
Logic and the set theory
Lecture 4: Refutation trees

S. Choi
Department of Mathematical Science

KAIST, Daejeon, South Korea

Fall semester, 2012

S. Choi (KAIST) Logic and set theory September 18, 2012 1 / 16



Introduction

About this lecture

Refutation tree and valid argument

Refutation Tree Rules
Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the
moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 16

http://mathsci.kaist.ac.kr/~schoi/logic.html
http://moodle.kaist.ac.kr


Introduction

About this lecture

Refutation tree and valid argument
Refutation Tree Rules

Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the
moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 16

http://mathsci.kaist.ac.kr/~schoi/logic.html
http://moodle.kaist.ac.kr


Introduction

About this lecture

Refutation tree and valid argument
Refutation Tree Rules
Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the
moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 16

http://mathsci.kaist.ac.kr/~schoi/logic.html
http://moodle.kaist.ac.kr


Introduction

About this lecture

Refutation tree and valid argument
Refutation Tree Rules
Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the
moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.

S. Choi (KAIST) Logic and set theory September 18, 2012 2 / 16

http://mathsci.kaist.ac.kr/~schoi/logic.html
http://moodle.kaist.ac.kr


Introduction

Some helpful references

Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill

A mathematical introduction to logic, H. Enderton, Academic Press.
Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea. )
http://plato.stanford.edu/contents.html has much resource.
http://ocw.mit.edu/courses/linguistics-and-philosophy/
24-241-logic-i-fall-2005/readings/ See also "The Search-for-Counterexample
Test for Validity" This a slightly different one.

S. Choi (KAIST) Logic and set theory September 18, 2012 3 / 16

http://plato.stanford.edu/contents.html
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/


Introduction

Some helpful references

Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
A mathematical introduction to logic, H. Enderton, Academic Press.

Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea. )
http://plato.stanford.edu/contents.html has much resource.
http://ocw.mit.edu/courses/linguistics-and-philosophy/
24-241-logic-i-fall-2005/readings/ See also "The Search-for-Counterexample
Test for Validity" This a slightly different one.

S. Choi (KAIST) Logic and set theory September 18, 2012 3 / 16

http://plato.stanford.edu/contents.html
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/


Introduction

Some helpful references

Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
A mathematical introduction to logic, H. Enderton, Academic Press.
Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea. )

http://plato.stanford.edu/contents.html has much resource.
http://ocw.mit.edu/courses/linguistics-and-philosophy/
24-241-logic-i-fall-2005/readings/ See also "The Search-for-Counterexample
Test for Validity" This a slightly different one.

S. Choi (KAIST) Logic and set theory September 18, 2012 3 / 16

http://plato.stanford.edu/contents.html
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/


Introduction

Some helpful references

Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
A mathematical introduction to logic, H. Enderton, Academic Press.
Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea. )
http://plato.stanford.edu/contents.html has much resource.

http://ocw.mit.edu/courses/linguistics-and-philosophy/
24-241-logic-i-fall-2005/readings/ See also "The Search-for-Counterexample
Test for Validity" This a slightly different one.

S. Choi (KAIST) Logic and set theory September 18, 2012 3 / 16

http://plato.stanford.edu/contents.html
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/


Introduction

Some helpful references

Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
A mathematical introduction to logic, H. Enderton, Academic Press.
Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea. )
http://plato.stanford.edu/contents.html has much resource.
http://ocw.mit.edu/courses/linguistics-and-philosophy/
24-241-logic-i-fall-2005/readings/ See also "The Search-for-Counterexample
Test for Validity" This a slightly different one.

S. Choi (KAIST) Logic and set theory September 18, 2012 3 / 16

http://plato.stanford.edu/contents.html
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/
http://ocw.mit.edu/courses/linguistics-and-philosophy/24-241-logic-i-fall-2005/readings/


Refutation tree and valid argument

Refutation tree and valid argument

Recall the valid argument

To check, we need to show the premises T, T,..,T imply that the conclusion is T always.
Start by negating the conclusion. Then show that premises and the negated conclusion
cannot be all true at the same time. Then this is a valid argument.
If the premises and the negated conclusions are all true in some way, then the argument is
invalid.
Note that I did not supply a proof that this works always.

