Logic and the set theory
 Lecture 3: Propositional Logic

S. Choi
Department of Mathematical Science
KAIST, Daejeon, South Korea

Fall semester, 2012

About this lecture

- Argument forms

About this lecture

- Argument forms
- Logical operators

About this lecture

- Argument forms
- Logical operators
- Formalization: well formed formula (wff)

About this lecture

- Argument forms
- Logical operators
- Formalization: well formed formula (wff)
- Truth table

About this lecture

- Argument forms
- Logical operators
- Formalization: well formed formula (wff)
- Truth table
- Course homepages:
http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr

About this lecture

- Argument forms
- Logical operators
- Formalization: well formed formula (wff)
- Truth table
- Course homepages:
http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill

Some helpful references

- Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
- A mathematical introduction to logic, H. Enderton, Academic Press.

Some helpful references

- Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russell, Principia Mathematica (our library). (This could be a project idea.)

Some helpful references

- Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russell, Principia Mathematica (our library). (This could be a project idea.)
- http://plato.stanford.edu/contents.html has much resource.

Some helpful references

- Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russell, Principia Mathematica (our library). (This could be a project idea.)
- http://plato.stanford.edu/contents.html has much resource.
- http://ocw.mit.edu/courses/ linguistics-and-philosophy/24-241-logic-i-fall-2009/

Argument forms

- P, Q, R represent some sentences (not nec. atomic)

Argument forms

- P, Q, R represent some sentences (not nec. atomic)
- Either today is Monday or Tuesday.

Argument forms

- P, Q, R represent some sentences (not nec. atomic)
- Either today is Monday or Tuesday.
- P or Q.

Argument forms

- P, Q, R represent some sentences (not nec. atomic)
- Either today is Monday or Tuesday.
- P or Q.
- If you have bad grades in KAIST, then you can get kicked out.

Argument forms

- P, Q, R represent some sentences (not nec. atomic)
- Either today is Monday or Tuesday.
- P or Q.
- If you have bad grades in KAIST, then you can get kicked out.
- If P, then Q.

Argument forms

- P, Q, R represent some sentences (not nec. atomic)
- Either today is Monday or Tuesday.
- P or Q.
- If you have bad grades in KAIST, then you can get kicked out.
- If P, then Q.
- If P and Q, then R. It is not the case R. It is not the case P and Q.

Logical operators

- It is not the case that: \neg or $^{\sim}$

Logical operators

- It is not the case that: \neg or $^{\sim}$
- And: \wedge or \&

Logical operators

- It is not the case that: \neg or $^{\sim}$
- And: \wedge or \&
- Or: \vee

Logical operators

- It is not the case that: \neg or $^{\sim}$
- And: \wedge or \&
- Or: V
- If ..., then... : \rightarrow.

Logical operators

- It is not the case that: \neg or $^{\sim}$
- And: \wedge or \&
- Or: V
- If ..., then... : \rightarrow.
- If and only if: \leftrightarrow.

Logical operators

- It is not the case that: \neg or $^{\sim}$
- And: \wedge or \&
- Or: \vee
- If ..., then... : \rightarrow.
- If and only if: \leftrightarrow.
- See
http://plato.stanford.edu/entries/pm-notation/.

Logical operators

- It is not the case that: \neg or $^{\sim}$
- And: \wedge or \&
- Or: \vee
- If ..., then... : \rightarrow.
- If and only if: \leftrightarrow.
- See
http://plato.stanford.edu/entries/pm-notation/.
- See
http://en.wikipedia.org/wiki/Logical_connective/.

Logical operators

- It is not the case that: \neg or $^{\sim}$
- And: \wedge or \&
- Or: \vee
- If ..., then... : \rightarrow.
- If and only if: \leftrightarrow.
- See
http://plato.stanford.edu/entries/pm-notation/.
- See
http://en.wikipedia.org/wiki/Logical_connective/.
- \vdash is used to mark the conclusion.

