1 Introduction

About this lecture

- Ordered pairs and Cartesian products
- Relations
- · More about relations
- · Ordering relations
- Closures
- Equivalence relations
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic. html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 2)

2 Ordering relations

Ordering relations

- A relation $R \subset A \times A$ is *antisymmetric* if $\forall x \in A \forall y \in A((xRy \land yRx) \rightarrow y = x)$.
- *R* is a *partial order* on *A* if it is reflexive, transitive and antisymmetric.
- *R* is a *total order* on *A* if it is a partial order and $\forall x \in A \forall y \in A(xRy \lor yRx)$.

Example

- $A = \{1, 2\}$ and B = P(A).
- The subset relation is a partial order but not a total order.
- $D = \{(x, y) \in \mathbb{Z}^+ \times \mathbb{Z}^+ | x \text{divides } y \}.$
- $G = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x \ge y\}.$

Smallest element

Definition 1. Let *R* be a partial order on a set *A*. Let $B \subset A$ and $b \in B$.

- *b* is called a *smallest element* of *B* if $\forall x \in B(bRx)$.
- *b* is *R*-minimal if $\neg \exists x \in B(xRb \land x \neq b)$.
- Which is a stronger concept?

Example

- $L = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x \le y\}$ which is a total order on \mathbb{R} . $B = \{x \in \mathbb{R} | x \ge 7\}$. $C = \{x \in \mathbb{R} | x > 7\}.$
- *L*-minimal ? *L*-smallest?
- \mathbb{Z}^+ with divisibility relation. $B = \{3, 4, 5, 6, 7, 8, 9\}$. *R*-minimal? *R*-smallest?
- $S = \{(x, y) \in P(\mathbb{Z}^+) \times P(\mathbb{Z}^+) | x \subset y\}. \mathcal{F} = \{x \in P(\mathbb{Z}^+) | 2 \in X \land 3 \in X\}.$
- *R*-minimal? *R*-smallest?

Theorem 2. Let R be a partial order on A. $B \subset A$.

- If B has a smallest element, then the smallest element is unique.
- Suppose that b is a smallest element of B. Then b is minimal element of B and the unique minimal element of b.
- If R is a total order and b is a minimal element of B, then b is the smallest element of B. (not proved)

Proof of 1

•	Given $\exists b(\forall x \in B(bRx))$	$\begin{array}{c} \text{Goal} \\ \exists ! b \forall x (bRx) \end{array}$
•	Given $\forall x \in B(b_0 R x) \forall x (a)$	$\begin{array}{c} \text{Goal} \\ cRx) \rightarrow c = b_0 \end{array}$
•	Given $\forall x \in B(b_0Rx)$ $\forall x(cRx)$ cRb_0, b_0Rc	$\begin{array}{l} \text{Goal} \\ c = b_0 \end{array}$

Proof of 2

C	1
•	$\begin{array}{ll} \text{Given} & \text{Goal} \\ b(\forall x \in B(bRx)) & \neg \exists x \in B(xRb \land x \neq b) \end{array}$
•	$\begin{array}{ll} \text{Given} & \text{Goal} \\ (\forall x \in B(bRx)) & \forall x \in B \neg (xRb \land x \neq b) \end{array}$
•	$\begin{array}{ll} \text{Given} & \text{Goal} \\ (\forall x \in B(bRx)) & \forall x \in B(xRb \rightarrow x=b) \end{array}$
•	$\begin{array}{ll} \text{Given} & \text{Goal} \\ (\forall x \in B(bRx)) & x = b \\ x \in B, xRb \end{array}$

• Divide goal. *b* is minimal and *b* is unique minimal.

Proof of 2 continued

• Divide goal. b is minimal and b is unique minimal.

Given Goal $b(\forall x \in B(bRx)) \quad \forall c \in B((\forall x \in B(xRc \rightarrow x = c)) \rightarrow b = c)$ Given Goal $b(\forall x \in B(bRx))$ b = c $c \in B$ $\forall x \in B(xRc \to x = c))$ Given Goal $b(\forall x \in B(bRx))$ b = c $c\in B$ $\forall x \in B(xRc \to x = c))$ bRc, hence b = c- Largest elements: $B \subset A$. $\forall x \in B(xRb)$ •

- maximal element: $\neg \exists x \in B(xRb \land b \neq x)$.
- •

Definition 3. - $B \subset A$. *a* is a *lower bound* of *B* if $\forall x \in B(aRx)$. - $a \in A$ is an *upper bound* of *B* if $\forall x \in B(xRa)$.

