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Introduction

About this lecture

The axiom of choice

An Infinite set has ω as a subset.

Axiom of choice is equivalent to the Zorn’s lemma.

Axiom of substitution.

GCH by Cohen.

Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html
and the moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.
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Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

http://plato.stanford.edu/contents.html has much resource.

Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))

Introduction to mathematical logic: set theory, computable functions, model theory,
Malitz, J. Springer

Sets for mathematics, F.W. Lawvere, R. Rosebrugh, Cambridge

http://us.metamath.org/index.html

http://us.metamath.org/mpegif/weth.mid The music of proofs.
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The axiom of choice

The axiom of choice

∏
i∈I Xi := {(xi ), |xi ∈ Xi for each i ∈ I}.

Axiom of Choice: The Cartesian product of a non-empty family of nonempty sets
is nonempty.

In other words: Given a nonempty family of nonempty sets {Xi}i∈I , there exists a
family {xi}i∈I such that xi ∈ Xi for each i ∈ I.

Application: Let X be a nonempty set. Then there exists a function
f : P(X )− {∅} → X so that f (A) ∈ A.
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Numbers

Recall: Numbers

A successor set x+ of x : x+ := x ∪ {x}.

0 = ∅.
1 = 0+ = {0}.
2 = 1+ = {0, 1}, 3 = 2+ = {0, 1, 2}.
ω = N the set of all natural numbers. (In this book 0 is a natural number.)
A finite set, an infinite set.

I n+ 6= 0 for all n ∈ ω. (any n+ has at least one element and 0 = ∅.)
I (i) no natural number is a subset of any of its elements. (Proof by induction)
I (ii) every element of a natural number is a subset of it. (Proof by induction)
I If n and m are in ω, and if n+ = m+, then n = m.
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An infinite set

Infinite set

A natural number n ∈ ω is not equivalent to a proper subset of n.

Proof: For n = 0, n = ∅. True.

Assume true for n and prove for n+ = {0, 1, 2, ..., n − 1, n}.
Suppose f : n+ → E ⊂ n+ for E a proper subset.

If n 6∈ E , f |n : n→ E − {f (n)} is one-to-one and onto. E ⊂ n as n 6∈ E . E − {f (n)}
proper subset of n. Contradition.

If n ∈ E , n is equivalent to E − {n}. n = E − {n} by induction hypothesis. Thus
E = n+. Contradiction.
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An infinite set

Infinite set

A set is finite if it is equivalent to some natural number.

A set is infinite if it is not equivalent to any natural number.

A set can be equivalent to at most one natural number:

Proof: This follows from n ∈ ω is not equivalent to a subset of n.

We will need

Theorem (Recursion)
Let X be a set, a ∈ X, and f : X → X be a function. Then there exists a function
u : ω → X such that u(0) = a and u(n+) = f (u(n)) for all n ∈ ω.
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An infinite set

An infinite set contains a subset equivalent to ω

Given X , we can choose a choice function f : P(X )− {∅} → X such that f (A) ∈ A.

This follows by the Axiom of choice.

Let X be an infinite set.

Let C be the collection of all finite subsets of X .

If A ∈ C, then X − A 6= ∅.
Define g : C → C by g(A) = A ∪ {f (X − A)}.
By Recursion theorem, there exists a function U : ω → C such that U(0) = ∅ and
U(n+) = U(n) ∪ {f (X − U(n))} = g(U(n)). –(*)
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An infinite set

Define v : ω → X be v(n) := f (X − U(n)). –(**)

Claim: v : ω → X is a one-to-one correspondence into a subset of X .

Proof: (1) v(n) 6∈ U(n) for all n ∈ ω by (**).

(2) v(n) ∈ U(n+) for all n ∈ ω by (*) and (**).
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(3)

If n ≤ m, the U(n) ⊂ U(m).

Proof: Fix n and do induction on m.

Define S(n) = {m|m ≥ n,U(n) ⊂ U(m)}.
S(n) 3 n and S(n) is not empty.

