Logic and the set theory

Lecture 4: Refutation trees

S. Choi

Department of Mathematical Science KAIST, Daejeon, South Korea

Fall semester, 2012

• Refutation tree and valid argument

・ロト・「聞・・聞・・聞・・ロ・

Refutation tree and valid argumentRefutation Tree Rules

トメヨト

き わくで

- Refutation tree and valid argument
- Refutation Tree Rules
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr

- Refutation tree and valid argument
- Refutation Tree Rules
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

• Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill

< ロ > < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
A mathematical introduction to logic, H. Enderton, Academic Press.

- Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea.)

- Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea.)
- http://plato.stanford.edu/contents.html has much resource.

- Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea.)
- http://plato.stanford.edu/contents.html has much resource.
- http://ocw.mit.edu/courses/linguistics-and-philosophy/ 24-241-logic-i-fall-2005/readings/ See also "The Search-for-Counterexample Test for Validity" This a slightly different one.

• Recall the valid argument

・ロシ < 聞 > < 回 > < 回 > < 回 > < の < の

• Recall the valid argument

• To check, we need to show the premises T, T,..,T imply that the conclusion is T always.

- Recall the valid argument
- To check, we need to show the premises T, T,..,T imply that the conclusion is T always.
- Start by negating the conclusion. Then show that premises and the negated conclusion cannot be all true at the same time. Then this is a valid argument.

- Recall the valid argument
- To check, we need to show the premises T, T,..,T imply that the conclusion is T always.
- Start by negating the conclusion. Then show that premises and the negated conclusion cannot be all true at the same time. Then this is a valid argument.
- If the premises and the negated conclusions are all true in some way, then the argument is invalid.

- Recall the valid argument
- To check, we need to show the premises T, T,..,T imply that the conclusion is T always.
- Start by negating the conclusion. Then show that premises and the negated conclusion cannot be all true at the same time. Then this is a valid argument.
- If the premises and the negated conclusions are all true in some way, then the argument is invalid.
- Note that I did not supply a proof that this works always.

 We break the statements down to atomic items and see if there can be all true instances or not.

- We break the statements down to atomic items and see if there can be all true instances or not.
- The aim is to obtain paths of atomic statements.

- We break the statements down to atomic items and see if there can be all true instances or not.
- The aim is to obtain paths of atomic statements.
- $P \land Q \vdash P$.

- We break the statements down to atomic items and see if there can be all true instances or not.
- The aim is to obtain paths of atomic statements.
- $P \land Q \vdash P$.
- $P \land Q, \neg P$.

- We break the statements down to atomic items and see if there can be all true instances or not.
- The aim is to obtain paths of atomic statements.
- $P \land Q \vdash P$.
- $P \land Q, \neg P$.
- $\checkmark P \land Q, P, Q, \neg P.$

- We break the statements down to atomic items and see if there can be all true instances or not.
- The aim is to obtain paths of atomic statements.
- $P \land Q \vdash P$.
- $P \land Q$, $\neg P$.
- $\checkmark P \land Q, P, Q, \neg P.$
- The nonchecked atomic items cannot all be true.

- We break the statements down to atomic items and see if there can be all true instances or not.
- The aim is to obtain paths of atomic statements.
- $P \land Q \vdash P$.
- $P \land Q, \neg P$.
- $\checkmark P \land Q, P, Q, \neg P.$
- The nonchecked atomic items cannot all be true.
- Valid

● *P* ∨ *Q*, ● ¬*P* ● ⊢ *Q*.

◆□▶ ◆□▶ ◆ ≧ ▶ ◆ ≧ ▶ ● ◎ ◆ ○ ◆ ○

✓ P ∨ Q,
¬P,
¬Q,
(i) P (X) (ii) Q. (X)
The nonchecked atomic items cannot all be true.
Thus valid.

