge \neg P(x))$.
- $\exists x \in A \neg P(x)$.
- These are all equivalent statements
- $\neg \exists x \in A \quad P(x) \leftrightarrow \forall x \in A \neg P(x)$.
- $\neg \exists x \in A \quad P(x) \leftrightarrow \forall x \in A \neg P(x)$.
- proof: $\neg \exists x(x \in A \wedge P(x))$.
- $\neg \exists x \in A \quad P(x) \leftrightarrow \forall x \in A \neg P(x)$.
- proof: $\neg \exists x(x \in A \wedge P(x))$.
- $\forall x \neg(x \in A \wedge P(x))$.
- $\neg \exists x \in A \quad P(x) \leftrightarrow \forall x \in A \neg P(x)$.
- proof: $\neg \exists x(x \in A \wedge P(x))$.
- $\forall x \neg(x \in A \wedge P(x))$.
- $\forall x(x \notin A \vee \neg P(x))$.
- $\neg \exists x \in A \quad P(x) \leftrightarrow \forall x \in A \neg P(x)$.
- proof: $\neg \exists x(x \in A \wedge P(x))$.
- $\forall x \neg(x \in A \wedge P(x))$.
- $\forall x(x \notin A \vee \neg P(x))$.
- $\forall x(x \in A \rightarrow \neg P(x)$.
- $\neg \exists x \in A \quad P(x) \leftrightarrow \forall x \in A \neg P(x)$.
- proof: $\neg \exists x(x \in A \wedge P(x))$.
- $\forall x \neg(x \in A \wedge P(x))$.
- $\forall x(x \notin A \vee \neg P(x))$.
- $\forall x(x \in A \rightarrow \neg P(x)$.
- $\forall x \in A \neg P(x)$.
- $\neg \exists x \in A \quad P(x) \leftrightarrow \forall x \in A \neg P(x)$.
- proof: $\neg \exists x(x \in A \wedge P(x))$.
- $\forall x \neg(x \in A \wedge P(x))$.
- $\forall x(x \notin A \vee \neg P(x))$.
- $\forall x(x \in A \rightarrow \neg P(x)$.
- $\forall x \in A \neg P(x)$.
- These are all equivalent statements

Indexed sets

- Let I be the set of indices $i=1,2,3, \ldots$

Indexed sets

- Let I be the set of indices $i=1,2,3, \ldots$
- $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$

Indexed sets

- Let I be the set of indices $i=1,2,3, \ldots$
- $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$
- $\left\{p_{1}, p_{2}, \ldots\right\}=\left\{p_{i} \mid i \in I\right\}$ is another set, called, an indexed set. (Actually this is an axiom)

Indexed sets

- Let I be the set of indices $i=1,2,3, \ldots$
- $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$
- $\left\{p_{1}, p_{2}, \ldots\right\}=\left\{p_{i} \mid i \in I\right\}$ is another set, called, an indexed set. (Actually this is an axiom)
- In fact $/$ could be any set.

Indexed sets

- Let I be the set of indices $i=1,2,3, \ldots$
- $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$
- $\left\{p_{1}, p_{2}, \ldots\right\}=\left\{p_{i} \mid i \in I\right\}$ is another set, called, an indexed set. (Actually this is an axiom)
- In fact I could be any set.
- $\left\{n^{2} \mid n \in \mathbb{N}\right\},\left\{n^{2} \mid n \in \mathbb{Z}\right\}$.

Indexed sets

- Let I be the set of indices $i=1,2,3, \ldots$
- $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$
- $\left\{p_{1}, p_{2}, \ldots\right\}=\left\{p_{i} \mid i \in I\right\}$ is another set, called, an indexed set. (Actually this is an axiom)
- In fact $/$ could be any set.
- $\left\{n^{2} \mid n \in \mathbb{N}\right\},\left\{n^{2} \mid n \in \mathbb{Z}\right\}$.
- $\{\sqrt{x} \mid x \in \mathbb{Q}\}$

Family of sets

- A set whose elements are sets is said to be a family of sets.

Family of sets

- A set whose elements are sets is said to be a family of sets.
- We can also write $\left\{A_{i} \mid i \in I\right\}$ for A_{i} a set and I an index set.