S. Choi (KAIST) Logic and set theory September 18, 2012 4 / 16



Refutation tree and valid argument

Refutation tree and valid argument

Recall the valid argument
To check, we need to show the premises T, T,..,T imply that the conclusion is T always.

Start by negating the conclusion. Then show that premises and the negated conclusion
cannot be all true at the same time. Then this is a valid argument.
If the premises and the negated conclusions are all true in some way, then the argument is
invalid.
Note that I did not supply a proof that this works always.

S. Choi (KAIST) Logic and set theory September 18, 2012 4 / 16



Refutation tree and valid argument

Refutation tree and valid argument

Recall the valid argument
To check, we need to show the premises T, T,..,T imply that the conclusion is T always.
Start by negating the conclusion. Then show that premises and the negated conclusion
cannot be all true at the same time. Then this is a valid argument.

If the premises and the negated conclusions are all true in some way, then the argument is
invalid.
Note that I did not supply a proof that this works always.

S. Choi (KAIST) Logic and set theory September 18, 2012 4 / 16



Refutation tree and valid argument

Refutation tree and valid argument

Recall the valid argument
To check, we need to show the premises T, T,..,T imply that the conclusion is T always.
Start by negating the conclusion. Then show that premises and the negated conclusion
cannot be all true at the same time. Then this is a valid argument.
If the premises and the negated conclusions are all true in some way, then the argument is
invalid.

Note that I did not supply a proof that this works always.

S. Choi (KAIST) Logic and set theory September 18, 2012 4 / 16



Refutation tree and valid argument

Refutation tree and valid argument

Recall the valid argument
To check, we need to show the premises T, T,..,T imply that the conclusion is T always.
Start by negating the conclusion. Then show that premises and the negated conclusion
cannot be all true at the same time. Then this is a valid argument.
If the premises and the negated conclusions are all true in some way, then the argument is
invalid.
Note that I did not supply a proof that this works always.

S. Choi (KAIST) Logic and set theory September 18, 2012 4 / 16



Refutation tree and valid argument

Refutation tree example

We break the statements down to atomic items and see if there can be all true instances or
not.

The aim is to obtain paths of atomic statements.
P ∧ Q ` P.
P ∧ Q, ¬P.
XP ∧ Q, P, Q, ¬P.
The nonchecked atomic items cannot all be true.
Valid

S. Choi (KAIST) Logic and set theory September 18, 2012 5 / 16



Refutation tree and valid argument

Refutation tree example

We break the statements down to atomic items and see if there can be all true instances or
not.
The aim is to obtain paths of atomic statements.

P ∧ Q ` P.
P ∧ Q, ¬P.
XP ∧ Q, P, Q, ¬P.
The nonchecked atomic items cannot all be true.
Valid

S. Choi (KAIST) Logic and set theory September 18, 2012 5 / 16



Refutation tree and valid argument

Refutation tree example

We break the statements down to atomic items and see if there can be all true instances or
not.
The aim is to obtain paths of atomic statements.
P ∧ Q ` P.

P ∧ Q, ¬P.
XP ∧ Q, P, Q, ¬P.
The nonchecked atomic items cannot all be true.
Valid

S. Choi (KAIST) Logic and set theory September 18, 2012 5 / 16



Refutation tree and valid argument

Refutation tree example

We break the statements down to atomic items and see if there can be all true instances or
not.
The aim is to obtain paths of atomic statements.
P ∧ Q ` P.
P ∧ Q, ¬P.

XP ∧ Q, P, Q, ¬P.
The nonchecked atomic items cannot all be true.
Valid

S. Choi (KAIST) Logic and set theory September 18, 2012 5 / 16



Refutation tree and valid argument

Refutation tree example

We break the statements down to atomic items and see if there can be all true instances or
not.
The aim is to obtain paths of atomic statements.
P ∧ Q ` P.
P ∧ Q, ¬P.
XP ∧ Q, P, Q, ¬P.

The nonchecked atomic items cannot all be true.
Valid

S. Choi (KAIST) Logic and set theory September 18, 2012 5 / 16



Refutation tree and valid argument

Refutation tree example

We break the statements down to atomic items and see if there can be all true instances or
not.
The aim is to obtain paths of atomic statements.
P ∧ Q ` P.
P ∧ Q, ¬P.
XP ∧ Q, P, Q, ¬P.
The nonchecked atomic items cannot all be true.