If m ∈ S(n), then m+ ⊂ S(n):

U(m+) = U(m) ∪ {f (x − U(m)} ⊃ U(n).
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(4)

If n < m, then v(n) 6= v(m).

n < m. Then n ∈ m and by transitivity n ⊂ m. n ∪ {n} ⊂ m.

n+ ≤ m. U(n+) ⊂ U(m). Thus v(n) ⊂ U(n+) ⊂ U(m) by (2) and (3).

v(m) /∈ U(m). Thus v(n) 6= v(m).
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Axiom of Choice, Zorn’s lemma, and the well-ordering

Axiom of choice, Zorn’s lemma, and the well-ordering principles are all equivalent.

This is a very important fact that you need to know.

First prove: The axiom of choice implies Zorn’s lemma.

Theorem (Zorn’s lemma)
If X is a partially ordered set such that every chain in X has an upper bound, then X
contains a maximal element.
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Axiom of Choice, Zorn’s lemma, and the well-ordering

Proof

Define s̄(x) = {y ∈ X |y ≤ x} weak initial segment.

s̄ : X → P(X ) is a function. s̄ is one-to-one: proof omit.

Let χ be the set of all chains in X . Then every member of χ is in some s̄(x).

χ 6= ∅ since χ contains singletons.

χ is ordered by inclusion (partial order)

If C is a chain in χ, then
⋃
C ∈ χ: proof: omit.

Suppose that we find a maximal element F in χ. Then F has an upper bound f0.
Then f0 is a maximal element of X .
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Axiom of Choice, Zorn’s lemma, and the well-ordering

Proof continued

Let f be a choice function for χ: f : P(X )− {∅} → X such that f (A) ∈ A for all
A ∈ P(X ).

Define Â = {x ∈ X |A ∪ {x} ∈ χ}.
Define g : χ→ χ by if Â− A 6= ∅, then g(A) = A ∪ {f (Â− A)} and if Â− A = ∅,
then g(A) = A.

We show that there exists A ∈ χ such that g(A) = A.

Then A is the element F we need.
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Axiom of Choice, Zorn’s lemma, and the well-ordering

Proof continued

A tower T ⊂ χ is a subcollection such that

I ∅ ∈ T .
I If A ∈ T , then g(A) ∈ T .
I If C is a chain in T , then

⋃
C ∈ T .

A tower exists (χ is one).

Let T0 be the intersection of the collection of all towers. It is a tower.

We show that T0 is a chain : in the next frame.

Then A =
⋃
T0 is in T0 and has the property g(A) = A.

Note: g(A) ⊂ A and g(A)− A cannot be more than a singleton.
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Axiom of Choice, Zorn’s lemma, and the well-ordering

Proof continued: T0 is a chain.

We say that a set C in T0 is comparable if A ⊂ C or C ⊂ A for every A ∈ T0.

∅ is comparable.

Let C be a fixed comparable set.

If A ∈ T0 and A is a proper subset of C, then g(A) ⊂ C. (As C cannot be a proper
subset of g(A) by considering g(A)− A at most a singleton.)

Consider U ⊂ T0 where A ⊂ C or g(C) ⊂ A.

U is smaller than the subset of T0 comparable with g(C).

U is a tower and hence U = T0: proof omit.

for each comparable C, g(C) is also comparable by above.

∅ is comparable. g maps comparable sets to comparable sets.

The comparable sets in T0 constitutes a tower, and hence all sets in T0 are
comparable. Thus, T0 is a chain.
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Axiom of Choice, Zorn’s lemma, and the well-ordering

We can show Zorn’s lemma implies the existence of the choice functions.

Proof: Given a set X , let

F = {f |dom f ⊂ P(X )− {∅}, ran f ⊂ X , f (A) ∈ A∀A ∈ P(X )− {∅}}.

Order these by extensions.

Every chain has an upper bound: (extensions −− > take a union)
Find a maximal element by Zorn’s lemma. Then dom f = P(X )− {∅}:

I Proof: Suppose A /∈ dom f . Define B = dom f ∪ {A}. Choose an element a ∈ A. Define
g(B) = f (B) if B ∈ dom f and f (B) = a if B = A. g ≥ f . Thus, g = f . Contradition.

I The existence of the choice functions implies the Axiom of Choice.
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Axiom of Choice, Zorn’s lemma, and the well-ordering

Well-ordering theorem: Every set can be well-ordered.

