Logic and the set theory Lecture 21: The set theory: Review Sections 12-25

S. Choi

Department of Mathematical Science KAIST, Daejeon, South Korea

Fall semester, 2012

• The axiom of choice

イロト イヨト イヨト イヨト

- The axiom of choice
- An Infinite set has ω as a subset.

・ロト ・回 ト ・ ヨト ・ ヨ

- The axiom of choice
- An Infinite set has ω as a subset.
- Axiom of choice is equivalent to the Zorn's lemma.

- The axiom of choice
- An Infinite set has ω as a subset.
- Axiom of choice is equivalent to the Zorn's lemma.
- Axiom of substitution.

- The axiom of choice
- An Infinite set has ω as a subset.
- Axiom of choice is equivalent to the Zorn's lemma.
- Axiom of substitution.
- GCH by Cohen.

- The axiom of choice
- An Infinite set has ω as a subset.
- Axiom of choice is equivalent to the Zorn's lemma.
- Axiom of substitution.
- GCH by Cohen.
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr

- The axiom of choice
- An Infinite set has ω as a subset.
- Axiom of choice is equivalent to the Zorn's lemma.
- Axiom of substitution.
- GCH by Cohen.
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

• Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.

- 金田市 - 田田

Image: A matrix

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))
- Introduction to mathematical logic: set theory, computable functions, model theory, Malitz, J. Springer

・ロト ・同ト ・ヨト ・ヨ

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))
- Introduction to mathematical logic: set theory, computable functions, model theory, Malitz, J. Springer
- Sets for mathematics, F.W. Lawvere, R. Rosebrugh, Cambridge

・ロト ・同ト ・ヨト ・ヨ

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))
- Introduction to mathematical logic: set theory, computable functions, model theory, Malitz, J. Springer
- Sets for mathematics, F.W. Lawvere, R. Rosebrugh, Cambridge
- http://us.metamath.org/index.html

(日)

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))
- Introduction to mathematical logic: set theory, computable functions, model theory, Malitz, J. Springer
- Sets for mathematics, F.W. Lawvere, R. Rosebrugh, Cambridge
- http://us.metamath.org/index.html
- http://us.metamath.org/mpegif/weth.mid The music of proofs.

•
$$\prod_{i \in I} X_i := \{(x_i), | x_i \in X_i \text{ for each } i \in I\}.$$

- $\prod_{i \in I} X_i := \{(x_i), | x_i \in X_i \text{ for each } i \in I\}.$
- Axiom of Choice: The Cartesian product of a non-empty family of nonempty sets is nonempty.

- $\prod_{i \in I} X_i := \{(x_i), | x_i \in X_i \text{ for each } i \in I\}.$
- Axiom of Choice: The Cartesian product of a non-empty family of nonempty sets is nonempty.
- In other words: Given a nonempty family of nonempty sets {X_i}_{i∈I}, there exists a family {x_i}_{i∈I} such that x_i ∈ X_i for each i ∈ I.

- $\prod_{i \in I} X_i := \{(x_i), | x_i \in X_i \text{ for each } i \in I\}.$
- Axiom of Choice: The Cartesian product of a non-empty family of nonempty sets is nonempty.
- In other words: Given a nonempty family of nonempty sets {X_i}_{i∈I}, there exists a family {x_i}_{i∈I} such that x_i ∈ X_i for each i ∈ I.
- Application: Let X be a nonempty set. Then there exists a function $f: P(X) \{\emptyset\} \to X$ so that $f(A) \in A$.

Recall: Numbers

• A successor set
$$x^+$$
 of x : $x^+ := x \cup \{x\}$.

Recall: Numbers

• A successor set
$$x^+$$
 of x : $x^+ := x \cup \{x\}$.

• $0 = \emptyset$.

Recall: Numbers

- A successor set x^+ of x: $x^+ := x \cup \{x\}$.
- $0 = \emptyset$.
- $1 = 0^+ = \{0\}.$

Recall: Numbers

- A successor set x^+ of x: $x^+ := x \cup \{x\}$.
- $0 = \emptyset$.
- $1 = 0^+ = \{0\}.$
- $\bullet \ 2=1^+=\{0,1\}, 3=2^+=\{0,1,2\}.$

Recall: Numbers

- A successor set x^+ of x: $x^+ := x \cup \{x\}$.
- $0 = \emptyset$.
- $1 = 0^+ = \{0\}.$
- $2 = 1^+ = \{0, 1\}, 3 = 2^+ = \{0, 1, 2\}.$
- $\omega = N$ the set of all natural numbers. (In this book 0 is a natural number.)

Recall: Numbers

- A successor set x^+ of x: $x^+ := x \cup \{x\}$.
- $0 = \emptyset$.
- $1 = 0^+ = \{0\}.$
- $2 = 1^+ = \{0, 1\}, 3 = 2^+ = \{0, 1, 2\}.$
- $\omega = N$ the set of all natural numbers. (In this book 0 is a natural number.)
- A finite set, an infinite set.

Recall: Numbers

- A successor set x^+ of x: $x^+ := x \cup \{x\}$.
- $0 = \emptyset$.
- $1 = 0^+ = \{0\}.$
- $2 = 1^+ = \{0, 1\}, 3 = 2^+ = \{0, 1, 2\}.$
- $\omega = N$ the set of all natural numbers. (In this book 0 is a natural number.)
- A finite set, an infinite set.
 - ▶ $n^+ \neq 0$ for all $n \in \omega$. (any n^+ has at least one element and $0 = \emptyset$.)

Recall: Numbers

- A successor set x^+ of x: $x^+ := x \cup \{x\}$.
- $0 = \emptyset$.
- $1 = 0^+ = \{0\}.$
- $2 = 1^+ = \{0, 1\}, 3 = 2^+ = \{0, 1, 2\}.$
- $\omega = N$ the set of all natural numbers. (In this book 0 is a natural number.)
- A finite set, an infinite set.
 - ▶ $n^+ \neq 0$ for all $n \in \omega$. (any n^+ has at least one element and $0 = \emptyset$.)
 - (i) no natural number is a subset of any of its elements. (Proof by induction)

Recall: Numbers

- A successor set x^+ of x: $x^+ := x \cup \{x\}$.
- $0 = \emptyset$.
- $1 = 0^+ = \{0\}.$
- $2 = 1^+ = \{0, 1\}, 3 = 2^+ = \{0, 1, 2\}.$
- $\omega = N$ the set of all natural numbers. (In this book 0 is a natural number.)
- A finite set, an infinite set.
 - ▶ $n^+ \neq 0$ for all $n \in \omega$. (any n^+ has at least one element and $0 = \emptyset$.)
 - ► (i) no natural number is a subset of any of its elements. (Proof by induction)
 - (ii) every element of a natural number is a subset of it. (Proof by induction)

Recall: Numbers

- A successor set x^+ of x: $x^+ := x \cup \{x\}$.
- $0 = \emptyset$.
- $1 = 0^+ = \{0\}.$
- $2 = 1^+ = \{0, 1\}, 3 = 2^+ = \{0, 1, 2\}.$
- $\omega = N$ the set of all natural numbers. (In this book 0 is a natural number.)
- A finite set, an infinite set.
 - ▶ $n^+ \neq 0$ for all $n \in \omega$. (any n^+ has at least one element and $0 = \emptyset$.)
 - ► (i) no natural number is a subset of any of its elements. (Proof by induction)
 - (ii) every element of a natural number is a subset of it. (Proof by induction)
 - If *n* and *m* are in ω , and if $n^+ = m^+$, then n = m.