- Let U be the set of upper bounds for B and let L be the set of lower bounds for B.
- If U has a smallest element, this smallest element is said to be the *least upper bound* (lub, supremum).
- If *L* has a greatest element, this element is said to be the *greatest lower bound* (glb, infimum).
- These elements may not equal the smallest, minimal (greatest, maximal) element of *B*...

Real number system (Hrbaceck 4.5)

- An ordered set is *dense* if it has at least two elements and if for all a, b ∈ X, a < b implies there exists x ∈ X such that a < x < b.
- Let (P, <) be a dense linearly ordered field. *P* is *complete* if every nonempty subset *S* bounded above has a supremum.

Real number system (Hrbaceck 4.5)

•

Theorem 4. Let (P, <) be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set (C, <') unique up to isomorphism such that

- $P \subset C$. order preserved
- P is dense in C.
- C does not have endpoints.
- The real number system is the completion of \mathbb{Q} .
- The real number system is unique complete linearly ordered set without endpoints that has a countable subset dense in it.
- Conway, Knuth invented surreal numbers...

3 Closures

Reflexive closures

- **Definition 5.** Let R be a relation. The *reflexive closure* of R is the smallest set $S \subset A \times A$ such that $R \subset S$ and S is reflexive.
 - In other words, S is such that R ⊂ S, S is reflexive, for every T ⊂ A × A and if R ⊂ T and T is reflexive, then S ⊂ T.

Theorem 6. (4.5.2) Suppose that S is a relation on A. Then R has a reflexive closure.

Proof. Let $S = R \cup i_A$. Properties 1, 2 are obvious. For 3, $R \subset T$. Since T is reflexive, $i_A \subset T$. Thus $S = R \cup i_A \subset T$.

Definition 7. Let R be a relation on A.

- R is irreflexive if $\forall x \in A((x, x) \notin R)$.
- *R* is a *strict partial order* if it is irreflexive and transitive.
- *R* is a *strict total order* if it is a strict partial order and satisfies $\forall x \in A \forall y \in A(xRy \lor yRx \lor x = y)$.

The reflexive closure of a strict partial order (resp. strict total order) is a partial order (resp. total order).

Definition 8. Let R be a relation on A. The symmetric closure of R is the smallest set $S \subset A \times A$ such that $R \subset S$ and S is symmetric. This is equivalent to.

- $R \subset S$.
- S is symmetric.
- For any $T \subset A \times A$ and $R \subset T$ and T is symmetric imply that $S \subset T$.

Definition 9. Let R be a relation on A. The *transitive closure* of R is the smallest set $S \subset A \times A$ such that $R \subset S$ and S is transitive. This is equivalent to.

- $\bullet \ R \subset S.$
- S is transtive.
- For any $T \subset A \times A$ and $R \subset T$ and T is transitive imply that $S \subset T$.

Example 10. See Figures 1,2,3 in pages 197-198 in HTP.

Theorems

Theorem 11. Suppose that R is a relation on A. Then R has a symmetric closure. Proof. hint: $R \cup R^{-1}$.

Theorem 12. Suppose that *R* is a relation on *A*. Then *R* has a transitive closure. *Proof.* hint: Take intersections of all transitive relations containing *R*.

4 Equivalence relations

Equivalence relations

Definition 13. Suppose that R is a relation on A. If R is a reflexive, symmetric, and transtive, then R is an *equivalence relation*.

A equivalence relation \leftrightarrow a partition of a set.

Definition 14. Suppose that R is an equivalence relation on A. Then the *equivalence* class of x w.r.t. R is $[x]_R = \{y \in A | yRx\}$.

