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Introduction

About this lecture

Sets (HTP Sections 1.3, 1.4)

Quantifiers and sets (HTP 2.1)
Equivalences involving quantifiers (HTP 2.2)
More operations on sets (HTP 2.3)
Course homepages:
http://mathsci.kaist.ac.kr/~schoi/logic.html and
the moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.
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Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, Springer. Read
Chapters 3,4,5.

A mathematical introduction to logic, H. Enderton, Academic
Press.
http://plato.stanford.edu/contents.html has much
resource.
Introduction to set theory, Hrbacek and Jech, CRC Press.
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Introduction

Some helpful references

http://en.wikipedia.org/wiki/Truth_table,

http://logik.phl.univie.ac.at/~chris/gateway/
formular-uk-zentral.html, complete (i.e. has all the steps)
http:
//svn.oriontransfer.org/TruthTable/index.rhtml,
has xor, complete.
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Sets

Sets
A set is a collection....This naive notion is fairly good.

The set theory is compatible with logic.
Symbols ∈, {}. (belong, included)
{{}, {{}}, {{{}}}}
{a}. We hold that a ∈ {a,b, c, ...}.
The main thrust of the set theory is the theory of description by
Russell.
P(x): x is a variable. P(x) is the statement that x is a prime
number
y ∈ {x |P(x)} is equivalent to P(y). That is the truth set of P.
Sets↔ Properties
D(p,q): p is divisible by q.
A set B = {x |x is a prime number }.
x ∈ B. What does this mean?
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Sets

Axioms of the set theory (Naive version)

There exists a set which has no elements. (Existence)

Two sets are equal if and only if they have the same elements.
(Extensionality)
There exists a set B = {x ∈ A|P(x)} if A is a set.
(Comprehension)
For any two sets, there exists a set that they both belong to. That
is, if A and B are sets, there is {A,B}. (Pairing)
For any collection of sets, there exists a unique set that contains
all the elements that belong to at least one set in the collection.
(Union)
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Sets

Axioms of the set theory (Naive version)

Given each set, there exists a collection of sets that contains
among its elements all the subset of the given set. (Power set)

An inductive set exists (Infinity)
Let P(x , y) be a property that for every x , there exists unique y so
that P(x , y) holds. Then for every set A, there is a set B such that
for every x ∈ A, there is y ∈ B so that P(x , y) holds. (Substitution)
Zermelo-Fraenkel theory has more axioms...The axiom of
foundation, the axiom of choice.(ZFC)
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Sets

Example

{x |x2 > 9}.

R = {x |x is a real number. }.
Q = {x |x is a rational number.}
Z = {x |x is an integer.}.
N = {x |x is a natual number.}.
y ∈ {x ∈ A|P(x)} is equivalent to y ∈ A ∧ P(y).
∅ is the empty set.
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Sets

Operations on sets

A ⊂ B if and only if ∀x(x ∈ A→ x ∈ B).

A ∩ B = {x |x ∈ A ∧ x ∈ B}.
A ∪ B = {x |x ∈ A ∨ x ∈ B}.
A ∩ B ⊂ A ∪ B.
A− B = {x |x ∈ A ∧ x /∈ B}.
A = ∅ if and only if ¬∃x(x ∈ A).
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Sets

Set theoretic problem

When is the set empty?

How can one verify two sets are disjoint, same, smaller, bigger, or
none of the above?
Answer: We use logic and the model theory.
A ⊂ B means x ∈ A→ x ∈ B.
Equality of A and B means x ∈ A if and only if x ∈ B.
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)?
x ∈ A ∪ (B ∩ C)

x ∈ A ∨ (x ∈ B ∧ x ∈ C).
(x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x ∈ C). DM.
Thus, x ∈ A ∪ (B ∩ C)↔ (x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x ∈ C).
One can use Venn diagrams....
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Sets

More set theoretic problem

Compare (A− B)− C, (A− B) ∩ (A− C), (A− B) ∪ (A− C).

x ∈ (A− B) ∧ x /∈ C. (x ∈ A ∧ x /∈ B)∧ /∈ C.
(x ∈ A ∧ x /∈ B) ∧ (x ∈ A ∧ x /∈ C).
(A− B) ∩ (A− C).
We can show (A− B)− C ⊂ (A− B) ∪ (A− C).
Is (A− B) ∪ (A− C) ⊂ (A− B)− C?