• A natural number $n \in \omega$ is not equivalent to a proper subset of n.

・ロト ・回ト ・ヨト ・ヨト

- A natural number $n \in \omega$ is not equivalent to a proper subset of n.
- Proof: For n = 0, $n = \emptyset$. True.

・ロト ・回ト ・ヨト ・ヨト

- A natural number $n \in \omega$ is not equivalent to a proper subset of n.
- Proof: For n = 0, $n = \emptyset$. True.
- Assume true for *n* and prove for $n^+ = \{0, 1, 2, ..., n 1, n\}$.

- A natural number $n \in \omega$ is not equivalent to a proper subset of n.
- Proof: For n = 0, $n = \emptyset$. True.
- Assume true for *n* and prove for $n^+ = \{0, 1, 2, ..., n 1, n\}$.
- Suppose $f : n^+ \to E \subset n^+$ for *E* a proper subset.

- A natural number $n \in \omega$ is not equivalent to a proper subset of n.
- Proof: For n = 0, $n = \emptyset$. True.
- Assume true for *n* and prove for $n^+ = \{0, 1, 2, ..., n 1, n\}$.
- Suppose $f : n^+ \to E \subset n^+$ for *E* a proper subset.
- If n ∉ E, f|n: n → E {f(n)} is one-to-one and onto. E ⊂ n as n ∉ E. E {f(n)} proper subset of n. Contradition.

- A natural number $n \in \omega$ is not equivalent to a proper subset of n.
- Proof: For n = 0, $n = \emptyset$. True.
- Assume true for *n* and prove for $n^+ = \{0, 1, 2, ..., n 1, n\}$.
- Suppose $f : n^+ \to E \subset n^+$ for *E* a proper subset.
- If n ∉ E, f|n: n → E {f(n)} is one-to-one and onto. E ⊂ n as n ∉ E. E {f(n)} proper subset of n. Contradition.
- If n ∈ E, n is equivalent to E − {n}. n = E − {n} by induction hypothesis. Thus E = n⁺. Contradiction.

• A set is *finite* if it is equivalent to some natural number.

・ロト ・回ト ・ヨト ・ヨト
- A set is *finite* if it is equivalent to some natural number.
- A set is *infinite* if it is not equivalent to any natural number.

(I)

- A set is *finite* if it is equivalent to some natural number.
- A set is *infinite* if it is not equivalent to any natural number.
- A set can be equivalent to at most one natural number:

- A set is *finite* if it is equivalent to some natural number.
- A set is *infinite* if it is not equivalent to any natural number.
- A set can be equivalent to at most one natural number:
- Proof: This follows from $n \in \omega$ is not equivalent to a subset of n.

(I)

- A set is *finite* if it is equivalent to some natural number.
- A set is *infinite* if it is not equivalent to any natural number.
- A set can be equivalent to at most one natural number:
- Proof: This follows from $n \in \omega$ is not equivalent to a subset of n.
- We will need

- A set is *finite* if it is equivalent to some natural number.
- A set is *infinite* if it is not equivalent to any natural number.
- A set can be equivalent to at most one natural number:
- Proof: This follows from $n \in \omega$ is not equivalent to a subset of n.
- We will need

Theorem (Recursion)

Let X be a set, $a \in X$, and $f : X \to X$ be a function. Then there exists a function $u : \omega \to X$ such that u(0) = a and $u(n^+) = f(u(n))$ for all $n \in \omega$.

・ロト ・同ト ・ヨト ・ヨ

• Given X, we can choose a choice function $f : P(X) - \{\emptyset\} \to X$ such that $f(A) \in A$.

イロト イヨト イヨト イヨト

An infinite set contains a subset equivalent to $\boldsymbol{\omega}$

- Given X, we can choose a choice function $f : P(X) \{\emptyset\} \to X$ such that $f(A) \in A$.
- This follows by the Axiom of choice.

(I) < ((i) <

- Given X, we can choose a choice function $f : P(X) \{\emptyset\} \to X$ such that $f(A) \in A$.
- This follows by the Axiom of choice.
- Let X be an infinite set.

・ロト ・回ト ・ヨト ・ヨト

An infinite set contains a subset equivalent to $\boldsymbol{\omega}$

- Given X, we can choose a choice function $f : P(X) \{\emptyset\} \to X$ such that $f(A) \in A$.
- This follows by the Axiom of choice.
- Let X be an infinite set.
- Let C be the collection of all finite subsets of X.

(I)

- Given *X*, we can choose a choice function $f : P(X) \{\emptyset\} \to X$ such that $f(A) \in A$.
- This follows by the Axiom of choice.
- Let X be an infinite set.
- Let C be the collection of all finite subsets of X.
- If $A \in C$, then $X A \neq \emptyset$.

(I)

- Given X, we can choose a choice function $f : P(X) \{\emptyset\} \to X$ such that $f(A) \in A$.
- This follows by the Axiom of choice.
- Let X be an infinite set.
- Let C be the collection of all finite subsets of X.
- If $A \in C$, then $X A \neq \emptyset$.
- Define $g : C \to C$ by $g(A) = A \cup \{f(X A)\}$.

- Given X, we can choose a choice function $f : P(X) \{\emptyset\} \to X$ such that $f(A) \in A$.
- This follows by the Axiom of choice.
- Let X be an infinite set.
- Let C be the collection of all finite subsets of X.
- If $A \in C$, then $X A \neq \emptyset$.
- Define $g : \mathcal{C} \to \mathcal{C}$ by $g(A) = A \cup \{f(X A)\}$.
- By Recursion theorem, there exists a function $U : \omega \to C$ such that $U(0) = \emptyset$ and $U(n^+) = U(n) \cup \{f(X U(n))\} = g(U(n))$. -(*)

• Define $v : \omega \to X$ be v(n) := f(X - U(n)). -(**)

- Define $v : \omega \to X$ be v(n) := f(X U(n)). -(**)
- Claim: $v : \omega \to X$ is a one-to-one correspondence into a subset of *X*.

