Logic and the set theory Lecture 19: The set theory

S. Choi

Department of Mathematical Science KAIST, Daejeon, South Korea

Fall semester, 2012

イロト イヨト イヨト イヨト

About this lecture

Axioms of the set theory

About this lecture

- Axioms of the set theory
 - Axiom of extension

About this lecture

- Axioms of the set theory
 - Axiom of extension
 - Axiom of specification

About this lecture

- Axioms of the set theory
 - Axiom of extension
 - Axiom of specification
 - Axiom of null set

About this lecture

- Axioms of the set theory
 - Axiom of extension
 - Axiom of specification
 - Axiom of null set
 - Axiom of pairing

・ロト ・日本 ・ヨト ・ヨト

About this lecture

- Axioms of the set theory
 - Axiom of extension
 - Axiom of specification
 - Axiom of null set
 - Axiom of pairing
 - Axiom of unions

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

About this lecture

- Axioms of the set theory
 - Axiom of extension
 - Axiom of specification
 - Axiom of null set
 - Axiom of pairing
 - Axiom of unions
 - Axiom of power sets

About this lecture

- Axioms of the set theory
 - Axiom of extension
 - Axiom of specification
 - Axiom of null set
 - Axiom of pairing
 - Axiom of unions
 - Axiom of power sets
 - Axiom of infinity

About this lecture

- Axioms of the set theory
 - Axiom of extension
 - Axiom of specification
 - Axiom of null set
 - Axiom of pairing
 - Axiom of unions
 - Axiom of power sets
 - Axiom of infinity
 - Axiom of regularity

About this lecture

- Axioms of the set theory
 - Axiom of extension
 - Axiom of specification
 - Axiom of null set
 - Axiom of pairing
 - Axiom of unions
 - Axiom of power sets
 - Axiom of infinity
 - Axiom of regularity
 - Axiom of choice

About this lecture

- Axioms of the set theory
 - Axiom of extension
 - Axiom of specification
 - Axiom of null set
 - Axiom of pairing
 - Axiom of unions
 - Axiom of power sets
 - Axiom of infinity
 - Axiom of regularity
 - Axiom of choice
- Russell's paradox

イロト イヨト イヨト

About this lecture

- Axioms of the set theory
 - Axiom of extension
 - Axiom of specification
 - Axiom of null set
 - Axiom of pairing
 - Axiom of unions
 - Axiom of power sets
 - Axiom of infinity
 - Axiom of regularity
 - Axiom of choice
- Russell's paradox
- Natural numbers

(D) (A) (A) (A)

About this lecture

- Axioms of the set theory
 - Axiom of extension
 - Axiom of specification
 - Axiom of null set
 - Axiom of pairing
 - Axiom of unions
 - Axiom of power sets
 - Axiom of infinity
 - Axiom of regularity
 - Axiom of choice
- Russell's paradox
- Natural numbers
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr

About this lecture

- Axioms of the set theory
 - Axiom of extension
 - Axiom of specification
 - Axiom of null set
 - Axiom of pairing
 - Axiom of unions
 - Axiom of power sets
 - Axiom of infinity
 - Axiom of regularity
 - Axiom of choice
- Russell's paradox
- Natural numbers
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

.

• Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

Image: A matrix

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.

Image: A matrix

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))

Image: Image:

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))
- Introduction to mathematical logic: set theory, computable functions, model theory, Malitz, J. Springer

・ロト ・同ト ・ヨト ・ヨ

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))
- Introduction to mathematical logic: set theory, computable functions, model theory, Malitz, J. Springer
- Sets for mathematics, F.W. Lawvere, R. Rosebrugh, Cambridge

S. Choi (KAIST)

イロト イヨト イヨト イヨト

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Sets

- {}.
- $\bullet \ \in, \subset, \emptyset$
- These satisfy certain axioms.

イロト イヨト イヨト イヨト

Sets

- {}.
- $\bullet \ \in, \subset, \emptyset$
- These satisfy certain axioms.
- $\bullet\,$ The meaning of the symbols are not given per say... You can read \in as "is an ancester of ".