Family of sets

- A set whose elements are sets is said to be a family of sets.
- We can also write $\left\{A_{i} \mid i \in I\right\}$ for A_{i} a set and I an index set.
- $\mathcal{F}=\{\{ \},\{\{ \}\},\{\{\{ \}\}\}\}$

Family of sets

- A set whose elements are sets is said to be a family of sets.
- We can also write $\left\{A_{i} \mid i \in I\right\}$ for A_{i} a set and I an index set.
- $\mathcal{F}=\{\{ \},\{\{ \}\},\{\{\{ \}\}\}\}$
- Given a set A, the power set is defined: $P(A)=\{x \mid x \subset A\}$.

Family of sets

- A set whose elements are sets is said to be a family of sets.
- We can also write $\left\{A_{i} \mid i \in I\right\}$ for A_{i} a set and I an index set.
- $\mathcal{F}=\{\{ \},\{\{ \}\},\{\{\{ \}\}\}\}$
- Given a set A, the power set is defined: $P(A)=\{x \mid x \subset A\}$.
- $x \in P(A)$ is equivalent to $x \subset A$ and to $\forall y(y \in x \rightarrow y \in A)$.

The power set

- $P(A) \subset P(B)$. Analysis

The power set

- $P(A) \subset P(B)$. Analysis
- $\forall x(x \in P(A) \rightarrow x \in P(B))$.

The power set

- $P(A) \subset P(B)$. Analysis
- $\forall x(x \in P(A) \rightarrow x \in P(B))$.
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B)))$.

The power set

- $P(A) \subset P(B)$. Analysis
- $\forall x(x \in P(A) \rightarrow x \in P(B))$.
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B)))$.
- If $A \subset B$, then is $P(A) \subset P(B)$?