- Define $v : \omega \to X$ be v(n) := f(X U(n)). -(**)
- Claim: $v : \omega \to X$ is a one-to-one correspondence into a subset of *X*.
- Proof: (1) $v(n) \notin U(n)$ for all $n \in \omega$ by (**).

- Define $v : \omega \to X$ be v(n) := f(X U(n)). -(**)
- Claim: $v : \omega \to X$ is a one-to-one correspondence into a subset of *X*.
- Proof: (1) $v(n) \notin U(n)$ for all $n \in \omega$ by (**).
- (2) $v(n) \in U(n^+)$ for all $n \in \omega$ by (*) and (**).

• If $n \leq m$, the $U(n) \subset U(m)$.

- If $n \leq m$, the $U(n) \subset U(m)$.
- Proof: Fix *n* and do induction on *m*.

イロト イヨト イヨト イヨト

- If $n \leq m$, the $U(n) \subset U(m)$.
- Proof: Fix *n* and do induction on *m*.
- Define $S(n) = \{m | m \ge n, U(n) \subset U(m)\}.$

- If $n \leq m$, the $U(n) \subset U(m)$.
- Proof: Fix *n* and do induction on *m*.
- Define $S(n) = \{m | m \ge n, U(n) \subset U(m)\}.$
- $S(n) \ni n$ and S(n) is not empty.

・ロト ・回ト ・ヨト ・ヨト

- If $n \leq m$, the $U(n) \subset U(m)$.
- Proof: Fix *n* and do induction on *m*.
- Define $S(n) = \{m | m \ge n, U(n) \subset U(m)\}.$
- $S(n) \ni n$ and S(n) is not empty.
- If $m \in S(n)$, then $m^+ \subset S(n)$:

- If $n \leq m$, the $U(n) \subset U(m)$.
- Proof: Fix *n* and do induction on *m*.
- Define $S(n) = \{m | m \ge n, U(n) \subset U(m)\}.$
- $S(n) \ni n$ and S(n) is not empty.
- If $m \in S(n)$, then $m^+ \subset S(n)$:

•
$$U(m^+) = U(m) \cup \{f(x - U(m)\} \supset U(n).$$

• If n < m, then $v(n) \neq v(m)$.

<ロ> <同> <同> < 同> < 同>

- If n < m, then $v(n) \neq v(m)$.
- n < m. Then $n \in m$ and by transitivity $n \subset m$. $n \cup \{n\} \subset m$.

イロト イヨト イヨト イヨト

- If n < m, then $v(n) \neq v(m)$.
- n < m. Then $n \in m$ and by transitivity $n \subset m$. $n \cup \{n\} \subset m$.
- $n^+ \le m$. $U(n^+) \subset U(m)$. Thus $v(n) \subset U(n^+) \subset U(m)$ by (2) and (3).

Image: A math a math

- If n < m, then $v(n) \neq v(m)$.
- n < m. Then $n \in m$ and by transitivity $n \subset m$. $n \cup \{n\} \subset m$.
- $n^+ \le m$. $U(n^+) \subset U(m)$. Thus $v(n) \subset U(n^+) \subset U(m)$ by (2) and (3).
- $v(m) \notin U(m)$. Thus $v(n) \neq v(m)$.

• Axiom of choice, Zorn's lemma, and the well-ordering principles are all equivalent.

イロト イヨト イヨト イヨト

- Axiom of choice, Zorn's lemma, and the well-ordering principles are all equivalent.
- This is a very important fact that you need to know.

- Axiom of choice, Zorn's lemma, and the well-ordering principles are all equivalent.
- This is a very important fact that you need to know.
- First prove: The axiom of choice implies Zorn's lemma.

・ロト ・回ト ・ヨト ・ヨト

- Axiom of choice, Zorn's lemma, and the well-ordering principles are all equivalent.
- This is a very important fact that you need to know.
- First prove: The axiom of choice implies Zorn's lemma.

Theorem (Zorn's lemma)

If X is a partially ordered set such that every chain in X has an upper bound, then X contains a maximal element.

• Define $\overline{s}(x) = \{y \in X | y \le x\}$ weak initial segment.

- Define $\overline{s}(x) = \{y \in X | y \le x\}$ weak initial segment.
- $\bar{s}: X \to P(X)$ is a function. \bar{s} is one-to-one: proof omit.

- Define $\overline{s}(x) = \{y \in X | y \le x\}$ weak initial segment.
- $\bar{s}: X \to P(X)$ is a function. \bar{s} is one-to-one: proof omit.
- Let χ be the set of all chains in X. Then every member of χ is in some $\overline{s}(x)$.

- Define $\overline{s}(x) = \{y \in X | y \le x\}$ weak initial segment.
- $\bar{s}: X \to P(X)$ is a function. \bar{s} is one-to-one: proof omit.
- Let χ be the set of all chains in X. Then every member of χ is in some $\bar{s}(x)$.
- $\chi \neq \emptyset$ since χ contains singletons.

- Define $\overline{s}(x) = \{y \in X | y \le x\}$ weak initial segment.
- $\bar{s}: X \to P(X)$ is a function. \bar{s} is one-to-one: proof omit.
- Let χ be the set of all chains in X. Then every member of χ is in some $\overline{s}(x)$.
- $\chi \neq \emptyset$ since χ contains singletons.
- χ is ordered by inclusion (partial order)

- Define $\overline{s}(x) = \{y \in X | y \le x\}$ weak initial segment.
- $\bar{s}: X \to P(X)$ is a function. \bar{s} is one-to-one: proof omit.
- Let χ be the set of all chains in X. Then every member of χ is in some $\bar{s}(x)$.
- $\chi \neq \emptyset$ since χ contains singletons.
- χ is ordered by inclusion (partial order)
- If C is a chain in χ , then $\bigcup C \in \chi$: proof: omit.
Proof

- Define $\overline{s}(x) = \{y \in X | y \le x\}$ weak initial segment.
- $\bar{s}: X \to P(X)$ is a function. \bar{s} is one-to-one: proof omit.
- Let χ be the set of all chains in X. Then every member of χ is in some $\overline{s}(x)$.
- $\chi \neq \emptyset$ since χ contains singletons.
- χ is ordered by inclusion (partial order)
- If C is a chain in χ , then $\bigcup C \in \chi$: proof: omit.
- Suppose that we find a maximal element \mathcal{F} in χ . Then \mathcal{F} has an upper bound f_0 . Then f_0 is a maximal element of X.

