1 Introduction

About this lecture

- Ordered pairs and Cartesian products
- Relations
- More about relations
- Ordering relations
- Closures
- Equivalence relations
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic. html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 2)

2 Cartesian products

Cartesian products

- A, B sets. $A \times B=\{(a, b) \mid a \in A \wedge b \in B\}$.
- $\mathbb{R} \times \mathbb{R}$ Cartesian plane (Introduced by Descartes,.. used by Newton) First algebraic interpretation of curves...
- $P(x, y)$ The truth set of $P(x, y)=\{(a, b) \in A \times B \mid P(a, b)\}$.
- $x+y=1:\{(a, b) \in \mathbb{R} \times \mathbb{R} \mid a+b=1\}$.
-

Theorem 1. Suppose that A, B, C, D are sets.

1. $A \times(B \cap C)=(A \times B) \cap(A \times C)$.
2. $A \times(B \cup C)=(A \times B) \cup(A \times C)$.
3. $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$.
4. $(A \times B) \cup(C \times D) \subset(A \cup C) \times(B \cup D)$.
5. $A \times \emptyset=\emptyset \times A=\emptyset$.

Proof of 1

-

Given Goal
$A, B, C \quad A \times(B \cap C)=(A \times B) \cap(A \times C)$
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
A, B, C & A \times(B \cap C) \subset(A \times B) \cap(A \times C) \\
& (A \times B) \cap(A \times C) \subset A \times(B \cap C)
\end{array}
$$

Proof of 1

- \subset part only

$$
\begin{aligned}
& \text { Given } \\
& \begin{array}{l}
\text { Goal } \\
A, B, C \\
a, b
\end{array} \\
& \quad(a, b) \in A \times(B \cap C) \rightarrow(a, b) \in(A \times B) \cap(A \times C)
\end{aligned}
$$

-

$$
\begin{array}{cr}
\text { Given } & \text { Goal } \\
A, B, C & (a, b) \in(A \times B) \wedge(a \\
(a, b) \in A \times(B \cap C) &
\end{array}
$$

3 Relations

Example

- A and B are sets. Then $R \subset A \times B$ is a relation from A to B.
- Domain of $R: \operatorname{Dom}(R):=\{a \in A \mid \exists b \in B((a, b) \in B)\}$.
- Range of $R: \operatorname{Ran}(R):=\{b \in B \mid \exists a \in A((a, b) \in A)\}$.
- $R^{-1}:=\{(b, a) \in B \times A \mid(a, b) \in R\}$.
- If S is a relation from B to another set C, then $S \circ R:=\{(a, c) \in A \times C \mid \exists b \in$ $B((a, b) \in R \wedge(b, c) \in S)\}$.

Examples

- $E=\{(c, s) \in C \times S \mid$ The student s is enrolled in course c $\}$.
- $E^{-1}=\{(s, c) \in S \times C \mid$ The course chas sas a student $\}$.
- $L=\{(s, r) \in S \times R \mid$ The student s lives in a room r.$\}$.
- $L^{-1}=\{(r, s) \in R \times S \mid$ The room r has s as tenant $\}$.
- $E \circ L^{-1}=\left\{(r, c) \in R \times C \mid \exists s \in S\left((r, s) \in L^{-1} \wedge(s, c) \in E\right)\right\}$.
- $=\{(r, c) \in R \times C \mid$ The student s lives in a room r and enrolled in course c.$\}$.
- $=\{(r, c) \in R \times C \mid$ Some student living in a room r is enrolled in course c.$\}$.

Theorem 2. \quad - $\left(R^{-1}\right)^{-1}=R$.

- $\operatorname{Dom}\left(R^{-1}\right)=\operatorname{Ran}(R)$.
- $\operatorname{Ran}\left(R^{-1}\right)=\operatorname{Dom}(R)$.
- $T \circ(S \circ R)=(T \circ S) \circ R$.
- $(S \circ R)^{-1}=R^{-1} \circ S^{-1}$. (note order)

Proof of 5

-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
R, S & (S \circ R)^{-1}=R^{-1} \circ S^{-1}
\end{array}
$$

\bullet

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
R, S & (S \circ R)^{-1} \subset R^{-1} \circ S^{-1} \\
& R^{-1} \circ S^{-1} \subset(S \circ R)^{-1}
\end{array}
$$

\bullet

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
R, S & (s, r) \in R^{-1} \circ S^{-1} \\
(s, r) \in(S \circ R)^{-1} &
\end{array}
$$

-

$$
\begin{array}{cc}
\text { Given } & \begin{array}{c}
\text { Goal } \\
R, S \\
(r, s) \in(S \circ R)
\end{array} \\
\hline\left((s, t) \in S^{-1} \wedge(t, r) \in S^{-1}\right)
\end{array}
$$

Proof of 5 continued

\bullet

$$
\begin{array}{cc}
\text { Given } & \begin{array}{c}
\text { Goal } \\
R, S \\
\exists p((r, p) \in R \wedge(p, s) \in S)
\end{array} \\
\exists t\left((s, t) \in S^{-1} \wedge(t, r) \in R^{-1}\right)
\end{array}
$$

-

\[

\]

4 More about relations

Relations as graphs

- One can draw diagrams to represent the relations: particularly when it is finite. (See Page 175 HTP).
- A relation with itself. $R \subset A \times A$.
- The identity relation $i_{A}=\{(x, y) \in A \mid x=y\}$.
- One can draw a directed graph for a relation with itself. (See P. 177 HTP).
- Example: $A=\{1,2\}, B=\{\emptyset,\{1\},\{2\},\{1,2\}\}$.
- $S=\{(x, y) \in B \times B \mid x \subset y\}$.
- $\{\{\emptyset, \emptyset\},\{\emptyset,\{1\}\},\{\emptyset,\{2\}\},\{\emptyset,\{1,2\}\},\{\{1\},\{1\}\},\{\{1\},\{1,2\}\}$,
- $\{\{2\},\{2\}\},\{\{2\},\{1,2\}\},\{\{1,2\},\{1,2\}\}\}$.

Types of self relations

- A reflexive relation: $R \subset A \times A$ is reflexible if $\forall x \in A(x R x)$.
- R is symmetric if $\forall x \forall y(x R y \rightarrow y R x)$.
- R is transitive if $\forall x \forall y \forall z((x R y \wedge y R z) \rightarrow x R z)$.
- $\mathbb{Z} . x<y . x \leq y . .$.
\bullet

Theorem 3. 1. $R \subset A \times A$ is reflexive iff $i_{A} \subset R$.
2. R is symmetric iff $R^{-1}=R$.
3. R is transitive iff $R \circ R \subset R$.