Valid

S. Choi (KAIST) Logic and set theory September 18, 2012 5 / 16



Refutation tree and valid argument

Refutation tree example

We break the statements down to atomic items and see if there can be all true instances or
not.
The aim is to obtain paths of atomic statements.
P ∧ Q ` P.
P ∧ Q, ¬P.
XP ∧ Q, P, Q, ¬P.
The nonchecked atomic items cannot all be true.
Valid

S. Choi (KAIST) Logic and set theory September 18, 2012 5 / 16



Refutation tree and valid argument

Refutation tree example

P ∨ Q,
¬P
` Q.

XP ∨ Q,
¬P,
¬Q,
(i) P or (ii) Q.

XP ∨ Q,
¬P,
¬Q,
(i) P (X) (ii) Q. (X)
The nonchecked atomic items cannot all be true.
Thus valid.

S. Choi (KAIST) Logic and set theory September 18, 2012 6 / 16



Refutation tree and valid argument

Refutation tree example

P ∨ Q,
¬P
` Q.

XP ∨ Q,
¬P,
¬Q,
(i) P or (ii) Q.

XP ∨ Q,
¬P,
¬Q,
(i) P (X) (ii) Q. (X)
The nonchecked atomic items cannot all be true.
Thus valid.

S. Choi (KAIST) Logic and set theory September 18, 2012 6 / 16



Refutation tree and valid argument

Refutation tree example

P ∨ Q,
¬P
` Q.

XP ∨ Q,
¬P,
¬Q,
(i) P or (ii) Q.

XP ∨ Q,
¬P,
¬Q,
(i) P (X) (ii) Q. (X)
The nonchecked atomic items cannot all be true.
Thus valid.

S. Choi (KAIST) Logic and set theory September 18, 2012 6 / 16



Refutation Tree Rules

Refutation Tree Rules

Negation ¬: If any open path contains both a formula and its negation, place X. (This path is
now closed)

Negated negation ¬¬; In any open path, check any unchecked ¬¬φ and write φ at the
bottom of every path containing it.
Conjunction ∧: In any open path, check any unchecked φ ∧ ψ and write φ and ψ at the
bottom of every path containing it. (same path)
Disjunction ∨: If an open path contain unchecked φ ∨ ψ, then check it and the split the
bottom of every path containing it into two with (i) one φ added and (ii) the other ψ added.
Conditional →. Unchecked φ→ ψ. Check it and branch every path containing it into two (i)
¬φ (ii) ψ.
Biconditional ↔. Unchecked φ↔ ψ. Check it and branch every path containing it into two (i)
¬φ,¬ψ and (ii) φ, ψ.
A path is finished (or closed) if X appears.
See 3.27 and 3.28.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 16



Refutation Tree Rules

Refutation Tree Rules

Negation ¬: If any open path contains both a formula and its negation, place X. (This path is
now closed)
Negated negation ¬¬; In any open path, check any unchecked ¬¬φ and write φ at the
bottom of every path containing it.

Conjunction ∧: In any open path, check any unchecked φ ∧ ψ and write φ and ψ at the
bottom of every path containing it. (same path)
Disjunction ∨: If an open path contain unchecked φ ∨ ψ, then check it and the split the
bottom of every path containing it into two with (i) one φ added and (ii) the other ψ added.
Conditional →. Unchecked φ→ ψ. Check it and branch every path containing it into two (i)
¬φ (ii) ψ.
Biconditional ↔. Unchecked φ↔ ψ. Check it and branch every path containing it into two (i)
¬φ,¬ψ and (ii) φ, ψ.
A path is finished (or closed) if X appears.
See 3.27 and 3.28.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 16



Refutation Tree Rules

Refutation Tree Rules

Negation ¬: If any open path contains both a formula and its negation, place X. (This path is
now closed)
Negated negation ¬¬; In any open path, check any unchecked ¬¬φ and write φ at the
bottom of every path containing it.
Conjunction ∧: In any open path, check any unchecked φ ∧ ψ and write φ and ψ at the
bottom of every path containing it. (same path)