• Let *f* be a choice function for χ : $f : P(X) - \{\emptyset\} \to X$ such that $f(A) \in A$ for all $A \in P(X)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Let *f* be a choice function for χ : $f : P(X) \{\emptyset\} \to X$ such that $f(A) \in A$ for all $A \in P(X)$.
- Define $\hat{A} = \{x \in X | A \cup \{x\} \in \chi\}.$

- Let *f* be a choice function for χ : $f : P(X) \{\emptyset\} \to X$ such that $f(A) \in A$ for all $A \in P(X)$.
- Define $\hat{A} = \{x \in X | A \cup \{x\} \in \chi\}.$
- Define $g : \chi \to \chi$ by if $\hat{A} A \neq \emptyset$, then $g(A) = A \cup \{f(\hat{A} A)\}$ and if $\hat{A} A = \emptyset$, then g(A) = A.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let *f* be a choice function for χ : $f : P(X) \{\emptyset\} \to X$ such that $f(A) \in A$ for all $A \in P(X)$.
- Define $\hat{A} = \{x \in X | A \cup \{x\} \in \chi\}.$
- Define $g : \chi \to \chi$ by if $\hat{A} A \neq \emptyset$, then $g(A) = A \cup \{f(\hat{A} A)\}$ and if $\hat{A} A = \emptyset$, then g(A) = A.
- We show that there exists $A \in \chi$ such that g(A) = A.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let *f* be a choice function for χ : $f : P(X) \{\emptyset\} \to X$ such that $f(A) \in A$ for all $A \in P(X)$.
- Define $\hat{A} = \{x \in X | A \cup \{x\} \in \chi\}.$
- Define $g : \chi \to \chi$ by if $\hat{A} A \neq \emptyset$, then $g(A) = A \cup \{f(\hat{A} A)\}$ and if $\hat{A} A = \emptyset$, then g(A) = A.
- We show that there exists $A \in \chi$ such that g(A) = A.
- Then *A* is the element \mathcal{F} we need.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• A *tower* $T \subset \chi$ is a subcollection such that

A tower T ⊂ χ is a subcollection such that Ø ∈ T.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• A *tower* $\mathcal{T} \subset \chi$ is a subcollection such that

- $\blacktriangleright \ \emptyset \in \mathcal{T}.$
- If $A \in \mathcal{T}$, then $g(A) \in \mathcal{T}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• A *tower* $\mathcal{T} \subset \chi$ is a subcollection such that

- $\blacktriangleright \ \emptyset \in \mathcal{T}.$
- If $A \in \mathcal{T}$, then $g(A) \in \mathcal{T}$.
- If C is a chain in \mathcal{T} , then $\bigcup C \in \mathcal{T}$.

• A *tower* $\mathcal{T} \subset \chi$ is a subcollection such that

- $\blacktriangleright \ \emptyset \in \mathcal{T}.$
- If $A \in \mathcal{T}$, then $g(A) \in \mathcal{T}$.
- If C is a chain in \mathcal{T} , then $\bigcup C \in \mathcal{T}$.
- A tower exists (χ is one).

- A *tower* $T \subset \chi$ is a subcollection such that
 - $\blacktriangleright \ \emptyset \in \mathcal{T}.$
 - If $A \in \mathcal{T}$, then $g(A) \in \mathcal{T}$.
 - If C is a chain in \mathcal{T} , then $\bigcup C \in \mathcal{T}$.
- A tower exists (χ is one).
- Let \mathcal{T}_0 be the intersection of the collection of all towers. It is a tower.

- A *tower* $T \subset \chi$ is a subcollection such that
 - $\blacktriangleright \ \emptyset \in \mathcal{T}.$
 - If $A \in \mathcal{T}$, then $g(A) \in \mathcal{T}$.
 - If C is a chain in \mathcal{T} , then $\bigcup C \in \mathcal{T}$.
- A tower exists (χ is one).
- $\bullet\,$ Let \mathcal{T}_0 be the intersection of the collection of all towers. It is a tower.
- $\bullet\,$ We show that \mathcal{T}_0 is a chain : in the next frame.

- A *tower* $T \subset \chi$ is a subcollection such that
 - $\blacktriangleright \ \emptyset \in \mathcal{T}.$
 - If $A \in \mathcal{T}$, then $g(A) \in \mathcal{T}$.
 - If C is a chain in \mathcal{T} , then $\bigcup C \in \mathcal{T}$.
- A tower exists (χ is one).
- $\bullet\,$ Let \mathcal{T}_0 be the intersection of the collection of all towers. It is a tower.
- $\bullet\,$ We show that \mathcal{T}_0 is a chain : in the next frame.
- Then $A = \bigcup \mathcal{T}_0$ is in \mathcal{T}_0 and has the property g(A) = A.

- A *tower* $T \subset \chi$ is a subcollection such that
 - $\blacktriangleright \ \emptyset \in \mathcal{T}.$
 - If $A \in \mathcal{T}$, then $g(A) \in \mathcal{T}$.
 - If C is a chain in \mathcal{T} , then $\bigcup C \in \mathcal{T}$.
- A tower exists (χ is one).
- $\bullet\,$ Let \mathcal{T}_0 be the intersection of the collection of all towers. It is a tower.
- $\bullet\,$ We show that \mathcal{T}_0 is a chain : in the next frame.
- Then $A = \bigcup \mathcal{T}_0$ is in \mathcal{T}_0 and has the property g(A) = A.
- Note: $g(A) \subset A$ and g(A) A cannot be more than a singleton.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• We say that a set C in \mathcal{T}_0 is *comparable* if $A \subset C$ or $C \subset A$ for every $A \in \mathcal{T}_0$.

(D) (A) (A) (A)

- We say that a set C in \mathcal{T}_0 is *comparable* if $A \subset C$ or $C \subset A$ for every $A \in \mathcal{T}_0$.
- \emptyset is comparable.

(D) (A) (A) (A)

- We say that a set C in \mathcal{T}_0 is *comparable* if $A \subset C$ or $C \subset A$ for every $A \in \mathcal{T}_0$.
- \emptyset is comparable.
- Let C be a fixed comparable set.

.

- We say that a set C in \mathcal{T}_0 is *comparable* if $A \subset C$ or $C \subset A$ for every $A \in \mathcal{T}_0$.
- \emptyset is comparable.
- Let C be a fixed comparable set.
- If A ∈ T₀ and A is a proper subset of C, then g(A) ⊂ C. (As C cannot be a proper subset of g(A) by considering g(A) − A at most a singleton.)