The power set

- $P(A) \subset P(B)$. Analysis
- $\forall x(x \in P(A) \rightarrow x \in P(B))$.
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B)))$.
- If $A \subset B$, then is $P(A) \subset P(B)$?
- To check this what should we do? Use our inference rules....
- $A \subset B \vdash \forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B)))$.
- $A \subset B \vdash \forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B)))$.
- 1. $\forall x(x \in A \rightarrow x \in B)$. A.
- $A \subset B \vdash \forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B)))$.
- 1. $\forall x(x \in A \rightarrow x \in B)$. A.
- 2: $\forall y(y \in a \rightarrow y \in A) \mathrm{H}$.
- $A \subset B \vdash \forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B)))$.
- 1. $\forall x(x \in A \rightarrow x \in B)$. A.
- 2: $\forall y(y \in a \rightarrow y \in A) \mathrm{H}$.
- 3: $b \in a \rightarrow b \in A$.
- $A \subset B \vdash \forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B)))$.
- 1. $\forall x(x \in A \rightarrow x \in B)$. A.
- 2: $\forall y(y \in a \rightarrow y \in A) \mathrm{H}$.
- 3: $b \in a \rightarrow b \in A$.
- 4: $b \in A \rightarrow b \in B$.
- $A \subset B \vdash \forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B)))$.
- 1. $\forall x(x \in A \rightarrow x \in B)$. A.
- 2: $\forall y(y \in a \rightarrow y \in A) \mathrm{H}$.
- 3: $b \in a \rightarrow b \in A$.
- 4: $b \in A \rightarrow b \in B$.
- 5: $b \in a \rightarrow b \in B$.
- $A \subset B \vdash \forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B)))$.
- 1. $\forall x(x \in A \rightarrow x \in B)$. A.
- 2: $\forall y(y \in a \rightarrow y \in A) \mathrm{H}$.
- 3: $b \in a \rightarrow b \in A$.
- 4: $b \in A \rightarrow b \in B$.
- 5: $b \in a \rightarrow b \in B$.
- 6.: $\forall y(y \in a \rightarrow y \in B)$.
- $A \subset B \vdash \forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B)))$.
- 1. $\forall x(x \in A \rightarrow x \in B)$. A.
- 2: $\forall y(y \in a \rightarrow y \in A) \mathrm{H}$.
- 3: $b \in a \rightarrow b \in A$.
- 4: $b \in A \rightarrow b \in B$.
- 5: $b \in a \rightarrow b \in B$.
- 6.: $\forall y(y \in a \rightarrow y \in B)$.
- 7. $(\forall y(y \in a \rightarrow y \in A)) \rightarrow \forall y(y \in a \rightarrow y \in B)$. 2-6
- $A \subset B \vdash \forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B)))$.
- 1. $\forall x(x \in A \rightarrow x \in B)$. A.
- 2: $\forall y(y \in a \rightarrow y \in A) \mathrm{H}$.
- 3: $b \in a \rightarrow b \in A$.
- 4: $b \in A \rightarrow b \in B$.
- 5: $b \in a \rightarrow b \in B$.
- 6.: $\forall y(y \in a \rightarrow y \in B)$.
- 7. $(\forall y(y \in a \rightarrow y \in A)) \rightarrow \forall y(y \in a \rightarrow y \in B)$. 2-6
- 8. $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow \forall y(y \in a \rightarrow y \in B))$.
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) \vdash A \subset B$.
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) \vdash A \subset B$.
- 1. $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) A$.
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) \vdash A \subset B$.
- 1. $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) A$.
- 2.: $a \in A H$.
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) \vdash A \subset B$.
- 1. $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) A$.
- 2.: $a \in A H$.
- 3.:: $a \in\{a\}$. H (used as a hypothesis)
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) \vdash A \subset B$.
- 1. $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) A$.
- 2.: $a \in A H$.
- 3.:: $a \in\{a\}$. H (used as a hypothesis)
- 4.:: $a \in A$.
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) \vdash A \subset B$.
- 1. $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) A$.
- 2.: $a \in A H$.
- 3.:: $a \in\{a\}$. H (used as a hypothesis)
- 4.:: $a \in A$.
- 5.: $a \in\{a\} \rightarrow a \in A$. 3-4
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) \vdash A \subset B$.
- 1. $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) A$.
- 2.: $a \in A H$.
- 3.:: $a \in\{a\}$. H (used as a hypothesis)
- $4 .:: a \in A$.
- 5.: $a \in\{a\} \rightarrow a \in A$. 3-4
- 6.: $(\forall y(y \in\{a\} \rightarrow y \in A)) \rightarrow(\forall y(y \in\{a\} \rightarrow y \in B))$
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) \vdash A \subset B$.
- 1. $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) A$.
- 2.: $a \in A H$.
- $3 .:: a \in\{a\}$. H (used as a hypothesis)
- $4 .:: a \in A$.
- 5.: $a \in\{a\} \rightarrow a \in A$. 3-4
- 6.: $(\forall y(y \in\{a\} \rightarrow y \in A)) \rightarrow(\forall y(y \in\{a\} \rightarrow y \in B))$
- 7.: $(a \in\{a\} \rightarrow a \in A) \rightarrow(a \in\{a\} \rightarrow a \in B)$.
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) \vdash A \subset B$.
- 1. $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) A$.
- 2.: $a \in A H$.
- $3 .:: a \in\{a\}$. H (used as a hypothesis)
- $4 .:: a \in A$.
- 5.: $a \in\{a\} \rightarrow a \in A$. 3-4
- 6.: $(\forall y(y \in\{a\} \rightarrow y \in A)) \rightarrow(\forall y(y \in\{a\} \rightarrow y \in B))$
- 7.: $(a \in\{a\} \rightarrow a \in A) \rightarrow(a \in\{a\} \rightarrow a \in B)$.