Disjunction ∨: If an open path contain unchecked φ ∨ ψ, then check it and the split the
bottom of every path containing it into two with (i) one φ added and (ii) the other ψ added.
Conditional →. Unchecked φ→ ψ. Check it and branch every path containing it into two (i)
¬φ (ii) ψ.
Biconditional ↔. Unchecked φ↔ ψ. Check it and branch every path containing it into two (i)
¬φ,¬ψ and (ii) φ, ψ.
A path is finished (or closed) if X appears.
See 3.27 and 3.28.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 16



Refutation Tree Rules

Refutation Tree Rules

Negation ¬: If any open path contains both a formula and its negation, place X. (This path is
now closed)
Negated negation ¬¬; In any open path, check any unchecked ¬¬φ and write φ at the
bottom of every path containing it.
Conjunction ∧: In any open path, check any unchecked φ ∧ ψ and write φ and ψ at the
bottom of every path containing it. (same path)
Disjunction ∨: If an open path contain unchecked φ ∨ ψ, then check it and the split the
bottom of every path containing it into two with (i) one φ added and (ii) the other ψ added.

Conditional →. Unchecked φ→ ψ. Check it and branch every path containing it into two (i)
¬φ (ii) ψ.
Biconditional ↔. Unchecked φ↔ ψ. Check it and branch every path containing it into two (i)
¬φ,¬ψ and (ii) φ, ψ.
A path is finished (or closed) if X appears.
See 3.27 and 3.28.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 16



Refutation Tree Rules

Refutation Tree Rules

Negation ¬: If any open path contains both a formula and its negation, place X. (This path is
now closed)
Negated negation ¬¬; In any open path, check any unchecked ¬¬φ and write φ at the
bottom of every path containing it.
Conjunction ∧: In any open path, check any unchecked φ ∧ ψ and write φ and ψ at the
bottom of every path containing it. (same path)
Disjunction ∨: If an open path contain unchecked φ ∨ ψ, then check it and the split the
bottom of every path containing it into two with (i) one φ added and (ii) the other ψ added.
Conditional →. Unchecked φ→ ψ. Check it and branch every path containing it into two (i)
¬φ (ii) ψ.

Biconditional ↔. Unchecked φ↔ ψ. Check it and branch every path containing it into two (i)
¬φ,¬ψ and (ii) φ, ψ.
A path is finished (or closed) if X appears.
See 3.27 and 3.28.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 16



Refutation Tree Rules

Refutation Tree Rules

Negation ¬: If any open path contains both a formula and its negation, place X. (This path is
now closed)
Negated negation ¬¬; In any open path, check any unchecked ¬¬φ and write φ at the
bottom of every path containing it.
Conjunction ∧: In any open path, check any unchecked φ ∧ ψ and write φ and ψ at the
bottom of every path containing it. (same path)
Disjunction ∨: If an open path contain unchecked φ ∨ ψ, then check it and the split the
bottom of every path containing it into two with (i) one φ added and (ii) the other ψ added.
Conditional →. Unchecked φ→ ψ. Check it and branch every path containing it into two (i)
¬φ (ii) ψ.
Biconditional ↔. Unchecked φ↔ ψ. Check it and branch every path containing it into two (i)
¬φ,¬ψ and (ii) φ, ψ.

A path is finished (or closed) if X appears.
See 3.27 and 3.28.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 16



Refutation Tree Rules

Refutation Tree Rules

Negation ¬: If any open path contains both a formula and its negation, place X. (This path is
now closed)
Negated negation ¬¬; In any open path, check any unchecked ¬¬φ and write φ at the
bottom of every path containing it.
Conjunction ∧: In any open path, check any unchecked φ ∧ ψ and write φ and ψ at the
bottom of every path containing it. (same path)
Disjunction ∨: If an open path contain unchecked φ ∨ ψ, then check it and the split the
bottom of every path containing it into two with (i) one φ added and (ii) the other ψ added.
Conditional →. Unchecked φ→ ψ. Check it and branch every path containing it into two (i)
¬φ (ii) ψ.
Biconditional ↔. Unchecked φ↔ ψ. Check it and branch every path containing it into two (i)
¬φ,¬ψ and (ii) φ, ψ.
A path is finished (or closed) if X appears.