Precedence

- The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.

Precedence

- The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.
- As a way of reducing the number of necessary parentheses, one may introduce precedence rules:

Precedence

- The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.
- As a way of reducing the number of necessary parentheses, one may introduce precedence rules:
- Operator Precedence

Precedence

- The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.
- As a way of reducing the number of necessary parentheses, one may introduce precedence rules:
- Operator Precedence
- ᄀ

Precedence

- The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.
- As a way of reducing the number of necessary parentheses, one may introduce precedence rules:
- Operator Precedence
- ᄀ
- \wedge

Precedence

- The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.
- As a way of reducing the number of necessary parentheses, one may introduce precedence rules:
- Operator Precedence
- ᄀ
- \wedge
- V

Precedence

- The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.
- As a way of reducing the number of necessary parentheses, one may introduce precedence rules:
- Operator Precedence
- $ᄀ$
- \wedge
- V
$\rightarrow \rightarrow$

Precedence

- The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.
- As a way of reducing the number of necessary parentheses, one may introduce precedence rules:
- Operator Precedence
- $ᄀ$
- \wedge
- V
$\stackrel{\rightarrow}{ } \rightarrow$
$\rightarrow \leftrightarrow$

Precedence

- The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.
- As a way of reducing the number of necessary parentheses, one may introduce precedence rules:
- Operator Precedence
- ᄀ
- \wedge
- V
- \rightarrow
- \leftrightarrow
- So for example, $P \vee Q \wedge \neg R \rightarrow S$ is short for

Precedence

- The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.
- As a way of reducing the number of necessary parentheses, one may introduce precedence rules:
- Operator Precedence
- ᄀ
- \wedge
- V
- \rightarrow
- \leftrightarrow
- So for example, $P \vee Q \wedge \neg R \rightarrow S$ is short for
- $(P \vee(Q \wedge(\neg R))) \rightarrow S$.

Formalizations

- We can formalize any sentence by dividing it into atomic parts.

Formalizations

- We can formalize any sentence by dividing it into atomic parts.
- It is not both raining and snowing.

Formalizations

- We can formalize any sentence by dividing it into atomic parts.
- It is not both raining and snowing.
- $\neg(R \wedge S)$

Formalizations

- We can formalize any sentence by dividing it into atomic parts.
- It is not both raining and snowing.
- $\neg(R \wedge S)$
- It is not raining or is not snowing.

Formalizations

- We can formalize any sentence by dividing it into atomic parts.
- It is not both raining and snowing.
- $\neg(R \wedge S)$
- It is not raining or is not snowing.
- $\neg R \vee \neg S$

Well formed formula or wff

- $((\wedge P) \vee Q \neg R)$ This is a nonsense

Well formed formula or wff

- $((\wedge P) \vee Q \neg R)$ This is a nonsense
- We define inductively.

Well formed formula or wff

- $((\wedge P) \vee Q \neg R)$ This is a nonsense
- We define inductively.
- Any sentence letter is wff. (atomic one)

Well formed formula or wff

- $((\wedge P) \vee Q \neg R)$ This is a nonsense
- We define inductively.
- Any sentence letter is wff. (atomic one)
- If ϕ is wff, then so is $\neg \phi$.

Well formed formula or wff

- $((\wedge P) \vee Q \neg R)$ This is a nonsense
- We define inductively.
- Any sentence letter is wff. (atomic one)
- If ϕ is wff, then so is $\neg \phi$.
- If ϕ and ψ are wff, so is $(\phi \wedge \psi),(\phi \vee \psi),(\phi \rightarrow \psi)$, and $(\phi \leftrightarrow \psi)$.

Well formed formula or wff

- $((\wedge P) \vee Q \neg R)$ This is a nonsense
- We define inductively.
- Any sentence letter is wff. (atomic one)
- If ϕ is wff, then so is $\neg \phi$.
- If ϕ and ψ are wff, so is $(\phi \wedge \psi),(\phi \vee \psi),(\phi \rightarrow \psi)$, and $(\phi \leftrightarrow \psi)$.
- A subwff is a wff within a wff.