The set of all equivalence class is denoted $A/R \ (A \mod R)$

 $A/R := \{ [x]_R | x \in A \} = \{ X \subset A | \exists x \in A (X = [x]_R) \}$

Equivalence relations

Theorem 15. (4.6.5) Suppose that R is an equivalence relation on A. Then for

- For all $x \in A$, $x \in [x]_R$.
- For all $x \in A$ and $y \in A$, $y \in [x]_R \leftrightarrow [y]_R = [x]_R$.

proof

•

- 1. $x \in A$. Then xRx by reflexivity. Thus $x \in [x]_R$.
- 2. \rightarrow part:

Given	Goal	
$y \in [x]_R$	$[y]_R = [x]_R$	

 $\begin{array}{ll} \text{Given} & \text{Goal} \\ y \in [x]_R & \forall z (z \in [y]_R \leftrightarrow z \in [x]_R) \end{array}$

• part 1:

 $\begin{array}{ll} \mbox{Given} & \mbox{Goal} \\ y \in [x]_R & \forall z (z \in [y]_R \rightarrow z \in [x]_R) \end{array}$

proof

•	Given	Goal
	$y \in [x]_R$	zRx
	$z \in [y]_R, yRx, zRy$	

 $\begin{array}{ll} \text{Given} & \text{Goal} \\ y \in [x]_R & \forall z (z \in [x]_R \to z \in [y]_R) \end{array}$

• omit

• part 2:

Equivalence relation \rightarrow Partition

Theorem 16. Suppose that R is an equivalence relation on a set A. Then A/R is a partition of A.

- To show A/R is a partition of A, we show that $\bigcup A/R = A$, A/R is pairwise disjoint, and no element of A/R is empty.
 - For the first item, $\bigcup A/R \subset A$. We show $A \subset \bigcup A/R$. Suppose $x \in A$. Then $x \in [x]_R$. Thus $x \in \bigcup A/R$.
 - The pairwise disjointness follows from what?
 - Suppose $X \in A/R$. Then $X = [x]_R \ni x$ and hence is not empty.

Equivalence relation \leftarrow Partition

Theorem 17. (4.6.6) Let A be a set. \mathcal{F} a partition of A. Then there exists an equivalence relation R on a set A such that $\mathcal{F} = A/R$.

We need two lemmas to prove this.

Lemma 18. (4.6.7) A a set. \mathcal{F} a partition of $A > \text{Let } R = \bigcup_{X \in \mathcal{F}} (X \times X)$. Then R is an equivalence relation on A.

- 1. We call R the equivalence relation induced by \mathcal{F} .
- 2. The proof is that we verify the three properties of equivalence relations.
- 3. We prove the transitivity: xRy, yRz. $(x, y) \in X \times X$ and $(y, z) \in Y \times Y$. Then $X \cap Y \ni y$. Thus, X = Y. Thus, $(x, z) \in X \times X$ and xRz.

Lemma 19. (4.6.8) Let A be a set. \mathcal{F} a partition of A. Let R be the equivalence relation determined by \mathcal{F} . Suppose $X \in \mathcal{F}$ and $x \in X$. Then $[x]_R = X$.

Given Goal

$$X \in \mathcal{F}, x \in X$$
 $[x]_R \subset X, X \subset [x]_R$
part 1:
 $\begin{array}{cccc}
Given & Goal \\
X \in \mathcal{F}, x \in X & y \in X \\
y \in [x]_R
\end{array}$
Given $\begin{array}{cccc}
Goal \\
X \in \mathcal{F}, x \in X & y \in X \\
y \in X
\end{array}$
 $y \in X$
 $y \in X$

• part 2: omit

Proof of Theorem 4.6.6

- Let $R = \bigcup_{X \in \mathcal{F}} X \times X$.
- We show that $A/R = \mathcal{F}$. That is, $X \in A/R \leftrightarrow X \in \mathcal{F}$.
- part 1: \rightarrow .

•

$$\begin{array}{ll} \text{Given} & \text{Goal} \\ X \in A/R & X \in \mathcal{F} \end{array}$$

 $\begin{array}{ccc} \text{Given} & \text{Goal} \\ X = [x]_R, x \in A & X \in \mathcal{F} \\ x \in Y \text{ for some } Y \in \mathcal{F} \\ Y = [x]_R \text{ by 4.6.8} \\ Y = X \end{array}$

Proof of Theorem 4.6.6

• part 2: \leftarrow .

Given Goal

$$X \in \mathcal{F}$$
 $X \in A/R$
 $X \neq \emptyset, x \in X$
 $X = [x]_R \in A/R$ by 4.6.8