Logic and the set theory
Lecture 4: Refutation trees

S. Choi

Department of Mathematical Science
KAIST, Daejeon, South Korea

Fall semester, 2012

S. Choi (KAIST) Logic and set theory




About this lecture

@ Refutation tree and valid argument

S. Choi (KAIST) Logic and set theory



http://mathsci.kaist.ac.kr/~schoi/logic.html
http://moodle.kaist.ac.kr

About this lecture

@ Refutation tree and valid argument
@ Refutation Tree Rules

S. Choi (KAIST) Logic and set theory



http://mathsci.kaist.ac.kr/~schoi/logic.html
http://moodle.kaist.ac.kr

About this lecture

@ Refutation tree and valid argument
@ Refutation Tree Rules

@ Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html andthe
moodle page http://moodle.kaist.ac.kr

S. Choi (KAIST)

Logic and set theory September 18, 2012 2/16


http://mathsci.kaist.ac.kr/~schoi/logic.html
http://moodle.kaist.ac.kr

About this lecture

@ Refutation tree and valid argument
@ Refutation Tree Rules

@ Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html andthe
moodle page http://moodle.kaist.ac.kr

@ Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST)

Logic and set theory September 18, 2012 2/16


http://mathsci.kaist.ac.kr/~schoi/logic.html
http://moodle.kaist.ac.kr

Some helpful references

@ Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill

S. Choi (KAIST) Logic and set theory



http://plato.stanford.edu/contents.html
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/

Some helpful references

@ Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
@ A mathematical introduction to logic, H. Enderton, Academic Press.

S. Choi (KAIST) Logic and set theory September 18, 2012 3/16



http://plato.stanford.edu/contents.html
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/

Some helpful references

@ Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
@ A mathematical introduction to logic, H. Enderton, Academic Press.
@ Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea. )

S. Choi (KAIST) Logic and set theory

September 18, 2012 3/16


http://plato.stanford.edu/contents.html
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/

Some helpful references

@ Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill

@ A mathematical introduction to logic, H. Enderton, Academic Press.

@ Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea. )
@http://plato.stanford.edu/contents.html has much resource.

S. Choi (KAIST) Logic and set theory

September 18, 2012 3/16


http://plato.stanford.edu/contents.html
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/

Some helpful references

@ Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill

@ A mathematical introduction to logic, H. Enderton, Academic Press.

@ Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea. )
@http://plato.stanford.edu/contents.html has much resource.

@http://ocw.mit.edu/courses/linguistics—and-philosophy/
24-241-1logic-1i-fall-2005/readings/ See also "The Search-for-Counterexample
Test for Validity" This a slightly different one.

S. Choi (KAIST) Logic and set theory September 18, 2012 3/16



http://plato.stanford.edu/contents.html
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/

Refutation tree and valid argument

@ Recall the valid argument

S. Choi (KAIST) Logic and set theory




Refutation tree and valid argument

@ Recall the valid argument
@ To check, we need to show the premises T, T1,..,T imply that the conclusion is T always.

S. Choi (KAIST) Logic and set theory September 18, 2012 4/16




Refutation tree and valid argument

@ Recall the valid argument
@ To check, we need to show the premises T, T1,..,T imply that the conclusion is T always.

@ Start by negating the conclusion. Then show that premises and the negated conclusion
cannot be all true at the same time. Then this is a valid argument.

September 18, 2012 4/16

S. Choi (KAIST) Logic and set theory




Refutation tree and valid argument

@ Recall the valid argument

@ To check, we need to show the premises T, T1,..,T imply that the conclusion is T always.

@ Start by negating the conclusion. Then show that premises and the negated conclusion
cannot be all true at the same time. Then this is a valid argument.

@ If the premises and the negated conclusions are all true in some way, then the argument is
invalid.

September 18, 2012 4/16

S. Choi (KAIST) Logic and set theory




Refutation tree and valid argument

@ Recall the valid argument

@ To check, we need to show the premises T, T1,..,T imply that the conclusion is T always.

@ Start by negating the conclusion. Then show that premises and the negated conclusion
cannot be all true at the same time. Then this is a valid argument.

@ If the premises and the negated conclusions are all true in some way, then the argument is
invalid.

@ Note that | did not supply a proof that this works always.

September 18, 2012 4/16

S. Choi (KAIST) Logic and set theory




Refutation tree example

@ We break the statements down to atomic items and see if there can be all true instances or
not.