Well formed formula or wff

- $((\wedge P) \vee Q \neg R)$ This is a nonsense
- We define inductively.
- Any sentence letter is wff. (atomic one)
- If ϕ is wff, then so is $\neg \phi$.
- If ϕ and ψ are wff, so is $(\phi \wedge \psi),(\phi \vee \psi),(\phi \rightarrow \psi)$, and $(\phi \leftrightarrow \psi)$.
- A subwff is a wff within a wff.
- As long as atomic sentence letters are well defined, there is no ambiguity in the meaning of wff.

Some exercises

- Either there is no Starbuck's in Daejeon or I do not buy coffee beans.

Some exercises

- Either there is no Starbuck's in Daejeon or I do not buy coffee beans.
- $\neg S \vee \neg B$.

Some exercises

- Either there is no Starbuck's in Daejeon or I do not buy coffee beans.
- $\neg S \vee \neg B$.
- If I buy coffee beans, then there is no Starbuck's in Daejeon.

Some exercises

- Either there is no Starbuck's in Daejeon or I do not buy coffee beans.
- $\neg S \vee \neg B$.
- If I buy coffee beans, then there is no Starbuck's in Daejeon.
- $B \rightarrow \neg S$.

Some exercises

- Either there is no Starbuck's in Daejeon or I do not buy coffee beans.
- $\neg S \vee \neg B$.
- If I buy coffee beans, then there is no Starbuck's in Daejeon.
- $B \rightarrow \neg S$.
- If there were no God, then no movement is possible. But there are movements. Hence, God exists.

Some exercises

- Either there is no Starbuck's in Daejeon or I do not buy coffee beans.
- $\neg S \vee \neg B$.
- If I buy coffee beans, then there is no Starbuck's in Daejeon.
- $B \rightarrow \neg S$.
- If there were no God, then no movement is possible. But there are movements. Hence, God exists.
- $\neg G \rightarrow \neg M, M, \vdash G$.

Some exercises

- Either it is raining, or it's both snowing and raining.

Some exercises

- Either it is raining, or it's both snowing and raining.
- $R \vee(R \wedge S)$.

Some exercises

- Either it is raining, or it's both snowing and raining.
- $R \vee(R \wedge S)$.
- Either it is both raining and snowing or it is snowing but not raining.

Some exercises

- Either it is raining, or it's both snowing and raining.
- $R \vee(R \wedge S)$.
- Either it is both raining and snowing or it is snowing but not raining.
- $(R \wedge S) \vee(S \wedge \neg R)$.

Semantics of the logical operators

- semantics: the study of meaning.

Semantics of the logical operators

- semantics: the study of meaning.
- Each atomic formula has a truth or false value in a real world (or world A).

Semantics of the logical operators

- semantics: the study of meaning.
- Each atomic formula has a truth or false value in a real world (or world A).
- Each wff has a truth or false value in a real world (or world A).

Semantics of the logical operators

- semantics: the study of meaning.
- Each atomic formula has a truth or false value in a real world (or world A).
- Each wff has a truth or false value in a real world (or world A).
- This depends on the truth values of atomic formulas.

Truth tables

- Truth table generator:

Truth tables

- Truth table generator:
- http://en.wikipedia.org/wiki/Truth_table,

Truth tables

- Truth table generator:
- http://en.wikipedia.org/wiki/Truth_table,
- http://logik.phl.univie.ac.at/~chris/gateway/ formular-uk-zentral.html, complete (i.e. has all the steps)

Truth tables

- Truth table generator:
- http://en.wikipedia.org/wiki/Truth_table,
- http://logik.phl.univie.ac.at/~chris/gateway/ formular-uk-zentral.html, complete (i.e. has all the steps)
- http:
//svn.oriontransfer.org/TruthTable/index.rhtml, has xor, complete.