- We say that a set C in \mathcal{T}_0 is *comparable* if $A \subset C$ or $C \subset A$ for every $A \in \mathcal{T}_0$.
- \emptyset is comparable.
- Let C be a fixed comparable set.
- If A ∈ T₀ and A is a proper subset of C, then g(A) ⊂ C. (As C cannot be a proper subset of g(A) by considering g(A) − A at most a singleton.)
- Consider $\mathcal{U} \subset \mathcal{T}_0$ where $A \subset C$ or $g(C) \subset A$.

- We say that a set C in \mathcal{T}_0 is *comparable* if $A \subset C$ or $C \subset A$ for every $A \in \mathcal{T}_0$.
- \emptyset is comparable.
- Let C be a fixed comparable set.
- If A ∈ T₀ and A is a proper subset of C, then g(A) ⊂ C. (As C cannot be a proper subset of g(A) by considering g(A) − A at most a singleton.)
- Consider $\mathcal{U} \subset \mathcal{T}_0$ where $A \subset C$ or $g(C) \subset A$.
- \mathcal{U} is smaller than the subset of \mathcal{T}_0 comparable with g(C).

- We say that a set C in \mathcal{T}_0 is *comparable* if $A \subset C$ or $C \subset A$ for every $A \in \mathcal{T}_0$.
- \emptyset is comparable.
- Let C be a fixed comparable set.
- If A ∈ T₀ and A is a proper subset of C, then g(A) ⊂ C. (As C cannot be a proper subset of g(A) by considering g(A) − A at most a singleton.)
- Consider $\mathcal{U} \subset \mathcal{T}_0$ where $A \subset C$ or $g(C) \subset A$.
- \mathcal{U} is smaller than the subset of \mathcal{T}_0 comparable with g(C).
- \mathcal{U} is a tower and hence $\mathcal{U} = \mathcal{T}_0$: proof omit.

- We say that a set C in \mathcal{T}_0 is *comparable* if $A \subset C$ or $C \subset A$ for every $A \in \mathcal{T}_0$.
- \emptyset is comparable.
- Let C be a fixed comparable set.
- If A ∈ T₀ and A is a proper subset of C, then g(A) ⊂ C. (As C cannot be a proper subset of g(A) by considering g(A) − A at most a singleton.)
- Consider $\mathcal{U} \subset \mathcal{T}_0$ where $A \subset C$ or $g(C) \subset A$.
- \mathcal{U} is smaller than the subset of \mathcal{T}_0 comparable with g(C).
- \mathcal{U} is a tower and hence $\mathcal{U} = \mathcal{T}_0$: proof omit.
- for each comparable C, g(C) is also comparable by above.

- We say that a set C in \mathcal{T}_0 is *comparable* if $A \subset C$ or $C \subset A$ for every $A \in \mathcal{T}_0$.
- \emptyset is comparable.
- Let C be a fixed comparable set.
- If A ∈ T₀ and A is a proper subset of C, then g(A) ⊂ C. (As C cannot be a proper subset of g(A) by considering g(A) − A at most a singleton.)
- Consider $\mathcal{U} \subset \mathcal{T}_0$ where $A \subset C$ or $g(C) \subset A$.
- \mathcal{U} is smaller than the subset of \mathcal{T}_0 comparable with g(C).
- \mathcal{U} is a tower and hence $\mathcal{U} = \mathcal{T}_0$: proof omit.
- for each comparable C, g(C) is also comparable by above.
- \emptyset is comparable. *g* maps comparable sets to comparable sets.

- We say that a set C in \mathcal{T}_0 is *comparable* if $A \subset C$ or $C \subset A$ for every $A \in \mathcal{T}_0$.
- \emptyset is comparable.
- Let C be a fixed comparable set.
- If A ∈ T₀ and A is a proper subset of C, then g(A) ⊂ C. (As C cannot be a proper subset of g(A) by considering g(A) − A at most a singleton.)
- Consider $\mathcal{U} \subset \mathcal{T}_0$ where $A \subset C$ or $g(C) \subset A$.
- \mathcal{U} is smaller than the subset of \mathcal{T}_0 comparable with g(C).
- \mathcal{U} is a tower and hence $\mathcal{U} = \mathcal{T}_0$: proof omit.
- for each comparable C, g(C) is also comparable by above.
- \emptyset is comparable. *g* maps comparable sets to comparable sets.
- The comparable sets in T_0 constitutes a tower, and hence all sets in T_0 are comparable. Thus, T_0 is a chain.

• We can show Zorn's lemma implies the existence of the choice functions.

- We can show Zorn's lemma implies the existence of the choice functions.
- Proof: Given a set X, let

(I) < ((i) <

- We can show Zorn's lemma implies the existence of the choice functions.
- Proof: Given a set X, let

Order these by extensions.

- We can show Zorn's lemma implies the existence of the choice functions.
- Proof: Given a set X, let

- Order these by extensions.
- Every chain has an upper bound: (extensions -- > take a union)

- We can show Zorn's lemma implies the existence of the choice functions.
- Proof: Given a set X, let

- Order these by extensions.
- Every chain has an upper bound: (extensions --> take a union)
- Find a maximal element by Zorn's lemma. Then dom $f = P(X) \{\emptyset\}$:

- We can show Zorn's lemma implies the existence of the choice functions.
- Proof: Given a set X, let

- Order these by extensions.
- Every chain has an upper bound: (extensions --> take a union)
- Find a maximal element by Zorn's lemma. Then $dom f = P(X) \{\emptyset\}$:
 - ▶ Proof: Suppose $A \notin dom f$. Define $B = dom f \cup \{A\}$. Choose an element $a \in A$. Define g(B) = f(B) if $B \in dom f$ and f(B) = a if B = A. $g \ge f$. Thus, g = f. Contradition.

- We can show Zorn's lemma implies the existence of the choice functions.
- Proof: Given a set X, let

- Order these by extensions.
- Every chain has an upper bound: (extensions --> take a union)
- Find a maximal element by Zorn's lemma. Then dom $f = P(X) \{\emptyset\}$:
 - ▶ Proof: Suppose $A \notin dom f$. Define $B = dom f \cup \{A\}$. Choose an element $a \in A$. Define g(B) = f(B) if $B \in dom f$ and f(B) = a if B = A. $g \ge f$. Thus, g = f. Contradition.
 - The existence of the choice functions implies the Axiom of Choice.