Image: A math a math

Sets

- {}.
- $\bullet \ \in, \subset, \emptyset$
- These satisfy certain axioms.
- $\bullet\,$ The meaning of the symbols are not given per say... You can read \in as "is an ancester of ".
- The axioms are in fact temporary ones until we find better ones.

• □ ▶ • □ ▶ • □ ▶

Sets

- {}.
- $\bullet \in, \subset, \emptyset$
- These satisfy certain axioms.
- $\bullet\,$ The meaning of the symbols are not given per say... You can read \in as "is an ancester of ".
- The axioms are in fact temporary ones until we find better ones.
- The main reason that they exist is to aid in the proof and to follow the classical logic, and finally to avoid possible self-contradictions such as Russell's.

Sets

- {}.
- $\bullet \in, \subset, \emptyset$
- These satisfy certain axioms.
- $\bullet\,$ The meaning of the symbols are not given per say... You can read \in as "is an ancester of ".
- The axioms are in fact temporary ones until we find better ones.
- The main reason that they exist is to aid in the proof and to follow the classical logic, and finally to avoid possible self-contradictions such as Russell's.
- The set theory can be characterized within the category theory.

• Two sets are equal if and only if they have the same elements.

・ロト ・回 ト ・ ヨト ・ ヨ

- Two sets are equal if and only if they have the same elements.
- A = B and $A \neq B$.

・ロト ・回 ト ・ ヨト ・ ヨ

- Two sets are equal if and only if they have the same elements.
- A = B and $A \neq B$.
- $A \subset B$ is defined as $\forall x (x \in A \rightarrow x \in B)$.

(D) (A) (A) (A)

- Two sets are equal if and only if they have the same elements.
- A = B and $A \neq B$.
- $A \subset B$ is defined as $\forall x (x \in A \rightarrow x \in B)$.
- Reflexivity $A \subset A$.

- Two sets are equal if and only if they have the same elements.
- A = B and $A \neq B$.
- $A \subset B$ is defined as $\forall x (x \in A \rightarrow x \in B)$.
- Reflexivity $A \subset A$.
- Transitivity: $A \subset B$, $B \subset C$ Then $A \subset C$.

・ロト ・同ト ・ヨト ・ヨ

- Two sets are equal if and only if they have the same elements.
- A = B and $A \neq B$.
- $A \subset B$ is defined as $\forall x (x \in A \rightarrow x \in B)$.
- Reflexivity $A \subset A$.
- Transitivity: $A \subset B$, $B \subset C$ Then $A \subset C$.
- Antisymmetry: $A \subset B$ and $B \subset A$. Then A = B.

Image: Image:

Axiom of specification

• To every set and to any condition *S*(*x*) there corresponds a set *B* whose elements are exactly those of *A* satisfying *S*(*x*).

Axiom of specification

- To every set and to any condition *S*(*x*) there corresponds a set *B* whose elements are exactly those of *A* satisfying *S*(*x*).
- A the set of all men. $\{x \in A | x \text{ is married } .\}$.

(D) (A) (A) (A)

Axiom of a null-set

• A set with no element exists $\{\}$ or \emptyset .

イロト イヨト イヨト イヨト

Axiom of a null-set

- A set with no element exists $\{\}$ or \emptyset .
- $\emptyset \subset A$ for any set A.

イロト イヨト イヨト イヨト

• For any two sets, there exists a set that they both belong to.

- For any two sets, there exists a set that they both belong to.
- Sets X, Y. There exists $Z \ni X, Y$.

イロト イポト イヨト イヨ

- For any two sets, there exists a set that they both belong to.
- Sets X, Y. There exists $Z \ni X, Y$.
- There exists $\{a, b\}$. (To see this use the first item to get a set A and form $\{x \in A | x = a, x = b\}$.

- For any two sets, there exists a set that they both belong to.
- Sets X, Y. There exists $Z \ni X, Y$.
- There exists $\{a, b\}$. (To see this use the first item to get a set A and form $\{x \in A | x = a, x = b\}$.
- Singleton {a} exists.

- For any two sets, there exists a set that they both belong to.
- Sets X, Y. There exists $Z \ni X, Y$.
- There exists $\{a, b\}$. (To see this use the first item to get a set A and form $\{x \in A | x = a, x = b\}$.
- Singleton {a} exists.
- Example: $\{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}, \dots$

(日)

• Given a collection of sets, there exists a set *U* that contains all the elements that belong to at least one set in the given collection *C*.