Truth tables

- Truth table generator:
- http://en.wikipedia.org/wiki/Truth_table,
- http://logik.phl.univie.ac.at/~chris/gateway/ formular-uk-zentral.html, complete (i.e. has all the steps)
- http:
//svn.oriontransfer.org/TruthTable/index.rhtml, has xor, complete.
- One has to learn some notations... Sometimes use 0 and 1 instead of F and T.

Truth tables

- Elementary ones:

Truth tables

- Elementary ones:
- $\neg a$

Truth tables

- Elementary ones:
- $\neg a$
- $a \wedge b$

Truth tables

- Elementary ones:
- $\neg a$
- $a \wedge b$
- $a \vee b$

Truth tables

- Elementary ones:
- $\neg a$
- $a \wedge b$
- $a \vee b$
- $a \rightarrow b$.

Truth tables

- Elementary ones:
- $\neg a$
- $a \wedge b$
- $a \vee b$
- $a \rightarrow b$.
- $a \leftrightarrow b$ or $(a \rightarrow b) \wedge(b \rightarrow a)$

Truth tables

- Elementary ones:
- $\neg a$
- $a \wedge b$
- $a \vee b$
- $a \rightarrow b$.
- $a \leftrightarrow b$ or $(a \rightarrow b) \wedge(b \rightarrow a)$
- Every wff can be evaluated from this.

Truth tables

- Elementary ones:
- $\neg a$
- $a \wedge b$
- $a \vee b$
- $a \rightarrow b$.
- $a \leftrightarrow b$ or $(a \rightarrow b) \wedge(b \rightarrow a)$
- Every wff can be evaluated from this.
- In computer science xor.

Examples

- To construct a truth table for a complex wff, we find the truth values for its smallest subwffs and then use the truth tables for the logical operators for larger subwff and so on....

Examples

- To construct a truth table for a complex wff, we find the truth values for its smallest subwffs and then use the truth tables for the logical operators for larger subwff and so on....
- $\neg S \wedge \neg B$.

Examples

- To construct a truth table for a complex wff, we find the truth values for its smallest subwffs and then use the truth tables for the logical operators for larger subwff and so on....
- $\neg S \wedge \neg B$.
- $(\neg G \rightarrow \neg M) \rightarrow(M \rightarrow G)$.

Examples

- To construct a truth table for a complex wff, we find the truth values for its smallest subwffs and then use the truth tables for the logical operators for larger subwff and so on....
- $\neg S \wedge \neg B$.
- $(\neg G \rightarrow \neg M) \rightarrow(M \rightarrow G)$.
- Also compare $P \rightarrow Q$ and $\neg P \vee Q$. $\operatorname{Check}(P \rightarrow Q) \leftrightarrow(\neg P \vee Q))$.

Examples

- To construct a truth table for a complex wff, we find the truth values for its smallest subwffs and then use the truth tables for the logical operators for larger subwff and so on....
- $\neg S \wedge \neg B$.
- $(\neg G \rightarrow \neg M) \rightarrow(M \rightarrow G)$.
- Also compare $P \rightarrow Q$ and $\neg P \vee Q$. $\operatorname{Check}(P \rightarrow Q) \leftrightarrow(\neg P \vee Q))$.
- This is used to compare.

Examples

- To construct a truth table for a complex wff, we find the truth values for its smallest subwffs and then use the truth tables for the logical operators for larger subwff and so on....
- $\neg S \wedge \neg B$.
- $(\neg G \rightarrow \neg M) \rightarrow(M \rightarrow G)$.
- Also compare $P \rightarrow Q$ and $\neg P \vee Q$. $\operatorname{Check}(P \rightarrow Q) \leftrightarrow(\neg P \vee Q))$.
- This is used to compare.
- You can also use $\neg((P \rightarrow Q)$ xor $(\neg P \vee Q))$.

Tautology and a contradiction

- Given some formula, any assignment of T and F yields T in the truth table. Such a formula is said to be a tautology.