See 3.27 and 3.28.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 16



Refutation Tree Rules

Refutation Tree Rules

Negation ¬: If any open path contains both a formula and its negation, place X. (This path is
now closed)
Negated negation ¬¬; In any open path, check any unchecked ¬¬φ and write φ at the
bottom of every path containing it.
Conjunction ∧: In any open path, check any unchecked φ ∧ ψ and write φ and ψ at the
bottom of every path containing it. (same path)
Disjunction ∨: If an open path contain unchecked φ ∨ ψ, then check it and the split the
bottom of every path containing it into two with (i) one φ added and (ii) the other ψ added.
Conditional →. Unchecked φ→ ψ. Check it and branch every path containing it into two (i)
¬φ (ii) ψ.
Biconditional ↔. Unchecked φ↔ ψ. Check it and branch every path containing it into two (i)
¬φ,¬ψ and (ii) φ, ψ.
A path is finished (or closed) if X appears.
See 3.27 and 3.28.

S. Choi (KAIST) Logic and set theory September 18, 2012 7 / 16



Refutation Tree Rules

Refutation Tree Rules

Negated conjunction ¬∧: Unchecked ¬(φ ∧ ψ). Check it and split the bottom of every open
path containing it into two (i) add ¬φ (ii) add ¬ψ.

Negated disjunction ¬∨: unchecked ¬(φ ∨ ψ) and write ¬φ and ¬ψ at the bottom of every
(open) path containing it.
Negated conditional ¬ →: In any open path, check any unchecked ¬(φ→ ψ) and write φ and
¬ψ at the bottom of every path containing it. (same path)
Negated biconditional ¬ ↔: In any open path, check any unchecked ¬(φ↔ ψ) and branch
the bottom of every path containing it into two write φ and ¬ψ at one (i) and write ¬φ and ψ
(ii)

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 16



Refutation Tree Rules

Refutation Tree Rules

Negated conjunction ¬∧: Unchecked ¬(φ ∧ ψ). Check it and split the bottom of every open
path containing it into two (i) add ¬φ (ii) add ¬ψ.
Negated disjunction ¬∨: unchecked ¬(φ ∨ ψ) and write ¬φ and ¬ψ at the bottom of every
(open) path containing it.

Negated conditional ¬ →: In any open path, check any unchecked ¬(φ→ ψ) and write φ and
¬ψ at the bottom of every path containing it. (same path)
Negated biconditional ¬ ↔: In any open path, check any unchecked ¬(φ↔ ψ) and branch
the bottom of every path containing it into two write φ and ¬ψ at one (i) and write ¬φ and ψ
(ii)

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 16



Refutation Tree Rules

Refutation Tree Rules

Negated conjunction ¬∧: Unchecked ¬(φ ∧ ψ). Check it and split the bottom of every open
path containing it into two (i) add ¬φ (ii) add ¬ψ.
Negated disjunction ¬∨: unchecked ¬(φ ∨ ψ) and write ¬φ and ¬ψ at the bottom of every
(open) path containing it.
Negated conditional ¬ →: In any open path, check any unchecked ¬(φ→ ψ) and write φ and
¬ψ at the bottom of every path containing it. (same path)

Negated biconditional ¬ ↔: In any open path, check any unchecked ¬(φ↔ ψ) and branch
the bottom of every path containing it into two write φ and ¬ψ at one (i) and write ¬φ and ψ
(ii)

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 16



Refutation Tree Rules

Refutation Tree Rules

Negated conjunction ¬∧: Unchecked ¬(φ ∧ ψ). Check it and split the bottom of every open
path containing it into two (i) add ¬φ (ii) add ¬ψ.
Negated disjunction ¬∨: unchecked ¬(φ ∨ ψ) and write ¬φ and ¬ψ at the bottom of every
(open) path containing it.
Negated conditional ¬ →: In any open path, check any unchecked ¬(φ→ ψ) and write φ and
¬ψ at the bottom of every path containing it. (same path)
Negated biconditional ¬ ↔: In any open path, check any unchecked ¬(φ↔ ψ) and branch
the bottom of every path containing it into two write φ and ¬ψ at one (i) and write ¬φ and ψ
(ii)