S. Choi (KAIST) Logic and set theory September 18, 2012 5/16




Refutation tree example

@ We break the statements down to atomic items and see if there can be all true instances or
not.

@ The aim is to obtain paths of atomic statements.

S. Choi (KAIST) Logic and set theory September 18, 2012 5/16




Refutation tree example

@ We break the statements down to atomic items and see if there can be all true instances or
not.

@ The aim is to obtain paths of atomic statements.

ePANQF P.

September 18, 2012 5/16

S. Choi (KAIST) Logic and set theory




Refutation tree example

@ We break the statements down to atomic items and see if there can be all true instances or
not.

@ The aim is to obtain paths of atomic statements.
ePNQF P.
@ P AQ,-P.

S. Choi (KAIST) Logic and set theory September 18, 2012 5/16




Refutation tree example

@ We break the statements down to atomic items and see if there can be all true instances or
not.

@ The aim is to obtain paths of atomic statements.
ePNQF P.

ePANQ,—P.

evPAQ,P, Q,—P.

S. Choi (KAIST) September 18, 2012 5/16

Logic and set theory




Refutation tree example

@ We break the statements down to atomic items and see if there can be all true instances or
not.

@ The aim is to obtain paths of atomic statements.
P ANQF P.

ePANQ,—P.

ovPAQ,P, Q,—P.

@ The nonchecked atomic items cannot all be true.

S. Choi (KAIST) September 18, 2012 5/16

Logic and set theory




Refutation tree example

@ We break the statements down to atomic items and see if there can be all true instances or
not.

@ The aim is to obtain paths of atomic statements.
oPANQF P.

ePANQ,—P.

ovPAQ, P, Q, —P.

@ The nonchecked atomic items cannot all be true.
@ Valid

S. Choi (KAIST) Logic and set theory September 18, 2012 5/16




Refutation tree and valid argument

Refutation tree example

ePVAQ,
P
o Q.

S. Choi (KAIST)

Logic and set theory



Refutation tree and valid argument

Refutation tree example

ePVQ, evPvVvaQ,
e —-P 0—|P,
o Q. e -Q,
@ (i) P or (i) Q.

S. Choi (KAIST)

Logic and set theory



Refutation tree example

ePVAQ, evPVAQ, evPVQ,
e —-P o P, o P,
oF Q. e -Q, e -Q,
@ (i) P or (i) Q. @ (i) P (X) (ii) Q. (X)
@ The nonchecked atomic items cannot all be true.
@ Thus valid.

S. Choi (KAIST) Logic and set theory

September 18, 2012 6/16



Refutation Tree Rules

@ Negation —: If any open path contains both a formula and its negation, place X. (This path is
now closed)

S. Choi (KAIST) Logic and set theory September 18, 2012 7/16




Refutation Tree Rules

@ Negation —: If any open path contains both a formula and its negation, place X. (This path is
now closed)

@ Negated negation ——; In any open path, check any unchecked ——¢ and write ¢ at the
bottom of every path containing it.

S. Choi (KAIST) Logic and set theory September 18, 2012 7/16




Refutation Tree Rules

@ Negation —: If any open path contains both a formula and its negation, place X. (This path is
now closed)

@ Negated negation ——; In any open path, check any unchecked ——¢ and write ¢ at the
bottom of every path containing it.

@ Conjunction A: In any open path, check any unchecked ¢ A ¢ and write ¢ and « at the
bottom of every path containing it. (same path)

September 18, 2012 7/16

S. Choi (KAIST) Logic and set theory




Refutation Tree Rules

@ Negation —: If any open path contains both a formula and its negation, place X. (This path is
now closed)

@ Negated negation ——; In any open path, check any unchecked ——¢ and write ¢ at the
bottom of every path containing it.

@ Conjunction A: In any open path, check any unchecked ¢ A ¢ and write ¢ and « at the
bottom of every path containing it. (same path)

@ Disjunction V: If an open path contain unchecked ¢ Vv 1, then check it and the split the
bottom of every path containing it into two with (i) one ¢ added and (ii) the other ) added.

September 18, 2012 7/16

S. Choi (KAIST) Logic and set theory




Refutation Tree Rules

@ Negation —: If any open path contains both a formula and its negation, place X. (This path is
now closed)

@ Negated negation ——; In any open path, check any unchecked ——¢ and write ¢ at the
bottom of every path containing it.