Use logic to find examples.

S. Choi (KAIST) Logic and set theory October 2, 2011 11 / 1



Sets

More set theoretic problem

Compare (A− B)− C, (A− B) ∩ (A− C), (A− B) ∪ (A− C).
x ∈ (A− B) ∧ x /∈ C. (x ∈ A ∧ x /∈ B)∧ /∈ C.

(x ∈ A ∧ x /∈ B) ∧ (x ∈ A ∧ x /∈ C).
(A− B) ∩ (A− C).
We can show (A− B)− C ⊂ (A− B) ∪ (A− C).
Is (A− B) ∪ (A− C) ⊂ (A− B)− C?

Use logic to find examples.

S. Choi (KAIST) Logic and set theory October 2, 2011 11 / 1



Sets

More set theoretic problem

Compare (A− B)− C, (A− B) ∩ (A− C), (A− B) ∪ (A− C).
x ∈ (A− B) ∧ x /∈ C. (x ∈ A ∧ x /∈ B)∧ /∈ C.
(x ∈ A ∧ x /∈ B) ∧ (x ∈ A ∧ x /∈ C).

(A− B) ∩ (A− C).
We can show (A− B)− C ⊂ (A− B) ∪ (A− C).
Is (A− B) ∪ (A− C) ⊂ (A− B)− C?

Use logic to find examples.

S. Choi (KAIST) Logic and set theory October 2, 2011 11 / 1



Sets

More set theoretic problem

Compare (A− B)− C, (A− B) ∩ (A− C), (A− B) ∪ (A− C).
x ∈ (A− B) ∧ x /∈ C. (x ∈ A ∧ x /∈ B)∧ /∈ C.
(x ∈ A ∧ x /∈ B) ∧ (x ∈ A ∧ x /∈ C).
(A− B) ∩ (A− C).

We can show (A− B)− C ⊂ (A− B) ∪ (A− C).
Is (A− B) ∪ (A− C) ⊂ (A− B)− C?

Use logic to find examples.

S. Choi (KAIST) Logic and set theory October 2, 2011 11 / 1



Sets

More set theoretic problem

Compare (A− B)− C, (A− B) ∩ (A− C), (A− B) ∪ (A− C).
x ∈ (A− B) ∧ x /∈ C. (x ∈ A ∧ x /∈ B)∧ /∈ C.
(x ∈ A ∧ x /∈ B) ∧ (x ∈ A ∧ x /∈ C).
(A− B) ∩ (A− C).
We can show (A− B)− C ⊂ (A− B) ∪ (A− C).

Is (A− B) ∪ (A− C) ⊂ (A− B)− C?

Use logic to find examples.

S. Choi (KAIST) Logic and set theory October 2, 2011 11 / 1



Sets

More set theoretic problem

Compare (A− B)− C, (A− B) ∩ (A− C), (A− B) ∪ (A− C).
x ∈ (A− B) ∧ x /∈ C. (x ∈ A ∧ x /∈ B)∧ /∈ C.
(x ∈ A ∧ x /∈ B) ∧ (x ∈ A ∧ x /∈ C).
(A− B) ∩ (A− C).
We can show (A− B)− C ⊂ (A− B) ∪ (A− C).
Is (A− B) ∪ (A− C) ⊂ (A− B)− C?

Use logic to find examples.

S. Choi (KAIST) Logic and set theory October 2, 2011 11 / 1



Sets

More set theoretic problem

Compare (A− B)− C, (A− B) ∩ (A− C), (A− B) ∪ (A− C).
x ∈ (A− B) ∧ x /∈ C. (x ∈ A ∧ x /∈ B)∧ /∈ C.
(x ∈ A ∧ x /∈ B) ∧ (x ∈ A ∧ x /∈ C).
(A− B) ∩ (A− C).
We can show (A− B)− C ⊂ (A− B) ∪ (A− C).
Is (A− B) ∪ (A− C) ⊂ (A− B)− C?

Use logic to find examples.

S. Choi (KAIST) Logic and set theory October 2, 2011 11 / 1



Sets

More set theoretic problem

Compare (A− B)− C, (A− B) ∩ (A− C), (A− B) ∪ (A− C).
x ∈ (A− B) ∧ x /∈ C. (x ∈ A ∧ x /∈ B)∧ /∈ C.
(x ∈ A ∧ x /∈ B) ∧ (x ∈ A ∧ x /∈ C).
(A− B) ∩ (A− C).
We can show (A− B)− C ⊂ (A− B) ∪ (A− C).
Is (A− B) ∪ (A− C) ⊂ (A− B)− C?