• Negation \neg : If any open path contains both a formula and its negation, place X. (This path is now closed)

< ≣ >

- Negated negation $\neg\neg$; In any open path, check any unchecked $\neg\neg\phi$ and write ϕ at the bottom of every path containing it.

- Negated negation $\neg\neg$; In any open path, check any unchecked $\neg\neg\phi$ and write ϕ at the bottom of every path containing it.
- Conjunction \wedge : In any open path, check any unchecked $\phi \wedge \psi$ and write ϕ and ψ at the bottom of every path containing it. (same path)

- Negated negation $\neg\neg$; In any open path, check any unchecked $\neg\neg\phi$ and write ϕ at the bottom of every path containing it.
- Conjunction \land : In any open path, check any unchecked $\phi \land \psi$ and write ϕ and ψ at the bottom of every path containing it. (same path)
- Disjunction \lor : If an open path contain unchecked $\phi \lor \psi$, then check it and the split the bottom of every path containing it into two with (i) one ϕ added and (ii) the other ψ added.

- Negated negation $\neg\neg$; In any open path, check any unchecked $\neg\neg\phi$ and write ϕ at the bottom of every path containing it.
- Conjunction \wedge : In any open path, check any unchecked $\phi \wedge \psi$ and write ϕ and ψ at the bottom of every path containing it. (same path)
- Disjunction \lor : If an open path contain unchecked $\phi \lor \psi$, then check it and the split the bottom of every path containing it into two with (i) one ϕ added and (ii) the other ψ added.
- Conditional \rightarrow . Unchecked $\phi \rightarrow \psi$. Check it and branch every path containing it into two (i) $\neg \phi$ (ii) ψ .

|▲□ → ▲ 三 → ▲ 三 → のへで

- Negated negation $\neg\neg$; In any open path, check any unchecked $\neg\neg\phi$ and write ϕ at the bottom of every path containing it.
- Conjunction \land : In any open path, check any unchecked $\phi \land \psi$ and write ϕ and ψ at the bottom of every path containing it. (same path)
- Disjunction \lor : If an open path contain unchecked $\phi \lor \psi$, then check it and the split the bottom of every path containing it into two with (i) one ϕ added and (ii) the other ψ added.
- Conditional \rightarrow . Unchecked $\phi \rightarrow \psi$. Check it and branch every path containing it into two (i) $\neg \phi$ (ii) ψ .
- Biconditional \leftrightarrow . Unchecked $\phi \leftrightarrow \psi$. Check it and branch every path containing it into two (i) $\neg \phi, \neg \psi$ and (ii) ϕ, ψ .

- Negated negation $\neg\neg$; In any open path, check any unchecked $\neg\neg\phi$ and write ϕ at the bottom of every path containing it.
- Conjunction \land : In any open path, check any unchecked $\phi \land \psi$ and write ϕ and ψ at the bottom of every path containing it. (same path)
- Disjunction \lor : If an open path contain unchecked $\phi \lor \psi$, then check it and the split the bottom of every path containing it into two with (i) one ϕ added and (ii) the other ψ added.
- Conditional \rightarrow . Unchecked $\phi \rightarrow \psi$. Check it and branch every path containing it into two (i) $\neg \phi$ (ii) ψ .
- Biconditional \leftrightarrow . Unchecked $\phi \leftrightarrow \psi$. Check it and branch every path containing it into two (i) $\neg \phi, \neg \psi$ and (ii) ϕ, ψ .
- A path is finished (or closed) if X appears.

- Negated negation $\neg\neg$; In any open path, check any unchecked $\neg\neg\phi$ and write ϕ at the bottom of every path containing it.
- Conjunction \land : In any open path, check any unchecked $\phi \land \psi$ and write ϕ and ψ at the bottom of every path containing it. (same path)
- Disjunction \lor : If an open path contain unchecked $\phi \lor \psi$, then check it and the split the bottom of every path containing it into two with (i) one ϕ added and (ii) the other ψ added.
- Conditional \rightarrow . Unchecked $\phi \rightarrow \psi$. Check it and branch every path containing it into two (i) $\neg \phi$ (ii) ψ .
- Biconditional \leftrightarrow . Unchecked $\phi \leftrightarrow \psi$. Check it and branch every path containing it into two (i) $\neg \phi, \neg \psi$ and (ii) ϕ, ψ .
- A path is finished (or closed) if X appears.
- See 3.27 and 3.28.