@ Conjunction A: In any open path, check any unchecked ¢ A ¢ and write ¢ and « at the
bottom of every path containing it. (same path)

@ Disjunction V: If an open path contain unchecked ¢ Vv 1, then check it and the split the
bottom of every path containing it into two with (i) one ¢ added and (ii) the other ) added.

@ Conditional —. Unchecked ¢ — 1. Check it and branch every path containing it into two (i)

= (i) .

September 18, 2012 7/16

S. Choi (KAIST) Logic and set theory




Refutation Tree Rules

@ Negation —: If any open path contains both a formula and its negation, place X. (This path is
now closed)

@ Negated negation ——; In any open path, check any unchecked ——¢ and write ¢ at the
bottom of every path containing it.

@ Conjunction A: In any open path, check any unchecked ¢ A ¢ and write ¢ and « at the
bottom of every path containing it. (same path)

@ Disjunction V: If an open path contain unchecked ¢ Vv 1, then check it and the split the
bottom of every path containing it into two with (i) one ¢ added and (ii) the other ) added.

@ Conditional —. Unchecked ¢ — 1. Check it and branch every path containing it into two (i)
= (ii) 1.

@ Biconditional «+. Unchecked ¢ <> 1. Check it and branch every path containing it into two (i)

=g, —p and (ii) ¢, 1.

September 18, 2012 7/16

S. Choi (KAIST) Logic and set theory




Refutation Tree Rules

@ Negation —: If any open path contains both a formula and its negation, place X. (This path is
now closed)

@ Negated negation ——; In any open path, check any unchecked ——¢ and write ¢ at the
bottom of every path containing it.

@ Conjunction A: In any open path, check any unchecked ¢ A ¢ and write ¢ and « at the
bottom of every path containing it. (same path)

@ Disjunction V: If an open path contain unchecked ¢ Vv 1, then check it and the split the
bottom of every path containing it into two with (i) one ¢ added and (ii) the other ) added.

@ Conditional —. Unchecked ¢ — 1. Check it and branch every path containing it into two (i)
=g (i) 2.

@ Biconditional «+. Unchecked ¢ <> 1. Check it and branch every path containing it into two (i)
—¢, =) and (ii) ¢, 1.

@ A path is finished (or closed) if X appears.

S. Choi (KAIST) Logic and set theory September 18, 2012 7/16




Refutation Tree Rules

@ Negation —: If any open path contains both a formula and its negation, place X. (This path is
now closed)

@ Negated negation ——; In any open path, check any unchecked ——¢ and write ¢ at the
bottom of every path containing it.

@ Conjunction A: In any open path, check any unchecked ¢ A ¢ and write ¢ and « at the
bottom of every path containing it. (same path)

@ Disjunction V: If an open path contain unchecked ¢ Vv 1, then check it and the split the
bottom of every path containing it into two with (i) one ¢ added and (ii) the other ) added.

@ Conditional —. Unchecked ¢ — 1. Check it and branch every path containing it into two (i)
=g (i) 2.

@ Biconditional «+. Unchecked ¢ <> 1. Check it and branch every path containing it into two (i)
—¢, =) and (ii) ¢, 1.

@ A path is finished (or closed) if X appears.

@ See 3.27 and 3.28.

S. Choi (KAIST) Logic and set theory September 18, 2012 7/16




Refutation Tree Rules

@ Negated conjunction —A: Unchecked —(¢ A ). Check it and split the bottom of every open
path containing it into two (i) add —¢ (ii) add —).

S. Choi (KAIST) Logic and set theory September 18, 2012 8/16




Refutation Tree Rules

@ Negated conjunction —A: Unchecked —(¢ A ). Check it and split the bottom of every open
path containing it into two (i) add —¢ (ii) add —).

@ Negated disjunction —V: unchecked —(¢ Vv ¥) and write =¢ and — at the bottom of every
(open) path containing it.

S. Choi (KAIST) Logic and set theory September 18, 2012 8/16




Refutation Tree Rules

@ Negated conjunction —A: Unchecked —(¢ A ). Check it and split the bottom of every open
path containing it into two (i) add —¢ (ii) add —).

@ Negated disjunction —V: unchecked —(¢ Vv ¥) and write =¢ and — at the bottom of every
(open) path containing it.

@ Negated conditional — —: In any open path, check any unchecked —(¢ — 1) and write ¢ and
—) at the bottom of every path containing it. (same path)

September 18, 2012 8/16

S. Choi (KAIST) Logic and set theory




Refutation Tree Rules

@ Negated conjunction —A: Unchecked —(¢ A ). Check it and split the bottom of every open
path containing it into two (i) add —¢ (ii) add —).