Use logic to find examples.

S. Choi (KAIST) Logic and set theory October 2, 2011 11 / 1



Sets

More set theoretic problem

Comparing (A− B)− C and (A− B) ∪ (A− C).

x ∈ (A− B) ∧ x /∈ C and (x ∈ A ∧ x /∈ B)∧ /∈ C.
(x ∈ A ∧ x /∈ B) ∨ (x ∈ A ∧ x /∈ C).
∀x((x ∈ A ∧ x /∈ B) ∨ (x ∈ A ∧ x /∈ C))→ (x ∈ A ∧ x /∈ B) ∧ x /∈ C)
is invalid.
Find the counter-example...(Using what?)
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Quantifiers and sets

Quantifiers and sets

A ∩ B ⊂ B − C. Translate this to logic

∀x((x ∈ A ∧ x ∈ B)→ (x ∈ B ∧ x /∈ C)).
If A ⊂ B, then A and C − B are disjoint.
∀x(x ∈ A→ x ∈ B)→ ¬∃x(x ∈ A ∧ x ∈ (C − B)).
∀x(x ∈ A→ x ∈ B)→ ¬∃x(x ∈ A ∧ x ∈ C ∧ x /∈ B).
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Quantifiers and sets

Examples

For every number a, the equation ax2 + 4x − 2 = 0 has a solution
if and only if a ≥ −2.

Use R.
∀a(a ≥ −2→ ∃x ∈ R(ax2 + 4x − 2 = 0)).
Is this true? How does one verify this...
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Equivalences involving quantifiers

Equivalences involving quantifiers

¬∀x P(x)↔ ∃x¬P(x).

¬∃x P(x)↔ ∀x¬P(x).
Negation of A ⊂ B.
¬∀x(x ∈ A→ x ∈ B).
∃x¬(x ∈ A→ x ∈ B).
∃x¬(x /∈ A ∨ x ∈ B). MI. (conditional law)
∃x(x ∈ A ∧ x /∈ B). DM.
There exists an element of A not in B.
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More operations on sets

Indexed sets

Let I be the set of indices i = 1,2,3, ...

p1 = 2, p2 = 3, p3 = 5,...
{p1,p2, ...} = {pi |i ∈ I} is another set, called, an indexed set.
(Actually this is an axiom)
In fact I could be any set.
{n2|n ∈ N}, {n2|n ∈ Z}.
{
√

x |x ∈ Q}
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More operations on sets

Family of sets

A set whose elements are sets is said to be a family of sets.

We can also write {Ai |i ∈ I} for Ai a set and I an index set.
F = {{}, {{}}, {{{}}}}
Given a set A, the power set is defined: P(A) = {x |x ⊂ A}.
x ∈ P(A) is equivalent to x ⊂ A and to ∀y(y ∈ x → y ∈ A).
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More operations on sets

The power set

P(A) ⊂ P(B). Analysis

∀x(x ∈ P(A)→ x ∈ P(B)).
∀x((∀y(y ∈ x → y ∈ A))→ (∀y(y ∈ x → y ∈ B))).
If A ⊂ B, then is P(A) ⊂ P(B)?
To check this what should we do? Use our inference rules....
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More operations on sets

A ⊂ B ` ∀x((∀y(y ∈ x → y ∈ A))→ (∀y(y ∈ x → y ∈ B))).

1. ∀x(x ∈ A→ x ∈ B). A.
2: ∀y(y ∈ a→ y ∈ A) H.
3: b ∈ a→ b ∈ A.
4: b ∈ A→ b ∈ B.
5: b ∈ a→ b ∈ B.
6.: ∀y(y ∈ a→ y ∈ B).
7. (∀y(y ∈ a→ y ∈ A))→ ∀y(y ∈ a→ y ∈ B). 2-6
8. ∀x((∀y(y ∈ x → y ∈ A))→ ∀y(y ∈ a→ y ∈ B)).
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More operations on sets

∀x((∀y(y ∈ x → y ∈ A))→ (∀y(y ∈ x → y ∈ B))) ` A ⊂ B.