- 8.: $a \in\{a\} \rightarrow a \in B$.
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) \vdash A \subset B$.
- 1. $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) A$.
- 2.: $a \in A H$.
- $3 .:: a \in\{a\}$. H (used as a hypothesis)
- $4 .:: a \in A$.
- 5.: $a \in\{a\} \rightarrow a \in A .3-4$
- 6.: $(\forall y(y \in\{a\} \rightarrow y \in A)) \rightarrow(\forall y(y \in\{a\} \rightarrow y \in B))$
- 7.: $(a \in\{a\} \rightarrow a \in A) \rightarrow(a \in\{a\} \rightarrow a \in B)$.
- 8.: $a \in\{a\} \rightarrow a \in B$.
- 9.: $a \in\{a\}$ (True statement)
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) \vdash A \subset B$.
- 1. $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) A$.
- 2.: $a \in A H$.
- $3 .:: a \in\{a\}$. H (used as a hypothesis)
- $4 .:: a \in A$.
- 5.: $a \in\{a\} \rightarrow a \in A$. 3-4
- 6.: $(\forall y(y \in\{a\} \rightarrow y \in A)) \rightarrow(\forall y(y \in\{a\} \rightarrow y \in B))$
- 7.: $(a \in\{a\} \rightarrow a \in A) \rightarrow(a \in\{a\} \rightarrow a \in B)$.
- 8.: $a \in\{a\} \rightarrow a \in B$.
- 9.: $a \in\{a\}$ (True statement)
- 9.: $a \in B$.
- $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) \vdash A \subset B$.
- 1. $\forall x((\forall y(y \in x \rightarrow y \in A)) \rightarrow(\forall y(y \in x \rightarrow y \in B))) A$.
- 2.: $a \in A H$.
- $3 .:: a \in\{a\}$. H (used as a hypothesis)
- $4 .:: a \in A$.
- 5.: $a \in\{a\} \rightarrow a \in A$. 3-4
- 6.: $(\forall y(y \in\{a\} \rightarrow y \in A)) \rightarrow(\forall y(y \in\{a\} \rightarrow y \in B))$
- 7.: $(a \in\{a\} \rightarrow a \in A) \rightarrow(a \in\{a\} \rightarrow a \in B)$.
- 8.: $a \in\{a\} \rightarrow a \in B$.
- 9.: $a \in\{a\}$ (True statement)
- 9.: $a \in B$.
- 10. $a \in A \rightarrow a \in B$.
- $\mathcal{F}=\left\{C_{s} \mid s \in S\right\}$ a family of sets.
- $\mathcal{F}=\left\{C_{s} \mid s \in S\right\}$ a family of sets.
- Define $\bigcup \mathcal{F}$ as the set of elements in at least one element of \mathcal{F}.
- $\mathcal{F}=\left\{C_{s} \mid s \in S\right\}$ a family of sets.
- Define $\bigcup \mathcal{F}$ as the set of elements in at least one element of \mathcal{F}.
- $\bigcup \mathcal{F}=\{x \mid \exists A(A \in \mathcal{F} \wedge x \in A)\}=\{x \mid \exists A \in \mathcal{F}(x \in A)\}$.
- $\mathcal{F}=\left\{C_{s} \mid s \in S\right\}$ a family of sets.
- Define $\bigcup \mathcal{F}$ as the set of elements in at least one element of \mathcal{F}.
- $\bigcup \mathcal{F}=\{x \mid \exists A(A \in \mathcal{F} \wedge x \in A)\}=\{x \mid \exists A \in \mathcal{F}(x \in A)\}$.
- Define $\bigcap \mathcal{F}$ as the set of common elements of elements of \mathcal{F}.
- $\mathcal{F}=\left\{C_{s} \mid s \in S\right\}$ a family of sets.
- Define $\bigcup \mathcal{F}$ as the set of elements in at least one element of \mathcal{F}.
- $\bigcup \mathcal{F}=\{x \mid \exists A(A \in \mathcal{F} \wedge x \in A)\}=\{x \mid \exists A \in \mathcal{F}(x \in A)\}$.
- Define $\bigcap \mathcal{F}$ as the set of common elements of elements of \mathcal{F}.
- $\bigcap \mathcal{F}=\{x \mid \forall A(A \in \mathcal{F} \rightarrow x \in A)\}=\{x \mid \forall A \in \mathcal{F}(x \in A)\}$.
- $\mathcal{F}=\left\{C_{s} \mid s \in S\right\}$ a family of sets.
- Define $\bigcup \mathcal{F}$ as the set of elements in at least one element of \mathcal{F}.
- $\bigcup \mathcal{F}=\{x \mid \exists A(A \in \mathcal{F} \wedge x \in A)\}=\{x \mid \exists A \in \mathcal{F}(x \in A)\}$.
- Define $\bigcap \mathcal{F}$ as the set of common elements of elements of \mathcal{F}.
- $\bigcap \mathcal{F}=\{x \mid \forall A(A \in \mathcal{F} \rightarrow x \in A)\}=\{x \mid \forall A \in \mathcal{F}(x \in A)\}$.
- Alternate notations: $\mathcal{F}=\left\{A_{i} \mid i \in I\right\}$.
- $\mathcal{F}=\left\{C_{s} \mid s \in S\right\}$ a family of sets.
- Define $\bigcup \mathcal{F}$ as the set of elements in at least one element of \mathcal{F}.
- $\bigcup \mathcal{F}=\{x \mid \exists A(A \in \mathcal{F} \wedge x \in A)\}=\{x \mid \exists A \in \mathcal{F}(x \in A)\}$.
- Define $\bigcap \mathcal{F}$ as the set of common elements of elements of \mathcal{F}.
- $\bigcap \mathcal{F}=\{x \mid \forall A(A \in \mathcal{F} \rightarrow x \in A)\}=\{x \mid \forall A \in \mathcal{F}(x \in A)\}$.
- Alternate notations: $\mathcal{F}=\left\{A_{i} \mid i \in I\right\}$.
- $\bigcap \mathcal{F}=\bigcap_{i \in I} A_{i}=\left\{x \mid \forall i \in I\left(x \in A_{i}\right)\right\}$.
- $\mathcal{F}=\left\{C_{s} \mid s \in S\right\}$ a family of sets.
- Define $\bigcup \mathcal{F}$ as the set of elements in at least one element of \mathcal{F}.
- $\bigcup \mathcal{F}=\{x \mid \exists A(A \in \mathcal{F} \wedge x \in A)\}=\{x \mid \exists A \in \mathcal{F}(x \in A)\}$.
- Define $\bigcap \mathcal{F}$ as the set of common elements of elements of \mathcal{F}.
- $\bigcap \mathcal{F}=\{x \mid \forall A(A \in \mathcal{F} \rightarrow x \in A)\}=\{x \mid \forall A \in \mathcal{F}(x \in A)\}$.
- Alternate notations: $\mathcal{F}=\left\{A_{i} \mid i \in I\right\}$.
- $\bigcap \mathcal{F}=\bigcap_{i \in I} A_{i}=\left\{x \mid \forall i \in I\left(x \in A_{i}\right)\right\}$.
- $\bigcup \mathcal{F}=\bigcup_{i \in I} A_{i}=\left\{x \mid \exists i \in I\left(x \in A_{i}\right)\right\}$.