@ Negated disjunction —V: unchecked —(¢ Vv ¥) and write =¢ and — at the bottom of every
(open) path containing it.

@ Negated conditional — —: In any open path, check any unchecked —(¢ — 1) and write ¢ and
—) at the bottom of every path containing it. (same path)

@ Negated biconditional = «»: In any open path, check any unchecked —(¢ < 1) and branch
the bottom of every path containing it into two write ¢ and — at one (i) and write —¢ and v

(i)

S. Choi (KAIST) September 18, 2012 8/16

Logic and set theory




Example

1. B— —-A
e2 -B— C.
@ Conclusion A — C.

o = = = T ©Dac

S. Choi (KAIST) Logic and set theory




Example

o1. B— A 1. B— A
o2 -B— C. 2. - B— C,
@ Conclusion A — C. 3. -(A— C).

S. Choi (KAIST) Logic and set theory




Refutation Tree Rules

Example

1. B— —A 1. B— —A 1. B— —A

o2 -B— C. 2. -B— C, 02. —lB—>C,

@ Conclusion A — C. 3. -(A— C). ov 3. -(A— C).
04 A,
@5 —-C.

S. Choi (KAIST) Logic and set theory




Refutation Tree Rules

ov 1. B— —A,

2. -B— C,

ev 3. -(A— C).

04 A,

e5-C

@6 (i) =B (ii) =A (X) from 4.

S. Choi (KAIST) Logic and set theory




Refutation Tree Rules

ov 1. B— —A,
2. -B— C,
ev 3. -(A— C).
04 A,

e5-C

06 (i) =B (i) -A (X) from 4.

S. Choi (KAIST)

v 1. B— —A,

ov 2. -B— C,

ov 3. -(A— C).

04 A,

e5-C

@6 (i) =B from 1 (ii) —A (X)

o 7 (i)(i) =B (X) (i)(ii) C (X) from 5.

@ Now complete. valid

Logic and set theory

September 18, 2012

10/16



Open tree case

If open path arises without X, then invalid.

e1l. A— B
2. A
3.+ B.

S. Choi (KAIST) Logic and set theory




Open tree case

If open path arises without X, then invalid.

1. A— B e1.A— B
2. A 2. A
3.+ B. e 3. -B.

S. Choi (KAIST) Logic and set theory




Open tree case

If open path arises without X, then invalid.

e1l. A— B 1. A— B ovi1. A—B
2. A 2. A 2. A
3.+ B. @ 3. —B. @ 3. -B.

@ (i) A (ii) B. (X).

@ (i) is still alive.

@ Invalid case: —A, —-B s
the counter example.

S. Choi (KAIST) Logic and set theory September 18, 2012 11/16




Tautology Rules

@ A wif ¢ is a tautology if and only if —¢ is truth-functionally inconsistent.

S. Choi (KAIST) Logic and set theory




Tautology Rules

@ A wff ¢ is a tautology if and only if —¢ is truth-functionally inconsistent.
@ ¢ is a tautology if and only if all path in the finished tree are closed.

S. Choi (KAIST) Logic and set theory September 18, 2012 12/16




Tautology Rules: An example

@ —-(AVB) < -AN-B.
@ —(—(AV B) +< -AA-B).
@ negation first.

S. Choi (KAIST) Logic and set theory




Tautology Rules: An example

@ —-(AVB) < -AN-B. @v —(—(AV B) < (-AA—-B)).

@ —(—(AV B) +< -AA-B). @ (i) =(=(AvV B)), (i) =(AV B)

@ negation first. @ (i) (A A —=B), (ii)) =(-A A —B).
@ - > rule.

S. Choi (KAIST) Logic and set theory

September 18, 2012

13/16



Refutation Tree Rules

Tautology Rules: An example

@ —-(AVB) < -AN-B. @v —(—(AV B) < (-AA—-B)).

@ —(—(AV B) +< -AA-B). @ (i) =(=(AvV B)), (i) =(AV B)

@ negation first. @ (i) (A A —=B), (ii)) =(-A A —B).
@ - > rule.

v —(—=(AV B) < (mAAN-B)).
o (i) =(—=(AV B)),

o (i) (AN —B),

@ - > rule.