• Negated conjunction $\neg \land$: Unchecked $\neg (\phi \land \psi)$. Check it and split the bottom of every open path containing it into two (i) add $\neg \phi$ (ii) add $\neg \psi$.

イロト イヨト イヨト イヨト

Ξ *•* **0 α (**°

- Negated conjunction $\neg \land$: Unchecked $\neg (\phi \land \psi)$. Check it and split the bottom of every open path containing it into two (i) add $\neg \phi$ (ii) add $\neg \psi$.
- Negated disjunction $\neg \lor$: unchecked $\neg (\phi \lor \psi)$ and write $\neg \phi$ and $\neg \psi$ at the bottom of every (open) path containing it.

E • 2 < €

- Negated conjunction $\neg \land$: Unchecked $\neg (\phi \land \psi)$. Check it and split the bottom of every open path containing it into two (i) add $\neg \phi$ (ii) add $\neg \psi$.
- Negated disjunction $\neg \lor$: unchecked $\neg(\phi \lor \psi)$ and write $\neg \phi$ and $\neg \psi$ at the bottom of every (open) path containing it.
- Negated conditional $\neg \rightarrow$: In any open path, check any unchecked $\neg(\phi \rightarrow \psi)$ and write ϕ and $\neg \psi$ at the bottom of every path containing it. (same path)

- Negated conjunction $\neg \land$: Unchecked $\neg (\phi \land \psi)$. Check it and split the bottom of every open path containing it into two (i) add $\neg \phi$ (ii) add $\neg \psi$.
- Negated disjunction $\neg \lor$: unchecked $\neg(\phi \lor \psi)$ and write $\neg \phi$ and $\neg \psi$ at the bottom of every (open) path containing it.
- Negated conditional $\neg \rightarrow$: In any open path, check any unchecked $\neg(\phi \rightarrow \psi)$ and write ϕ and $\neg \psi$ at the bottom of every path containing it. (same path)
- Negated biconditional ¬ ↔: In any open path, check any unchecked ¬(φ ↔ ψ) and branch the bottom of every path containing it into two write φ and ¬ψ at one (i) and write ¬φ and ψ (ii)

▲□ → ▲ 三 → ▲ 三 → ● < ○ < ○

Example

• 1. $B \rightarrow \neg A$ • 2 $\neg B \rightarrow C$. • Conclusion $A \rightarrow C$.

Example

• 1. $B \rightarrow \neg A$ • 2 $\neg B \rightarrow C$. • Conclusion $A \rightarrow C$. • 1. $B \rightarrow \neg A$ • 2. $\neg B \rightarrow C$, • 3. $\neg (A \rightarrow C)$.

Example

• 1. $B \rightarrow \neg A$ • 2 $\neg B \rightarrow C$. • Conclusion $A \rightarrow C$. • 1. $B \rightarrow \neg A$ • 2. $\neg B \rightarrow C$, • 3. $\neg (A \rightarrow C)$. • 1. $B \rightarrow \neg A$ • 2. $\neg B \rightarrow C$, • \checkmark 3. $\neg (A \rightarrow C)$. • 4 A, • 5 $\neg C$.

• \checkmark 1. $B \to \neg A$, • 2. $\neg B \to C$, • \checkmark 3. $\neg (A \to C)$. • 4 A, • 5 $\neg C$ • 6 (i) $\neg B$ (ii) $\neg A$ (X) from 4.