Tautology and a contradiction

- Given some formula, any assignment of T and F yields T in the truth table. Such a formula is said to be a tautology.
- $P \vee \neg P$.

Tautology and a contradiction

- Given some formula, any assignment of T and F yields T in the truth table. Such a formula is said to be a tautology.
- $P \vee \neg P$.
- Given some formula, any assignment of T and F yields F in the truth table. Such a formula is said to be a contradiction. (truth-functionally inconsistent)

Tautology and a contradiction

- Given some formula, any assignment of T and F yields T in the truth table. Such a formula is said to be a tautology.
- $P \vee \neg P$.
- Given some formula, any assignment of T and F yields F in the truth table. Such a formula is said to be a contradiction.
(truth-functionally inconsistent)
- $P \wedge \neg P$.

Tautology and a contradiction

- Given some formula, any assignment of T and F yields T in the truth table. Such a formula is said to be a tautology.
- $P \vee \neg P$.
- Given some formula, any assignment of T and F yields F in the truth table. Such a formula is said to be a contradiction. (truth-functionally inconsistent)
- $P \wedge \neg P$.
- The formula which are not one of the above is said to be truth-functionally contingent.

Examples

- $(\neg G \rightarrow \neg M) \rightarrow(M \rightarrow G)$.

Examples

- $(\neg G \rightarrow \neg M) \rightarrow(M \rightarrow G)$.
- $(P \rightarrow Q) \leftrightarrow(\neg P \vee Q))$.

Examples

- $(\neg G \rightarrow \neg M) \rightarrow(M \rightarrow G)$.
- $(P \rightarrow Q) \leftrightarrow(\neg P \vee Q)$).
- $((P \rightarrow Q) \rightarrow R) \rightarrow(P \rightarrow R)$.

Truth table for argument forms

- Here, we will have a number of premises P_{1}, P_{2}. and a conclusion Q. We need to find the validity of $P_{1}, P_{2}, \ldots \vdash Q$

Truth table for argument forms

- Here, we will have a number of premises P_{1}, P_{2}. and a conclusion Q. We need to find the validity of $P_{1}, P_{2}, \ldots \vdash Q$
- P_{i} s are complex.

Truth table for argument forms

- Here, we will have a number of premises P_{1}, P_{2}. and a conclusion Q. We need to find the validity of $P_{1}, P_{2}, \ldots \vdash Q$
- P_{i} s are complex.
- To check validity... We check when if every P_{i} is true, then so is Q.

Truth table for argument forms

- Here, we will have a number of premises P_{1}, P_{2}. and a conclusion Q. We need to find the validity of $P_{1}, P_{2}, \ldots \vdash Q$
- P_{i} s are complex.
- To check validity... We check when if every P_{i} is true, then so is Q.
- Or you can form $\left(P_{1} \wedge P_{2} \wedge \cdots \wedge P_{n}\right) \rightarrow Q$.

Examples

- $P \rightarrow Q, P \rightarrow \neg Q \vdash \neg P$.

Examples

- $P \rightarrow Q, P \rightarrow \neg Q \vdash \neg P$.
- $((P \rightarrow Q) \wedge(P \rightarrow \neg Q)) \rightarrow \neg P$.

Examples

- $P \rightarrow Q, P \rightarrow \neg Q \vdash \neg P$.
- $((P \rightarrow Q) \wedge(P \rightarrow \neg Q)) \rightarrow \neg P$.
- $R \vdash P \leftrightarrow(P \vee(P \wedge Q))$.

Examples

- $P \rightarrow Q, P \rightarrow \neg Q \vdash \neg P$.
- $((P \rightarrow Q) \wedge(P \rightarrow \neg Q)) \rightarrow \neg P$.
- $R \vdash P \leftrightarrow(P \vee(P \wedge Q))$.
- $R \rightarrow(P \leftrightarrow(P \vee(P \wedge Q)))$.