• Well-ordering theorem: Every set can be well-ordered.

- Well-ordering theorem: Every set can be well-ordered.
- We show that Zorn's lemma implies the well-ordering theorem.

Image: A matched black

- Well-ordering theorem: Every set can be well-ordered.
- We show that Zorn's lemma implies the well-ordering theorem.
- Proof:

(D) (A) (A) (A)

- Well-ordering theorem: Every set can be well-ordered.
- We show that Zorn's lemma implies the well-ordering theorem.
- Proof:
 - Let *W* be the collection of all well ordered subsets of *X*. $W \neq \emptyset$.
- Well-ordering theorem: Every set can be well-ordered.
- We show that Zorn's lemma implies the well-ordering theorem.
- Proof:
 - Let *W* be the collection of all well ordered subsets of *X*. $W \neq \emptyset$.
 - Then *W* is partially ordered by the inclusion relation.

- Well-ordering theorem: Every set can be well-ordered.
- We show that Zorn's lemma implies the well-ordering theorem.
- Proof:
 - Let *W* be the collection of all well ordered subsets of *X*. $W \neq \emptyset$.
 - ► Then *W* is partially ordered by the inclusion relation.
 - ▶ If C is a chain w.r.t continuation, then $U = \bigcup C$ is an upper bound.

- Well-ordering theorem: Every set can be well-ordered.
- We show that Zorn's lemma implies the well-ordering theorem.
- Proof:
 - Let *W* be the collection of all well ordered subsets of *X*. $W \neq \emptyset$.
 - Then *W* is partially ordered by the inclusion relation.
 - If C is a chain w.r.t continuation, then $U = \bigcup C$ is an upper bound.
 - By Zorn's lemma, there exists a maximal set *M*. Then M = X.

- Well-ordering theorem: Every set can be well-ordered.
- We show that Zorn's lemma implies the well-ordering theorem.
- Proof:
 - Let *W* be the collection of all well ordered subsets of *X*. $W \neq \emptyset$.
 - ► Then *W* is partially ordered by the inclusion relation.
 - If C is a chain w.r.t continuation, then $U = \bigcup C$ is an upper bound.
 - By Zorn's lemma, there exists a maximal set *M*. Then M = X.
 - ▶ Proof: If $x \in X M$, then $M' = M \cup \{x\}$ is well-ordered and bigger.

• Finally, We show that the well-ordering theorem implies that the axiom of choice.

・ロト ・回ト ・ヨト ・ヨト

- Finally, We show that the well-ordering theorem implies that the axiom of choice.
- Given a collection of set $\{X_i | i \in I\}$, there exists a set $\{x_i | i \in I\}$ so that $x_i \in X_i$ for each $i \in I$.

・ロト ・回ト ・ヨト ・ヨト

- Finally, We show that the well-ordering theorem implies that the axiom of choice.
- Given a collection of set $\{X_i | i \in I\}$, there exists a set $\{x_i | i \in I\}$ so that $x_i \in X_i$ for each $i \in I$.
- Proof: Well-order $\bigcup_{i \in I} X_i$ and choose minimal $x_i \in X_i$ for each $i \in I$.

- Finally, We show that the well-ordering theorem implies that the axiom of choice.
- Given a collection of set {X_i | i ∈ I}, there exists a set {x_i | i ∈ I} so that x_i ∈ X_i for each i ∈ I.
- Proof: Well-order $\bigcup_{i \in I} X_i$ and choose minimal $x_i \in X_i$ for each $i \in I$.
- $\bullet~$ The axiom of choice \to Zorn's lemma \to The well-ordering theorem \to The axiom of choice.

• A a set. S(a, b) well-formed sentence. Suppose that $F(n) = \{x | S(n, x)\}$ is a set. Is $\{F(n)\}$ a set?

イロト イヨト イヨト イヨト

- A a set. S(a, b) well-formed sentence. Suppose that $F(n) = \{x | S(n, x)\}$ is a set. Is $\{F(n)\}$ a set?
- Axiom of substitution: If S(a, b) is a statement for each $a \in A$ such that the set $\{b|S(a, b)\}$ can be formed, then there exists a function $F : A \to Y$ for some set Y such that $F(a) = \{b|S(a, b)\}$.

- A a set. S(a, b) well-formed sentence. Suppose that $F(n) = \{x | S(n, x)\}$ is a set. Is $\{F(n)\}$ a set?
- Axiom of substitution: If S(a, b) is a statement for each $a \in A$ such that the set $\{b|S(a, b)\}$ can be formed, then there exists a function $F : A \to Y$ for some set Y such that $F(a) = \{b|S(a, b)\}$.
- This is the Axiom of replacement (Malitz page 45)

- A a set. S(a, b) well-formed sentence. Suppose that $F(n) = \{x | S(n, x)\}$ is a set. Is $\{F(n)\}$ a set?
- Axiom of substitution: If S(a, b) is a statement for each $a \in A$ such that the set $\{b|S(a, b)\}$ can be formed, then there exists a function $F : A \to Y$ for some set Y such that $F(a) = \{b|S(a, b)\}$.
- This is the Axiom of replacement (Malitz page 45)
- The main use of the axiom of replacement is to obtain higher ordinals.

- A a set. S(a, b) well-formed sentence. Suppose that $F(n) = \{x | S(n, x)\}$ is a set. Is $\{F(n)\}$ a set?
- Axiom of substitution: If S(a, b) is a statement for each $a \in A$ such that the set $\{b|S(a, b)\}$ can be formed, then there exists a function $F : A \to Y$ for some set Y such that $F(a) = \{b|S(a, b)\}$.
- This is the Axiom of replacement (Malitz page 45)
- The main use of the axiom of replacement is to obtain higher ordinals.
- Also the axiom of substitution is "indispensable" currently.

• An *ordinal number* is a well-ordered set α such that $s(\eta) = \eta$ for $\eta \in \alpha$.

・ロト ・回ト ・ヨト ・ヨト

• An ordinal number is a well-ordered set α such that $s(\eta) = \eta$ for $\eta \in \alpha$.

• $s(\eta) := \{\zeta \in \alpha | \zeta < \eta\}.$

・ロト ・回ト ・ヨト ・ヨト

- An *ordinal number* is a well-ordered set α such that $s(\eta) = \eta$ for $\eta \in \alpha$.
- $s(\eta) := \{\zeta \in \alpha | \zeta < \eta\}.$
- ω is a set.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- An *ordinal number* is a well-ordered set α such that $s(\eta) = \eta$ for $\eta \in \alpha$.
- $s(\eta) := \{\zeta \in \alpha | \zeta < \eta\}.$
- ω is a set.
- Define $F(0) = \omega$ and $F(n^+) = (F(n))^+$.