- \checkmark 1. $B \rightarrow \neg A$, • 2. $\neg B \rightarrow C$, • \checkmark 3. $\neg (A \rightarrow C)$. • 4 A,
- 5 ¬C
- 6 (i) ¬*B* (ii) ¬*A* (X) from 4.

- \checkmark 1. $B \rightarrow \neg A$,
- \checkmark 2. $\neg B \rightarrow C$,
- \checkmark 3. \neg ($A \rightarrow C$).
- ●4 *A*,
- 5 ¬C
- 6 (i) ¬*B* from 1 (ii) ¬*A* (X)
- 7 (i)(i) ¬¬*B* (X) (i)(ii) *C* (X) from 5.
- Now complete. valid

Open tree case

If open path arises without X, then invalid.

1. A → B
2. ¬A
3. ⊢ B.

Open tree case

If open path arises without X, then invalid.

•1. $A ightarrow B$	ullet 1. $A o B$
●2. ¬A	●2. ¬A
● 3. ⊢ <i>B</i> .	● 3. <i>¬B</i> .

Open tree case

If open path arises without X, then invalid.

● 1. <i>A</i> → <i>B</i>	ullet 1. $A o B$
●2. ¬ <i>A</i>	●2. ¬ <i>A</i>
● 3. <i>⊢ B</i> .	●3. ¬ <i>B</i> .

• \checkmark 1. $A \rightarrow B$

- ●2. ¬A
- 3. *¬B*.
- (i) ¬A (ii) B. (X).
- (i) is still alive.
- Invalid case: ¬A, ¬B is the counter example.

► < ∃ >

- 문

Tautology Rules

• A wff ϕ is a tautology if and only if $\neg \phi$ is truth-functionally inconsistent.

・ロ><局><ミン・ミン・<・<・・・</l

Tautology Rules

• A wff ϕ is a tautology if and only if $\neg \phi$ is truth-functionally inconsistent. • ϕ is a tautology if and only if all path in the finished tree are closed.

•
$$\neg (A \lor B) \leftrightarrow \neg A \land \neg B.$$

• $\neg (\neg (A \lor B) \leftrightarrow \neg A \land \neg B).$
• negation first.

 くロン・(ヨン・(ヨン・(ヨン・))
 ヨークへで

 September 18, 2012
 13 / 16

• $\neg (A \lor B) \leftrightarrow \neg A \land \neg B.$ • $\neg (\neg (A \lor B) \leftrightarrow \neg A \land \neg B).$ • negation first. • $\checkmark \neg (\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)).$ • (i) $\neg (\neg (A \lor B)),$ (ii) $\neg (A \lor B)$ • (i) $(\neg A \land \neg B),$ (ii) $\neg (\neg A \land \neg B).$ • $\neg \leftrightarrow$ rule.

(ロ) (同) (ヨ) (ヨ)

き わくで

•
$$\neg (A \lor B) \leftrightarrow \neg A \land \neg B.$$

• $\neg (\neg (A \lor B) \leftrightarrow \neg A \land \neg B).$
• negation first.

•
$$\checkmark \neg (\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)).$$

• (i) $\neg (\neg (A \lor B)),$
• (i) $(\neg A \land \neg B),$
• $\neg \leftrightarrow$ rule.

•
$$\checkmark \neg (\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)).$$

• (i) $\neg (\neg (A \lor B)),$ (ii) $\neg (A \lor B)$
• (i) $(\neg A \land \neg B),$ (ii) $\neg (\neg A \land \neg B).$
• $\neg \leftrightarrow$ rule.

•
$$\neg (A \lor B) \leftrightarrow \neg A \land \neg B.$$

• $\neg (\neg (A \lor B) \leftrightarrow \neg A \land \neg B).$
• negation first.

•
$$\checkmark \neg (\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)).$$

• (i) $\neg (\neg (A \lor B)),$
• (i) $(\neg A \land \neg B),$
• $\neg \leftrightarrow$ rule.