(I) < ((i) <

- Given a collection of sets, there exists a set *U* that contains all the elements that belong to at least one set in the given collection *C*.
- U may be too general.

- Given a collection of sets, there exists a set *U* that contains all the elements that belong to at least one set in the given collection *C*.
- U may be too general.
- We specify $\bigcup_{X \in \mathcal{C}} X := \{x \in U | \exists X \in \mathcal{C} (x \in X)\}.$

- Given a collection of sets, there exists a set *U* that contains all the elements that belong to at least one set in the given collection *C*.
- U may be too general.
- We specify $\bigcup_{X \in \mathcal{C}} X := \{x \in U | \exists X \in \mathcal{C} (x \in X)\}.$
- Example: $\bigcup \{X | X \in \emptyset\} = \emptyset$.

- Given a collection of sets, there exists a set *U* that contains all the elements that belong to at least one set in the given collection *C*.
- U may be too general.
- We specify $\bigcup_{X \in \mathcal{C}} X := \{x \in U | \exists X \in \mathcal{C} (x \in X)\}.$
- Example: $\bigcup \{X | X \in \emptyset\} = \emptyset$.
- \bigcup { $A_1, A_2, ..., A_n$ } = $A_1 \cup A_2 \cup \cdots \cup A_n$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• \bigcup { $X | X \in$ {A}} = A.

・ロト ・回 ト ・ヨト ・ヨト

- \bigcup { $X | X \in$ {A}} = A.
- $A \cup \emptyset = A, A \cup B = B \cup A.$
- Prove for example $\{a\} \cup \{b\} \cup \{c\} = \{a, b, c\}.$

(ロ) (部) (E) (E) (E)

- \bigcup { $X | X \in$ {A}} = A.
- $A \cup \emptyset = A, A \cup B = B \cup A.$
- Prove for example $\{a\} \cup \{b\} \cup \{c\} = \{a, b, c\}.$
- $(A \cup B) \cup C = A \cup (B \cup C).$

(ロ) (部) (E) (E) (E)

- \bigcup { $X | X \in$ {A}} = A.
- $A \cup \emptyset = A, A \cup B = B \cup A.$
- Prove for example $\{a\} \cup \{b\} \cup \{c\} = \{a, b, c\}.$
- $(A \cup B) \cup C = A \cup (B \cup C).$
- $A \cup A = A$.

(ロ) (部) (E) (E) (E)

- \bigcup { $X | X \in$ {A}} = A.
- $A \cup \emptyset = A, A \cup B = B \cup A.$
- Prove for example $\{a\} \cup \{b\} \cup \{c\} = \{a, b, c\}$.
- $(A \cup B) \cup C = A \cup (B \cup C).$
- $A \cup A = A$.
- $A \subset B \leftrightarrow A \cup B = B$.

イロト イポト イヨト イヨト 二日

For every collection C, other than Ø, there exists a set V such that x ∈ V if and only if x ∈ X for every X ∈ C.

(I) < ((i) <

- For every collection C, other than Ø, there exists a set V such that x ∈ V if and only if x ∈ X for every X ∈ C.
- Let *A* be an element of *C*. Then $V = \{x \in A | \forall X \in Cx \in X\}$.

- For every collection C, other than Ø, there exists a set V such that x ∈ V if and only if x ∈ X for every X ∈ C.
- Let *A* be an element of *C*. Then $V = \{x \in A | \forall X \in Cx \in X\}$.
- $V = \{x | \forall X \in \mathcal{C}x \in X\}.$

- For every collection C, other than Ø, there exists a set V such that x ∈ V if and only if x ∈ X for every X ∈ C.
- Let *A* be an element of *C*. Then $V = \{x \in A | \forall X \in Cx \in X\}$.
- $V = \{x | \forall X \in \mathcal{C}x \in X\}.$
- This is uniquely defined by the axiom of extension.