S. Choi (KAIST) Logic and set theory September 18, 2012 8 / 16



Refutation Tree Rules

Example

1. B → ¬A
2 ¬B → C.
Conclusion A → C.

1. B → ¬A
2. ¬B → C,
3. ¬(A → C).

1. B → ¬A
2. ¬B → C,
X 3. ¬(A → C).
4 A,
5 ¬C.

S. Choi (KAIST) Logic and set theory September 18, 2012 9 / 16



Refutation Tree Rules

Example

1. B → ¬A
2 ¬B → C.
Conclusion A → C.

1. B → ¬A
2. ¬B → C,
3. ¬(A → C).

1. B → ¬A
2. ¬B → C,
X 3. ¬(A → C).
4 A,
5 ¬C.

S. Choi (KAIST) Logic and set theory September 18, 2012 9 / 16



Refutation Tree Rules

Example

1. B → ¬A
2 ¬B → C.
Conclusion A → C.

1. B → ¬A
2. ¬B → C,
3. ¬(A → C).

1. B → ¬A
2. ¬B → C,
X 3. ¬(A → C).
4 A,
5 ¬C.

S. Choi (KAIST) Logic and set theory September 18, 2012 9 / 16



Refutation Tree Rules

X 1. B → ¬A,
2. ¬B → C,
X 3. ¬(A → C).
4 A,
5 ¬C
6 (i) ¬B (ii) ¬A (X) from 4.

X 1. B → ¬A,
X 2. ¬B → C,
X 3. ¬(A → C).
4 A,
5 ¬C
6 (i) ¬B from 1 (ii) ¬A (X)
7 (i)(i) ¬¬B (X) (i)(ii) C (X) from 5.
Now complete. valid

S. Choi (KAIST) Logic and set theory September 18, 2012 10 / 16



Refutation Tree Rules

X 1. B → ¬A,
2. ¬B → C,
X 3. ¬(A → C).
4 A,
5 ¬C
6 (i) ¬B (ii) ¬A (X) from 4.

X 1. B → ¬A,
X 2. ¬B → C,
X 3. ¬(A → C).
4 A,
5 ¬C
6 (i) ¬B from 1 (ii) ¬A (X)
7 (i)(i) ¬¬B (X) (i)(ii) C (X) from 5.
Now complete. valid

S. Choi (KAIST) Logic and set theory September 18, 2012 10 / 16



Refutation Tree Rules

Open tree case

If open path arises without X, then invalid.

1. A → B
2. ¬A
3. ` B.

1. A → B
2. ¬A
3. ¬B.

X 1. A → B
2. ¬A
3. ¬B.
(i) ¬A (ii) B. (X).
(i) is still alive.
Invalid case: ¬A,¬B is
the counter example.

S. Choi (KAIST) Logic and set theory September 18, 2012 11 / 16



Refutation Tree Rules

Open tree case

If open path arises without X, then invalid.

1. A → B
2. ¬A
3. ` B.

1. A → B
2. ¬A
3. ¬B.

X 1. A → B
2. ¬A
3. ¬B.
(i) ¬A (ii) B. (X).
(i) is still alive.
Invalid case: ¬A,¬B is
the counter example.

S. Choi (KAIST) Logic and set theory September 18, 2012 11 / 16



Refutation Tree Rules

Open tree case

If open path arises without X, then invalid.

1. A → B
2. ¬A
3. ` B.

1. A → B
2. ¬A
3. ¬B.

X 1. A → B
2. ¬A
3. ¬B.
(i) ¬A (ii) B. (X).
(i) is still alive.
Invalid case: ¬A,¬B is
the counter example.

S. Choi (KAIST) Logic and set theory September 18, 2012 11 / 16



Refutation Tree Rules

Tautology Rules

A wff φ is a tautology if and only if ¬φ is truth-functionally inconsistent.

φ is a tautology if and only if all path in the finished tree are closed.

S. Choi (KAIST) Logic and set theory September 18, 2012 12 / 16



Refutation Tree Rules

Tautology Rules

A wff φ is a tautology if and only if ¬φ is truth-functionally inconsistent.
φ is a tautology if and only if all path in the finished tree are closed.