Example

- $x \in P(\bigcup \mathcal{F})$. Analysis:

Example

- $x \in P(\bigcup \mathcal{F})$. Analysis:
- $x \subset \bigcup \mathcal{F}$.

Example

- $x \in P(\bigcup \mathcal{F})$. Analysis:
- $x \subset \bigcup \mathcal{F}$.
- $\forall y(y \in x \rightarrow y \in \bigcup \mathcal{F})$.

Example

- $x \in P(\bigcup \mathcal{F})$. Analysis:
- $x \subset \bigcup \mathcal{F}$.
- $\forall y(y \in x \rightarrow y \in \bigcup \mathcal{F})$.
- $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.

Example

- $x \in P(\bigcup \mathcal{F})$. Analysis:
- $x \subset \bigcup \mathcal{F}$.
- $\forall y(y \in x \rightarrow y \in \bigcup \mathcal{F})$.
- $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.
- Prove that $x \in \mathcal{F} \vdash x \in P(\bigcup \mathcal{F})$.

Example

- $x \in P(\bigcup \mathcal{F})$. Analysis:
- $x \subset \bigcup \mathcal{F}$.
- $\forall y(y \in x \rightarrow y \in \bigcup \mathcal{F})$.
- $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.
- Prove that $x \in \mathcal{F} \vdash x \in P(\bigcup \mathcal{F})$.
- $x \in \mathcal{F} \vdash \forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.

Example

- $x \in P(\bigcup \mathcal{F})$. Analysis:
- $x \subset \bigcup \mathcal{F}$.
- $\forall y(y \in x \rightarrow y \in \bigcup \mathcal{F})$.
- $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.
- Prove that $x \in \mathcal{F} \vdash x \in P(\bigcup \mathcal{F})$.
- $x \in \mathcal{F} \vdash \forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.
- 1. $x \in \mathcal{F}$. A.