イロト イポト イヨト イヨト

- For every collection C, other than Ø, there exists a set V such that x ∈ V if and only if x ∈ X for every X ∈ C.
- Let *A* be an element of *C*. Then $V = \{x \in A | \forall X \in Cx \in X\}$.
- $V = \{x | \forall X \in \mathcal{C}x \in X\}.$
- This is uniquely defined by the axiom of extension.
- Denote by $\bigcap C$ or $\bigcap \{X : X \in C\}$ or $\bigcap_{X \in C} X$.

イロト イポト イヨト イヨト

- For every collection C, other than Ø, there exists a set V such that x ∈ V if and only if x ∈ X for every X ∈ C.
- Let *A* be an element of *C*. Then $V = \{x \in A | \forall X \in Cx \in X\}$.
- $V = \{x | \forall X \in \mathcal{C}x \in X\}.$
- This is uniquely defined by the axiom of extension.
- Denote by $\bigcap C$ or $\bigcap \{X : X \in C\}$ or $\bigcap_{X \in C} X$.
- Definition of $A_1 \cap A_2 \cap \cdots \cap A_n$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- For every collection C, other than Ø, there exists a set V such that x ∈ V if and only if x ∈ X for every X ∈ C.
- Let *A* be an element of *C*. Then $V = \{x \in A | \forall X \in Cx \in X\}$.

•
$$V = \{x | \forall X \in \mathcal{C}x \in X\}.$$

- This is uniquely defined by the axiom of extension.
- Denote by $\bigcap C$ or $\bigcap \{X : X \in C\}$ or $\bigcap_{X \in C} X$.
- Definiton of $A_1 \cap A_2 \cap \cdots \cap A_n$.
- Let \emptyset be a family of subsets of *E*. Then $\bigcap_{X \in \emptyset} X = E$. (For no *X*, $x \in X$ is false.)

イロト イポト イヨト イヨト

- For every collection C, other than Ø, there exists a set V such that x ∈ V if and only if x ∈ X for every X ∈ C.
- Let *A* be an element of *C*. Then $V = \{x \in A | \forall X \in Cx \in X\}$.

•
$$V = \{x | \forall X \in \mathcal{C}x \in X\}.$$

- This is uniquely defined by the axiom of extension.
- Denote by $\bigcap C$ or $\bigcap \{X : X \in C\}$ or $\bigcap_{X \in C} X$.
- Definiton of $A_1 \cap A_2 \cap \cdots \cap A_n$.
- Let \emptyset be a family of subsets of *E*. Then $\bigcap_{X \in \emptyset} X = E$. (For no *X*, $x \in X$ is false.)
- Not specifying *E* gets you into trouble.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

<ロ> <同> <同> < 回> < 回> < 回> = 三回

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- In fact $A \cap \bigcup C = \bigcup C_1$ where $C_1 = \{A \cap B | A \cap B \neq \emptyset \land B \in C\}$

(I) < ((i) <

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- In fact $A \cap \bigcup C = \bigcup C_1$ where $C_1 = \{A \cap B | A \cap B \neq \emptyset \land B \in C\}$
- $A \cup \bigcap C = \bigcap C_2$ where $C_2 = \{A \cup B | B \in C\}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• $A-B = \{x \in A | x \notin B\}.$

・ロト ・回ト ・ヨト ・ヨト

- $A-B = \{x \in A | x \notin B\}.$
- E. The set containing all sets here.

- $A-B = \{x \in A | x \notin B\}.$
- E. The set containing all sets here.
- A' := E A.

- $A-B = \{x \in A | x \notin B\}.$
- E. The set containing all sets here.
- A' := E A.
- (A')' = A.

- $A-B = \{x \in A | x \notin B\}.$
- E. The set containing all sets here.
- A' := E A.
- (A')' = A.
- $\emptyset' = E, E' = \emptyset.$

イロト イヨト イヨト イヨト

- $A-B = \{x \in A | x \notin B\}.$
- E. The set containing all sets here.
- A' := E A.
- (A')' = A.
- $\emptyset' = E, E' = \emptyset.$
- $A \cap A' = \emptyset$ and $A \cup A' = E$.