S. Choi (KAIST) Logic and set theory September 18, 2012 12 / 16



Refutation Tree Rules

Tautology Rules: An example

¬(A ∨ B) ↔ ¬A ∧ ¬B.
¬(¬(A ∨ B) ↔ ¬A ∧ ¬B).
negation first.

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
(i) ¬(¬(A ∨ B)), (ii) ¬(A ∨ B)

(i) (¬A ∧ ¬B), (ii) ¬(¬A ∧ ¬B).
¬ ↔ rule.

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
(i) ¬(¬(A ∨ B)),
(i) (¬A ∧ ¬B),
¬ ↔ rule.

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
(ii) ¬(A ∨ B)

(ii) ¬(¬A ∧ ¬B).
¬ ↔ rule.

S. Choi (KAIST) Logic and set theory September 18, 2012 13 / 16



Refutation Tree Rules

Tautology Rules: An example

¬(A ∨ B) ↔ ¬A ∧ ¬B.
¬(¬(A ∨ B) ↔ ¬A ∧ ¬B).
negation first.

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
(i) ¬(¬(A ∨ B)), (ii) ¬(A ∨ B)

(i) (¬A ∧ ¬B), (ii) ¬(¬A ∧ ¬B).
¬ ↔ rule.

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
(i) ¬(¬(A ∨ B)),
(i) (¬A ∧ ¬B),
¬ ↔ rule.

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
(ii) ¬(A ∨ B)

(ii) ¬(¬A ∧ ¬B).
¬ ↔ rule.

S. Choi (KAIST) Logic and set theory September 18, 2012 13 / 16



Refutation Tree Rules

Tautology Rules: An example

¬(A ∨ B) ↔ ¬A ∧ ¬B.
¬(¬(A ∨ B) ↔ ¬A ∧ ¬B).
negation first.

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
(i) ¬(¬(A ∨ B)), (ii) ¬(A ∨ B)

(i) (¬A ∧ ¬B), (ii) ¬(¬A ∧ ¬B).
¬ ↔ rule.

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
(i) ¬(¬(A ∨ B)),
(i) (¬A ∧ ¬B),
¬ ↔ rule.

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
(ii) ¬(A ∨ B)

(ii) ¬(¬A ∧ ¬B).
¬ ↔ rule.

S. Choi (KAIST) Logic and set theory September 18, 2012 13 / 16



Refutation Tree Rules

Tautology Rules: An example

¬(A ∨ B) ↔ ¬A ∧ ¬B.
¬(¬(A ∨ B) ↔ ¬A ∧ ¬B).
negation first.

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
(i) ¬(¬(A ∨ B)), (ii) ¬(A ∨ B)

(i) (¬A ∧ ¬B), (ii) ¬(¬A ∧ ¬B).
¬ ↔ rule.

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
(i) ¬(¬(A ∨ B)),
(i) (¬A ∧ ¬B),
¬ ↔ rule.

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
(ii) ¬(A ∨ B)

(ii) ¬(¬A ∧ ¬B).
¬ ↔ rule.

S. Choi (KAIST) Logic and set theory September 18, 2012 13 / 16



Refutation Tree Rules

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
X (i) ¬(¬(A ∨ B)),
X (i) (¬A ∧ ¬B),
(i) (A ∨ B) ¬¬ rule.
(i) ¬A,
(i) ¬B (Conjunction rule).

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
X (i) ¬(¬(A ∨ B)),
X (i) (¬A ∧ ¬B),
X (i) (A ∨ B)

(i) ¬A,
(i) ¬B
(i)(i) A (X) (i)(ii) B (X) (Disjunction rule)

S. Choi (KAIST) Logic and set theory September 18, 2012 14 / 16



Refutation Tree Rules

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
X (i) ¬(¬(A ∨ B)),
X (i) (¬A ∧ ¬B),
(i) (A ∨ B) ¬¬ rule.
(i) ¬A,
(i) ¬B (Conjunction rule).