Example

- $x \in P(\bigcup \mathcal{F})$. Analysis:
- $x \subset \bigcup \mathcal{F}$.
- $\forall y(y \in x \rightarrow y \in \bigcup \mathcal{F})$.
- $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.
- Prove that $x \in \mathcal{F} \vdash x \in P(\bigcup \mathcal{F})$.
- $x \in \mathcal{F} \vdash \forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.
- 1. $x \in \mathcal{F}$. A.
- 2.: $a \in x \mathrm{H}$.

Example

- $x \in P(\bigcup \mathcal{F})$. Analysis:
- $x \subset \bigcup \mathcal{F}$.
- $\forall y(y \in x \rightarrow y \in \bigcup \mathcal{F})$.
- $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.
- Prove that $x \in \mathcal{F} \vdash x \in P(\bigcup \mathcal{F})$.
- $x \in \mathcal{F} \vdash \forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.
- 1. $x \in \mathcal{F}$. A.
- 2.: $a \in x \mathrm{H}$.
- $3 .: \exists A \in \mathcal{F}(a \in A)$.

Example

- $x \in P(\bigcup \mathcal{F})$. Analysis:
- $x \subset \bigcup \mathcal{F}$.
- $\forall y(y \in x \rightarrow y \in \bigcup \mathcal{F})$.
- $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.
- Prove that $x \in \mathcal{F} \vdash x \in P(\bigcup \mathcal{F})$.
- $x \in \mathcal{F} \vdash \forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.
- 1. $x \in \mathcal{F}$. A.
- 2.: $a \in x \mathrm{H}$.
- 3.: $\exists A \in \mathcal{F}(a \in A)$.
- 4. $a \in x \rightarrow(\exists A \in \mathcal{F}(a \in A)) 2$-3.

Example

- $x \in P(\bigcup \mathcal{F})$. Analysis:
- $x \subset \bigcup \mathcal{F}$.
- $\forall y(y \in x \rightarrow y \in \bigcup \mathcal{F})$.
- $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.
- Prove that $x \in \mathcal{F} \vdash x \in P(\bigcup \mathcal{F})$.
- $x \in \mathcal{F} \vdash \forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$.
- 1. $x \in \mathcal{F}$. A.
- 2.: $a \in x \mathrm{H}$.
- 3.: $\exists A \in \mathcal{F}(a \in A)$.
- 4. $a \in x \rightarrow(\exists A \in \mathcal{F}(a \in A))$ 2-3.
- 5. $\forall y(y \in x \rightarrow(\exists A \in \mathcal{F}(y \in A)))$

Example

- $x \in P(\bigcup \mathcal{F}) \vdash x \in \mathcal{F}$. Is this valid?

Example

- $x \in P(\bigcup \mathcal{F}) \vdash x \in \mathcal{F}$. Is this valid?
- Try to use refutation tree test.

Example

- $x \in P(\bigcup \mathcal{F}) \vdash x \in \mathcal{F}$. Is this valid?
- Try to use refutation tree test.
- $x \in P(\bigcup \mathcal{F}) . x \notin \mathcal{F}$.

Example

- $x \in P(\bigcup \mathcal{F}) \vdash x \in \mathcal{F}$. Is this valid?
- Try to use refutation tree test.
- $x \in P(\bigcup \mathcal{F}) . x \notin \mathcal{F}$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$.

Example

- $x \in P(\bigcup \mathcal{F}) \vdash x \in \mathcal{F}$. Is this valid?
- Try to use refutation tree test.
- $x \in P(\bigcup \mathcal{F}) . x \notin \mathcal{F}$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3 .
$a \in x \rightarrow \exists A \in \mathcal{F}(a \in A)$.

Example

- $x \in P(\bigcup \mathcal{F}) \vdash x \in \mathcal{F}$. Is this valid?
- Try to use refutation tree test.
- $x \in P(\bigcup \mathcal{F}) . x \notin \mathcal{F}$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3 .
$a \in x \rightarrow \exists A \in \mathcal{F}(a \in A)$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3. check
$a \in x \rightarrow \exists A \in \mathcal{F}(a \in A) .4$ (i) $a \notin x 4$ (ii) $\exists A(a \in A \wedge A \in \mathcal{F})$.