We show that Zorn’s lemma implies the well-ordering theorem.
Proof:

I Let W be the collection of all well ordered subsets of X . W 6= ∅.
I Then W is partially ordered by the inclusion relation.
I If C is a chain w.r.t continuation, then U =

⋃
C is an upper bound.

I By Zorn’s lemma, there exists a maximal set M. Then M = X .
I Proof: If x ∈ X −M, then M′ = M ∪ {x} is well-ordered and bigger.
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Axiom of Choice, Zorn’s lemma, and the well-ordering

Finally, We show that the well-ordering theorem implies that the axiom of choice.

Given a collection of set {Xi |i ∈ I}, there exists a set {xi |i ∈ I} so that xi ∈ Xi for
each i ∈ I.

Proof: Well-order
⋃

i∈I Xi and choose minimal xi ∈ Xi for each i ∈ I.

The axiom of choice→ Zorn’s lemma→ The well-ordering theorem→ The axiom
of choice.
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Ordinal numbers

Axiom of substitution

A a set. S(a, b) well-formed sentence. Suppose that F (n) = {x |S(n, x)} is a set.
Is {F (n)} a set?

Axiom of substitution: If S(a, b) is a statement for each a ∈ A such that the set
{b|S(a, b)} can be formed, then there exists a function F : A→ Y for some set Y
such that F (a) = {b|S(a, b)}.
This is the Axiom of replacement (Malitz page 45)

The main use of the axiom of replacement is to obtain higher ordinals.

Also the axiom of substitution is “indispensable” currently.
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Ordinal numbers

Ordinal numbers

An ordinal number is a well-ordered set α such that s(η) = η for η ∈ α.

s(η) := {ζ ∈ α|ζ < η}.
ω is a set.

Define F (0) = ω and F (n+) = (F (n))+.

ω ∪ ran F is ω2 or 2ω.

We show ω2 is an ordinal.
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Ordinal numbers

Ordinal constructions

Using the axiom of replacements, we can keep constructing new ordinals...

We can construct: ω, ω2, ω3, ..., ω2.

ω2 + 1, ω2 + 2, .., ω2 + ω, ..,

ω2 + ω + 1, ω2 + ω + 2, . . . , ω2 + ω2.

ω2 + ω2, ω2 + ω3, ...,

ω3, ω4, ..., ωω, ..., ωω
ω

, ....

ωω
ωω

, ..., ε0, ...

Theorem (Counting)
Each well-ordered set is similar to a unique ordinal number.

Theorem (Burali-Forti paradox)
There is no set containing all ordinals.
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Cardinals

Schröder-Bernstein theorem

An equivalence ∼: one-to-one correspondence.

X - Y if X is equivalent to a subset of Y : Y dominates X .

Theorem (Schröder-Bernstein)
If X - Y and Y - X, then X ∼ Y .

A cardinal number is an ordinal number α such that if β is an ordinal number
equivalent to α, then α ≤ β.

By the counting theorem and the well-ordering theorem, each set X is equivalent
to a unique cardinal. Denote this cardX .

A finite number is a cardinal as well as ω.
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Cardinals

Cardinal arithmetic

If X ∼ Y , then cardX = cardY .

If X - Y , then cardX < cardY . (i.e., cardX ≤ cardY ,X 6= Y . )

a, b cardinal numbers a + b = card(A ∪ B) where a = cardA and b = cardB and
A ∩ B = ∅.∏

i∈I ai = card(Xi∈IAi ).

ab = cardAB .
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Cardinals

Generalized continuum hypothesis

ℵ0 the cardinality of ω. ℵ0 < |R| the reals.

CH: There is no set S with ℵ0 < |S| < 2ℵ0 = |R|.
Or 2ℵ0 = ℵ1.

Generalized CH. 2ℵα = ℵα+1 for all ordinals α.

The contributions of Kurt Gödel in 1940 and Paul Cohen in 1963 show that the
hypothesis can neither be disproved nor be proved using the axioms of
Zermelo-Fraenkel set theory, the standard foundation of modern mathematics,
provided that the set theory is consistent.

Paul Cohen introduced the notion of “forcing” to show this.

But the question still remains open in “some sense”, as a subject of “philosophy”.
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