1. ∀x((∀y(y ∈ x → y ∈ A))→ (∀y(y ∈ x → y ∈ B))) A.
2.: a ∈ A H.
3.:: a ∈ {a}. H (used as a hypothesis)
4.:: a ∈ A.
5.: a ∈ {a} → a ∈ A. 3-4
6.: (∀y(y ∈ {a} → y ∈ A))→ (∀y(y ∈ {a} → y ∈ B))

7.: (a ∈ {a} → a ∈ A)→ (a ∈ {a} → a ∈ B).
8.: a ∈ {a} → a ∈ B.
9.: a ∈ {a} (True statement)
9.: a ∈ B.
10. a ∈ A→ a ∈ B.
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More operations on sets

F = {Cs|s ∈ S} a family of sets.

Define
⋃
F as the set of elements in at least one element of F .⋃

F = {x |∃A(A ∈ F ∧ x ∈ A)} = {x |∃A ∈ F(x ∈ A)}.
Define

⋂
F as the set of common elements of elements of F .⋂

F = {x |∀A(A ∈ F → x ∈ A)} = {x |∀A ∈ F(x ∈ A)}.
Alternate notations: F = {Ai |i ∈ I}.⋂
F =

⋂
i∈I Ai = {x |∀i ∈ I(x ∈ Ai)}.⋃

F =
⋃

i∈I Ai = {x |∃i ∈ I(x ∈ Ai)}.
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More operations on sets

Example

x ∈ P(
⋃
F). Analysis:

x ⊂
⋃
F .

∀y(y ∈ x → y ∈
⋃
F).

∀y(y ∈ x → ∃A ∈ F(y ∈ A)).
Prove that x ∈ F ` x ∈ P(

⋃
F).

x ∈ F ` ∀y(y ∈ x → ∃A ∈ F(y ∈ A)).
1. x ∈ F . A.
2.: a ∈ x H.
3.: ∃A ∈ F(a ∈ A).
4. a ∈ x → (∃A ∈ F(a ∈ A)) 2-3.
5. ∀y(y ∈ x → (∃A ∈ F(y ∈ A)))
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More operations on sets

Example
x ∈ P(

⋃
F) ` x ∈ F . Is this valid?

Try to use refutation tree test.
x ∈ P(

⋃
F). x /∈ F .

1. ∀y(y ∈ x → ∃A ∈ F(y ∈ A)). 2. x /∈ F .
1. ∀y(y ∈ x → ∃A ∈ F(y ∈ A)). 2. x /∈ F . 3.
a ∈ x → ∃A ∈ F(a ∈ A).
1. ∀y(y ∈ x → ∃A ∈ F(y ∈ A)). 2. x /∈ F . 3. check
a ∈ x → ∃A ∈ F(a ∈ A). 4 (i) a /∈ x 4(ii) ∃A(a ∈ A ∧ A ∈ F).
1. ∀y(y ∈ x → ∃A ∈ F(y ∈ A)). 2. x /∈ F . 3. check
a ∈ x → ∃A ∈ F(a ∈ A). 4 (i) a /∈ x open 4(ii) check
∃A(a ∈ A ∧ A ∈ F) 5 (ii) a ∈ A0 6 (ii) A0 ∈ F .
How do one obtain a counter-example? x /∈ F and a /∈ x .
F = {{1,2}, {1,3}}. x = {1,2,3}. a = 4.
F = {{1,2}, {1,3}}. x = {1,2,3}. a = 3. a ∈ {1,3}. {1,3} ∈ F .
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a ∈ x → ∃A ∈ F(a ∈ A). 4 (i) a /∈ x 4(ii) ∃A(a ∈ A ∧ A ∈ F).
1. ∀y(y ∈ x → ∃A ∈ F(y ∈ A)). 2. x /∈ F . 3. check
a ∈ x → ∃A ∈ F(a ∈ A). 4 (i) a /∈ x open 4(ii) check
∃A(a ∈ A ∧ A ∈ F) 5 (ii) a ∈ A0 6 (ii) A0 ∈ F .
How do one obtain a counter-example? x /∈ F and a /∈ x .
F = {{1,2}, {1,3}}. x = {1,2,3}. a = 4.
F = {{1,2}, {1,3}}. x = {1,2,3}. a = 3. a ∈ {1,3}. {1,3} ∈ F .
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