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
X (i) ¬(¬(A ∨ B)),
X (i) (¬A ∧ ¬B),
X (i) (A ∨ B)

(i) ¬A,
(i) ¬B
(i)(i) A (X) (i)(ii) B (X) (Disjunction rule)

S. Choi (KAIST) Logic and set theory September 18, 2012 14 / 16



Refutation Tree Rules

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
X (ii) ¬(A ∨ B)

(ii) ¬(¬A ∧ ¬B).
(ii) ¬A
(ii) ¬B ¬∨ rule

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
X (ii) ¬(A ∨ B)

X (ii) ¬(¬A ∧ ¬B).
(ii) ¬A
(ii) ¬B ¬∨ rule
(ii)(i) ¬¬A (X) (ii)(ii) ¬¬B (X) ¬∧ rule.

S. Choi (KAIST) Logic and set theory September 18, 2012 15 / 16



Refutation Tree Rules

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
X (ii) ¬(A ∨ B)

(ii) ¬(¬A ∧ ¬B).
(ii) ¬A
(ii) ¬B ¬∨ rule

X ¬(¬(A ∨ B) ↔ (¬A ∧ ¬B)).
X (ii) ¬(A ∨ B)

X (ii) ¬(¬A ∧ ¬B).
(ii) ¬A
(ii) ¬B ¬∨ rule
(ii)(i) ¬¬A (X) (ii)(ii) ¬¬B (X) ¬∧ rule.

S. Choi (KAIST) Logic and set theory September 18, 2012 15 / 16



Refutation Tree Rules

Some helpful remarks

Do not apply rules to subformulas. (Confusing)

The order of rules applied does not make any difference. It is more efficient to apply
nonbranching rules first.
The process eventually terminates. (not go on forever). Decidability.
Soundness of the test: If we obtain validity from the test, then we can trust it.
Completeness of the test: If we obtain invalidity from the test, then we can trust it: we even
get counter-examples.
We need proof: Omit proof in R. Jeffery, Formal logic page 34.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 16



Refutation Tree Rules

Some helpful remarks

Do not apply rules to subformulas. (Confusing)
The order of rules applied does not make any difference. It is more efficient to apply
nonbranching rules first.

The process eventually terminates. (not go on forever). Decidability.
Soundness of the test: If we obtain validity from the test, then we can trust it.
Completeness of the test: If we obtain invalidity from the test, then we can trust it: we even
get counter-examples.
We need proof: Omit proof in R. Jeffery, Formal logic page 34.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 16



Refutation Tree Rules

Some helpful remarks

Do not apply rules to subformulas. (Confusing)
The order of rules applied does not make any difference. It is more efficient to apply
nonbranching rules first.
The process eventually terminates. (not go on forever). Decidability.

Soundness of the test: If we obtain validity from the test, then we can trust it.
Completeness of the test: If we obtain invalidity from the test, then we can trust it: we even
get counter-examples.
We need proof: Omit proof in R. Jeffery, Formal logic page 34.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 16



Refutation Tree Rules

Some helpful remarks

Do not apply rules to subformulas. (Confusing)
The order of rules applied does not make any difference. It is more efficient to apply
nonbranching rules first.
The process eventually terminates. (not go on forever). Decidability.
Soundness of the test: If we obtain validity from the test, then we can trust it.

Completeness of the test: If we obtain invalidity from the test, then we can trust it: we even
get counter-examples.
We need proof: Omit proof in R. Jeffery, Formal logic page 34.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 16



Refutation Tree Rules

Some helpful remarks

Do not apply rules to subformulas. (Confusing)
The order of rules applied does not make any difference. It is more efficient to apply
nonbranching rules first.
The process eventually terminates. (not go on forever). Decidability.
Soundness of the test: If we obtain validity from the test, then we can trust it.
Completeness of the test: If we obtain invalidity from the test, then we can trust it: we even
get counter-examples.

We need proof: Omit proof in R. Jeffery, Formal logic page 34.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 16



Refutation Tree Rules

Some helpful remarks

Do not apply rules to subformulas. (Confusing)
The order of rules applied does not make any difference. It is more efficient to apply
nonbranching rules first.
The process eventually terminates. (not go on forever). Decidability.
Soundness of the test: If we obtain validity from the test, then we can trust it.
Completeness of the test: If we obtain invalidity from the test, then we can trust it: we even
get counter-examples.
We need proof: Omit proof in R. Jeffery, Formal logic page 34.

S. Choi (KAIST) Logic and set theory September 18, 2012 16 / 16


	Introduction
	Refutation tree and valid argument
	Refutation Tree Rules