- An *ordinal number* is a well-ordered set α such that $s(\eta) = \eta$ for $\eta \in \alpha$.
- $s(\eta) := \{\zeta \in \alpha | \zeta < \eta\}.$
- ω is a set.
- Define $F(0) = \omega$ and $F(n^+) = (F(n))^+$.
- $\omega \cup ran F$ is $\omega 2$ or 2ω .

- An *ordinal number* is a well-ordered set α such that $s(\eta) = \eta$ for $\eta \in \alpha$.
- $s(\eta) := \{\zeta \in \alpha | \zeta < \eta\}.$
- ω is a set.
- Define $F(0) = \omega$ and $F(n^+) = (F(n))^+$.
- $\omega \cup ran F$ is $\omega 2$ or 2ω .
- We show $\omega 2$ is an ordinal.

• Using the axiom of replacements, we can keep constructing new ordinals...

・ロト ・回ト ・ヨト ・ヨト

- Using the axiom of replacements, we can keep constructing new ordinals...
- We can construct: $\omega, \omega^2, \omega^3, ..., \omega^2$.

- Using the axiom of replacements, we can keep constructing new ordinals...
- We can construct: $\omega, \omega 2, \omega 3, ..., \omega^2$.
- $\omega^2 + 1, \omega^2 + 2, .., \omega^2 + \omega, ..,$

- Using the axiom of replacements, we can keep constructing new ordinals...
- We can construct: $\omega, \omega 2, \omega 3, ..., \omega^2$.
- $\omega^2 + 1, \omega^2 + 2, .., \omega^2 + \omega, ..,$
- $\omega^2 + \omega + 1, \omega^2 + \omega + 2, \dots, \omega^2 + \omega^2$.

- Using the axiom of replacements, we can keep constructing new ordinals...
- We can construct: $\omega, \omega 2, \omega 3, ..., \omega^2$.
- $\omega^2 + 1, \omega^2 + 2, .., \omega^2 + \omega, ..,$
- $\omega^2 + \omega + 1, \omega^2 + \omega + 2, \dots, \omega^2 + \omega^2$.
- $\omega^2 + \omega^2, \omega^2 + \omega^3, ...,$

Ordinal constructions

- Using the axiom of replacements, we can keep constructing new ordinals...
- We can construct: $\omega, \omega 2, \omega 3, ..., \omega^2$.
- $\omega^2 + 1, \omega^2 + 2, .., \omega^2 + \omega, ..,$
- $\omega^2 + \omega + 1, \omega^2 + \omega + 2, \dots, \omega^2 + \omega^2$.
- $\omega^2 + \omega^2, \omega^2 + \omega^3, ...,$
- $\omega^3, \omega^4, ..., \omega^{\omega}, ..., \omega^{\omega^{\omega}}, ...$

Ordinal constructions

- Using the axiom of replacements, we can keep constructing new ordinals...
- We can construct: $\omega, \omega 2, \omega 3, ..., \omega^2$.
- $\omega^2 + 1, \omega^2 + 2, ..., \omega^2 + \omega, ...$
- $\omega^2 + \omega + 1, \omega^2 + \omega + 2, \ldots, \omega^2 + \omega^2$.
- $\omega^2 + \omega^2, \omega^2 + \omega^3, \dots$
- $\omega^3, \omega^4, \dots, \omega^{\omega}, \dots, \omega^{\omega^{\omega}}, \dots$ • $\omega^{\omega^{\omega^{\omega}}}, ..., \epsilon_0, ...$

Ordinal constructions

- Using the axiom of replacements, we can keep constructing new ordinals...
- We can construct: $\omega, \omega 2, \omega 3, ..., \omega^2$.
- $\omega^2 + 1, \omega^2 + 2, ..., \omega^2 + \omega, ...$
- $\omega^2 + \omega + 1, \omega^2 + \omega + 2, \ldots, \omega^2 + \omega^2$.
- $\omega^2 + \omega^2, \omega^2 + \omega^3, \dots$
- $\omega^3, \omega^4, \dots, \omega^{\omega}, \dots, \omega^{\omega^{\omega}}, \dots$ • $\omega^{\omega^{\omega^{\omega}}}, ..., \epsilon_0, ...$

Ordinal constructions

- Using the axiom of replacements, we can keep constructing new ordinals...
- We can construct: $\omega, \omega 2, \omega 3, ..., \omega^2$.
- $\omega^2 + 1, \omega^2 + 2, .., \omega^2 + \omega, ..,$
- $\omega^2 + \omega + 1, \omega^2 + \omega + 2, \dots, \omega^2 + \omega 2.$
- $\omega^2 + \omega^2, \omega^2 + \omega^3, ...,$
- ω³, ω⁴, ..., ω^ω, ..., ω^{ω^ω},
 ω^{ω^{ω^ω}}, ..., ε₀, ...

Theorem (Counting)

Each well-ordered set is similar to a unique ordinal number.

イロト イヨト イヨト

Ordinal constructions

- Using the axiom of replacements, we can keep constructing new ordinals...
- We can construct: $\omega, \omega 2, \omega 3, ..., \omega^2$.
- $\omega^2 + 1, \omega^2 + 2, .., \omega^2 + \omega, ..,$
- $\omega^2 + \omega + 1, \omega^2 + \omega + 2, \dots, \omega^2 + \omega 2.$
- $\omega^2 + \omega^2, \omega^2 + \omega^3, ...,$
- ω³, ω⁴, ..., ω^ω, ..., ω^{ω^ω},
 ω^{ω^{ω^ω}}, ..., ε₀, ...

Theorem (Counting)

Each well-ordered set is similar to a unique ordinal number.

イロト イヨト イヨト

Ordinal constructions

- Using the axiom of replacements, we can keep constructing new ordinals...
- We can construct: $\omega, \omega 2, \omega 3, ..., \omega^2$.
- $\omega^2 + 1, \omega^2 + 2, .., \omega^2 + \omega, ..,$
- $\omega^2 + \omega + 1, \omega^2 + \omega + 2, \dots, \omega^2 + \omega^2$.
- $\omega^2 + \omega^2, \omega^2 + \omega^3, ...,$
- $\omega^3, \omega^4, \dots, \omega^{\omega}, \dots, \omega^{\omega^{\omega}}, \dots$ • $\omega^{\omega^{\omega^{\omega}}}, \dots, \epsilon_0, \dots$

Theorem (Counting)

Each well-ordered set is similar to a unique ordinal number.