•
$$\checkmark \neg (\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)).$$

• (i) $\neg (\neg (A \lor B)),$ (ii) $\neg (A \lor B)$
• (i) $(\neg A \land \neg B),$ (ii) $\neg (\neg A \land \neg B).$
• $\neg \leftrightarrow$ rule.
• $\checkmark \neg (\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)).$
• (ii) $\neg (A \lor B)$
• (ii) $\neg (\neg A \land \neg B).$

.

 $\circ \neg \leftrightarrow$ rule.

/ .

- $\checkmark \neg (\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)).$ • \checkmark (i) $\neg (\neg (A \lor B)),$ • \checkmark (i) $(\neg A \land \neg B),$ • (i) $(A \lor B) \neg \neg$ rule. • (i) $\neg A,$
- (i) $\neg B$ (Conjunction rule).

- $\checkmark \neg (\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)).$ • $\checkmark (i) \neg (\neg (A \lor B)),$ • $\checkmark (i) (\neg A \land \neg B),$ • (i) $(A \lor B) \neg \neg$ rule. • (i) $\neg A,$
- (i) $\neg B$ (Conjunction rule).

- $\checkmark \neg (\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)).$
- \checkmark (i) $\neg(\neg(A \lor B)),$
- \checkmark (i) $(\neg A \land \neg B)$,
- ✓ (i) (*A* ∨ *B*)
- (i) ¬*A*,
- (i) ¬*B*
- (i)(i) A (X) (i)(ii) B (X) (Disjunction rule)

•
$$\checkmark \neg (\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)).$$

• \checkmark (ii) $\neg (A \lor B)$
• (ii) $\neg (\neg A \land \neg B).$
• (ii) $\neg A$
• (ii) $\neg B \neg \lor$ rule

•
$$\checkmark \neg (\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)).$$

• \checkmark (ii) $\neg (A \lor B)$
• (ii) $\neg (\neg A \land \neg B).$
• (ii) $\neg A$
• (ii) $\neg B \neg \lor$ rule

- $\checkmark \neg (\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)).$
- ✓ (ii) ¬(*A* ∨ *B*)
- \checkmark (ii) $\neg(\neg A \land \neg B)$.
- (ii) ¬A
- (ii) $\neg B \neg \lor$ rule
- (ii)(i) $\neg \neg A$ (X) (ii)(ii) $\neg \neg B$ (X) $\neg \land$ rule.

< ロ > < 団 > < 三 > < 三 > < 三 > < 三 > < < つ へ Q

• Do not apply rules to subformulas. (Confusing)

- Do not apply rules to subformulas. (Confusing)
- The order of rules applied does not make any difference. It is more efficient to apply nonbranching rules first.

- Do not apply rules to subformulas. (Confusing)
- The order of rules applied does not make any difference. It is more efficient to apply nonbranching rules first.
- The process eventually terminates. (not go on forever). Decidability.

- Do not apply rules to subformulas. (Confusing)
- The order of rules applied does not make any difference. It is more efficient to apply nonbranching rules first.
- The process eventually terminates. (not go on forever). Decidability.
- Soundness of the test: If we obtain validity from the test, then we can trust it.

- Do not apply rules to subformulas. (Confusing)
- The order of rules applied does not make any difference. It is more efficient to apply nonbranching rules first.
- The process eventually terminates. (not go on forever). Decidability.
- Soundness of the test: If we obtain validity from the test, then we can trust it.
- Completeness of the test: If we obtain invalidity from the test, then we can trust it: we even get counter-examples.

- Do not apply rules to subformulas. (Confusing)
- The order of rules applied does not make any difference. It is more efficient to apply nonbranching rules first.
- The process eventually terminates. (not go on forever). Decidability.
- Soundness of the test: If we obtain validity from the test, then we can trust it.
- Completeness of the test: If we obtain invalidity from the test, then we can trust it: we even get counter-examples.
- We need proof: Omit proof in R. Jeffery, Formal logic page 34.