S. Choi (KAIST)

Logic and set theory September 18, 2012 13/16



Refutation Tree Rules

Tautology Rules: An example

@ —-(AVB) < -AN-B. @v —(—(AV B) < (-AA—-B)).
@ —(—(AV B) +< -AA-B). @ (i) =(=(AvV B)), (i) =(AV B)
@ negation first. @ (i) (A A —=B), (ii)) =(-A A —B).
@ - > rule.
v —(—=(AV B) < (mAAN-B)). v —(—=(AV B) « (-AAN—-B)).
@ (i) =(=(AvV B)), @ (i) ~(AV B)
@ (i) (AN —-B), @ (ii) ~(—A AN —B).
@ — <+ rule. @ — <+ rule.

S. Choi (KAIST)

Logic and set theory September 18, 2012 13/16



Refutation Tree Rules

-(=(AV B) + (-AA —B)).
(i) ~(~(AV B)),

oV (i) (mAA-B),

@ (i) (AV B) =—rule.

@ (i) A,

@ (i) =B (Conjunction rule).

(- 34
(- 34

S. Choi (KAIST) Logic and set theory




Refutation Tree Rules

v =(=(AV B) < (-AA —B)). —(—(AV B) + (-AA -B)).
v (i) ~(~(AV B)), (.) ~(~(AV B)),
oV (i) (mAA-B), v (i) (AN =B),
@ (i) (AV B) =—rule. v (i) (AV B)
@ (i) -A, () —A,
(i) =B (Conjunction rule). e (i) -B
@ (i)(i) A (X) (i)(ii) B (X) (Disjunction rule)

S. Choi (KAIST) Logic and set theory September 18, 2012 14/16



Refutation Tree Rules

0V —(~(AV B) & (~AA —B)).
o v (i) =(AV B)

@ (ii) —1(—|A N —IB)

o (i) —A

@ (i) =B -V rule

S. Choi (KAIST) Logic and set theory




Refutation Tree Rules

o —~(~(AV B) < (~AA -B)).

o v (i) =(AV B)
@ (i) ~(—A AN —B).
o (i) —A

o (i) =B -V rule

o —(=(AV B) < (-AA —B)).

o v (i) =(AV B)

@ v (ii) ~(—A A -B).
o (i) ~A

o (i) =B -V rule

@ (ii) (i) ==A (X) (ii)(ii) ==B (X) =A rule.

S. Choi (KAIST)

Logic and set theory

September 18, 2012 15/16



Some helpful remarks

@ Do not apply rules to subformulas. (Confusing)

S. Choi (KAIST) Logic and set theory




Some helpful remarks

@ Do not apply rules to subformulas. (Confusing)

@ The order of rules applied does not make any difference. It is more efficient to apply
nonbranching rules first.

S. Choi (KAIST) Logic and set theory September 18, 2012 16/16




Some helpful remarks

@ Do not apply rules to subformulas. (Confusing)

@ The order of rules applied does not make any difference. It is more efficient to apply
nonbranching rules first.

@ The process eventually terminates. (not go on forever). Decidability.

S. Choi (KAIST) Logic and set theory

September 18, 2012 16/ 16



Some helpful remarks

@ Do not apply rules to subformulas. (Confusing)

@ The order of rules applied does not make any difference. It is more efficient to apply
nonbranching rules first.

@ The process eventually terminates. (not go on forever). Decidability.
@ Soundness of the test: If we obtain validity from the test, then we can trust it.

S. Choi (KAIST) Logic and set theory

September 18, 2012 16/ 16



Some helpful remarks

@ Do not apply rules to subformulas. (Confusing)

@ The order of rules applied does not make any difference. It is more efficient to apply
nonbranching rules first.

@ The process eventually terminates. (not go on forever). Decidability.
@ Soundness of the test: If we obtain validity from the test, then we can trust it.

@ Completeness of the test: If we obtain invalidity from the test, then we can trust it: we even
get counter-examples.

S. Choi (KAIST) Logic and set theory September 18, 2012 16/16




Some helpful remarks

@ Do not apply rules to subformulas. (Confusing)

@ The order of rules applied does not make any difference. It is more efficient to apply
nonbranching rules first.

@ The process eventually terminates. (not go on forever). Decidability.
@ Soundness of the test: If we obtain validity from the test, then we can trust it.

@ Completeness of the test: If we obtain invalidity from the test, then we can trust it: we even
get counter-examples.

@ We need proof: Omit proof in R. Jeffery, Formal logic page 34.

S. Choi (KAIST) Logic and set theory September 18, 2012 16/16




	Introduction
	Refutation tree and valid argument
	Refutation Tree Rules