Theorem (Burali-Forti paradox)

There is no set containing all ordinals.

• An equivalence \sim : one-to-one correspondence.

- An equivalence \sim : one-to-one correspondence.
- $X \preceq Y$ if X is equivalent to a subset of Y: Y dominates X.

- An equivalence \sim : one-to-one correspondence.
- $X \preceq Y$ if X is equivalent to a subset of Y: Y dominates X.

Theorem (Schröder-Bernstein)

If $X \preceq Y$ and $Y \preceq X$, then $X \sim Y$.

- An equivalence \sim : one-to-one correspondence.
- $X \preceq Y$ if X is equivalent to a subset of Y: Y dominates X.

```
Theorem (Schröder-Bernstein)
```

```
If X \preceq Y and Y \preceq X, then X \sim Y.
```

• A *cardinal number* is an ordinal number α such that if β is an ordinal number equivalent to α , then $\alpha \leq \beta$.

- An equivalence \sim : one-to-one correspondence.
- $X \preceq Y$ if X is equivalent to a subset of Y: Y dominates X.

```
Theorem (Schröder-Bernstein)
```

```
If X \preceq Y and Y \preceq X, then X \sim Y.
```

- A cardinal number is an ordinal number α such that if β is an ordinal number equivalent to α, then α ≤ β.
- By the counting theorem and the well-ordering theorem, each set *X* is equivalent to a unique cardinal. Denote this *cardX*.

- An equivalence \sim : one-to-one correspondence.
- $X \preceq Y$ if X is equivalent to a subset of Y: Y dominates X.

```
Theorem (Schröder-Bernstein)
```

```
If X \preceq Y and Y \preceq X, then X \sim Y.
```

- A cardinal number is an ordinal number α such that if β is an ordinal number equivalent to α, then α ≤ β.
- By the counting theorem and the well-ordering theorem, each set *X* is equivalent to a unique cardinal. Denote this *cardX*.
- A finite number is a cardinal as well as ω .
Cardinal arithmetic

• If $X \sim Y$, then cardX = cardY.

・ロト ・回ト ・ヨト ・ヨト

Cardinal arithmetic

- If $X \sim Y$, then cardX = cardY.
- If $X \preceq Y$, then *cardX* < *cardY*. (i.e., *cardX* ≤ *cardY*, $X \neq Y$.)

イロト イヨト イヨト イヨト

Cardinals

Cardinal arithmetic

- If $X \sim Y$, then cardX = cardY.
- If $X \preceq Y$, then cardX < cardY. (i.e., $cardX \leq cardY, X \neq Y$.)
- a, b cardinal numbers $a + b = card(A \cup B)$ where a = cardA and b = cardB and $A \cap B = \emptyset$.

Cardinals

Cardinal arithmetic

- If $X \sim Y$, then cardX = cardY.
- If $X \preceq Y$, then cardX < cardY. (i.e., $cardX \leq cardY, X \neq Y$.)
- *a*, *b* cardinal numbers $a + b = card(A \cup B)$ where a = cardA and b = cardB and $A \cap B = \emptyset$.
- $\prod_{i\in I} a_i = card(X_{i\in I}A_i).$

Cardinals

Cardinal arithmetic

- If $X \sim Y$, then cardX = cardY.
- If $X \preceq Y$, then cardX < cardY. (i.e., $cardX \leq cardY, X \neq Y$.)
- *a*, *b* cardinal numbers $a + b = card(A \cup B)$ where a = cardA and b = cardB and $A \cap B = \emptyset$.
- $\prod_{i\in I} a_i = card(X_{i\in I}A_i).$
- $a^b = cardA^B$.

• \aleph_0 the cardinality of ω . $\aleph_0 < |\mathbb{R}|$ the reals.

- \aleph_0 the cardinality of ω . $\aleph_0 < |\mathbb{R}|$ the reals.
- CH: There is no set S with $\aleph_0 < |S| < 2^{\aleph_0} = |\mathbb{R}|$.

- \aleph_0 the cardinality of ω . $\aleph_0 < |\mathbb{R}|$ the reals.
- CH: There is no set S with $\aleph_0 < |S| < 2^{\aleph_0} = |\mathbb{R}|$.
- Or $2^{\aleph_0} = \aleph_1$.

イロト イヨト イヨト

- \aleph_0 the cardinality of ω . $\aleph_0 < |\mathbb{R}|$ the reals.
- CH: There is no set S with $\aleph_0 < |S| < 2^{\aleph_0} = |\mathbb{R}|$.
- Or $2^{\aleph_0} = \aleph_1$.
- Generalized CH. $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for all ordinals α .

- \aleph_0 the cardinality of ω . $\aleph_0 < |\mathbb{R}|$ the reals.
- CH: There is no set *S* with $\aleph_0 < |S| < 2^{\aleph_0} = |\mathbb{R}|$.
- Or $2^{\aleph_0} = \aleph_1$.
- Generalized CH. $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for all ordinals α .
- The contributions of Kurt Gödel in 1940 and Paul Cohen in 1963 show that the hypothesis can neither be disproved nor be proved using the axioms of Zermelo-Fraenkel set theory, the standard foundation of modern mathematics, provided that the set theory is consistent.

< 日 > < 同 > < 三 > < 三 >

- \aleph_0 the cardinality of ω . $\aleph_0 < |\mathbb{R}|$ the reals.
- CH: There is no set *S* with $\aleph_0 < |S| < 2^{\aleph_0} = |\mathbb{R}|$.
- Or $2^{\aleph_0} = \aleph_1$.
- Generalized CH. $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for all ordinals α .
- The contributions of Kurt Gödel in 1940 and Paul Cohen in 1963 show that the hypothesis can neither be disproved nor be proved using the axioms of Zermelo-Fraenkel set theory, the standard foundation of modern mathematics, provided that the set theory is consistent.
- Paul Cohen introduced the notion of "forcing" to show this.

- \aleph_0 the cardinality of ω . $\aleph_0 < |\mathbb{R}|$ the reals.
- CH: There is no set *S* with $\aleph_0 < |S| < 2^{\aleph_0} = |\mathbb{R}|$.
- Or $2^{\aleph_0} = \aleph_1$.
- Generalized CH. $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for all ordinals α .
- The contributions of Kurt Gödel in 1940 and Paul Cohen in 1963 show that the hypothesis can neither be disproved nor be proved using the axioms of Zermelo-Fraenkel set theory, the standard foundation of modern mathematics, provided that the set theory is consistent.
- Paul Cohen introduced the notion of "forcing" to show this.
- But the question still remains open in "some sense", as a subject of "philosophy".