Example

- $x \in P(\bigcup \mathcal{F}) \vdash x \in \mathcal{F}$. Is this valid?
- Try to use refutation tree test.
- $x \in P(\bigcup \mathcal{F}) . x \notin \mathcal{F}$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3 .
$a \in x \rightarrow \exists A \in \mathcal{F}(a \in A)$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3. check $a \in x \rightarrow \exists A \in \mathcal{F}(a \in A) .4$ (i) $a \notin x 4$ (ii) $\exists A(a \in A \wedge A \in \mathcal{F})$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3. check $a \in x \rightarrow \exists A \in \mathcal{F}(a \in A) .4$ (i) $a \notin x$ open 4 (ii) check $\exists A(a \in A \wedge A \in \mathcal{F}) 5$ (ii) $a \in A_{0} 6$ (ii) $A_{0} \in \mathcal{F}$.

Example

- $x \in P(\bigcup \mathcal{F}) \vdash x \in \mathcal{F}$. Is this valid?
- Try to use refutation tree test.
- $x \in P(\bigcup \mathcal{F}) . x \notin \mathcal{F}$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3 .
$a \in x \rightarrow \exists A \in \mathcal{F}(a \in A)$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3. check $a \in x \rightarrow \exists A \in \mathcal{F}(a \in A) .4$ (i) $a \notin x 4$ (ii) $\exists A$ ($a \in A \wedge A \in \mathcal{F}$).
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3. check $a \in x \rightarrow \exists A \in \mathcal{F}(a \in A) .4$ (i) $a \notin x$ open 4 (ii) check $\exists A(a \in A \wedge A \in \mathcal{F}) 5$ (ii) $a \in A_{0} 6$ (ii) $A_{0} \in \mathcal{F}$.
- How do one obtain a counter-example? $x \notin \mathcal{F}$ and $a \notin x$.

Example

- $x \in P(\bigcup \mathcal{F}) \vdash x \in \mathcal{F}$. Is this valid?
- Try to use refutation tree test.
- $x \in P(\bigcup \mathcal{F}) . x \notin \mathcal{F}$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3 .
$a \in x \rightarrow \exists A \in \mathcal{F}(a \in A)$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3. check $a \in x \rightarrow \exists A \in \mathcal{F}(a \in A) .4$ (i) $a \notin x 4$ (ii) $\exists A(a \in A \wedge A \in \mathcal{F})$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3. check $a \in x \rightarrow \exists A \in \mathcal{F}(a \in A) .4$ (i) $a \notin x$ open 4 (ii) check $\exists A(a \in A \wedge A \in \mathcal{F}) 5$ (ii) $a \in A_{0} 6$ (ii) $A_{0} \in \mathcal{F}$.
- How do one obtain a counter-example? $x \notin \mathcal{F}$ and $a \notin x$.
- $\mathcal{F}=\{\{1,2\},\{1,3\}\} . x=\{1,2,3\} . a=4$.

Example

- $x \in P(\bigcup \mathcal{F}) \vdash x \in \mathcal{F}$. Is this valid?
- Try to use refutation tree test.
- $x \in P(\bigcup \mathcal{F}) . x \notin \mathcal{F}$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3 .
$a \in x \rightarrow \exists A \in \mathcal{F}(a \in A)$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3. check $a \in x \rightarrow \exists A \in \mathcal{F}(a \in A) .4$ (i) $a \notin x 4$ (ii) $\exists A(a \in A \wedge A \in \mathcal{F})$.
- 1. $\forall y(y \in x \rightarrow \exists A \in \mathcal{F}(y \in A))$. 2. $x \notin \mathcal{F}$. 3. check $a \in x \rightarrow \exists A \in \mathcal{F}(a \in A) .4$ (i) $a \notin x$ open 4 (ii) check $\exists A(a \in A \wedge A \in \mathcal{F}) 5$ (ii) $a \in A_{0} 6$ (ii) $A_{0} \in \mathcal{F}$.
- How do one obtain a counter-example? $x \notin \mathcal{F}$ and $a \notin x$.
- $\mathcal{F}=\{\{1,2\},\{1,3\}\} . x=\{1,2,3\} . a=4$.
- $\mathcal{F}=\{\{1,2\},\{1,3\}\} . x=\{1,2,3\} . a=3 . a \in\{1,3\} .\{1,3\} \in \mathcal{F}$.