イロト イヨト イヨト

- $A-B = \{x \in A | x \notin B\}.$
- E. The set containing all sets here.
- A' := E A.
- (A')' = A.
- $\emptyset' = E, E' = \emptyset.$
- $A \cap A' = \emptyset$ and $A \cup A' = E$.
- $A \subset B$ if and only if $B' \subset A'$.

Complements

- $A-B = \{x \in A | x \notin B\}.$
- E. The set containing all sets here.
- A' := E A.
- (A')' = A.
- $\emptyset' = E, E' = \emptyset.$
- $A \cap A' = \emptyset$ and $A \cup A' = E$.
- $A \subset B$ if and only if $B' \subset A'$.
- $(A \cup B)' = A' \cap B', (A \cap B)' = A' \cup B'$. De Morgan's law

Complements

- $A-B = \{x \in A | x \notin B\}.$
- E. The set containing all sets here.
- A' := E A.
- (A')' = A.
- $\emptyset' = E, E' = \emptyset.$
- $A \cap A' = \emptyset$ and $A \cup A' = E$.
- $A \subset B$ if and only if $B' \subset A'$.
- $(A \cup B)' = A' \cap B', (A \cap B)' = A' \cup B'$. De Morgan's law
- $A \triangle B = (A B) \cup (B A)$. (A + B in NS)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• For every set, there is a collection of sets that contains among its elements all the subsets of the given set.

(I)

- For every set, there is a collection of sets that contains among its elements all the subsets of the given set.
- For every *x*, there is *y* such that for all $z, z \in y$ iff $z \subset x$.

- For every set, there is a collection of sets that contains among its elements all the subsets of the given set.
- For every *x*, there is *y* such that for all $z, z \in y$ iff $z \subset x$.
- $\forall x \exists y \forall z (z \in y \leftrightarrow z \subset x).$

- For every set, there is a collection of sets that contains among its elements all the subsets of the given set.
- For every *x*, there is *y* such that for all $z, z \in y$ iff $z \subset x$.
- $\forall x \exists y \forall z (z \in y \leftrightarrow z \subset x).$
- X, P(X) the power set of X

- For every set, there is a collection of sets that contains among its elements all the subsets of the given set.
- For every *x*, there is *y* such that for all $z, z \in y$ iff $z \subset x$.
- $\forall x \exists y \forall z (z \in y \leftrightarrow z \subset x).$
- X, P(X) the power set of X
- $P(X) = \{x | x \subset X\}.$

- For every set, there is a collection of sets that contains among its elements all the subsets of the given set.
- For every *x*, there is *y* such that for all $z, z \in y$ iff $z \subset x$.
- $\forall x \exists y \forall z (z \in y \leftrightarrow z \subset x).$
- X, P(X) the power set of X
- $P(X) = \{x | x \subset X\}.$
- $P(\emptyset) = \{\emptyset\}.$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- For every set, there is a collection of sets that contains among its elements all the subsets of the given set.
- For every *x*, there is *y* such that for all $z, z \in y$ iff $z \subset x$.
- $\forall x \exists y \forall z (z \in y \leftrightarrow z \subset x).$
- X, P(X) the power set of X
- $P(X) = \{x | x \subset X\}.$
- $P(\emptyset) = \{\emptyset\}.$
- $P(\{a, b\}) = ?$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• $P(E) \cap P(F) = P(E \cap F), P(E) \cup P(F) \subset P(E \cup F).$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• $P(E) \cap P(F) = P(E \cap F), P(E) \cup P(F) \subset P(E \cup F).$

• $\bigcap_{X\in\mathcal{C}} P(X) = P(\bigcap_{X\in\mathcal{C}} X).$

• $P(E) \cap P(F) = P(E \cap F), P(E) \cup P(F) \subset P(E \cup F).$

- $\bigcap_{X \in \mathcal{C}} P(X) = P(\bigcap_{X \in \mathcal{C}} X).$
- $\bigcup_{X \in \mathcal{C}} P(X) \subset P(\bigcup_{X \in \mathcal{C}} X).$

(ロ) (部) (E) (E) (E)

• $P(E) \cap P(F) = P(E \cap F), P(E) \cup P(F) \subset P(E \cup F).$

- $\bigcap_{X \in \mathcal{C}} P(X) = P(\bigcap_{X \in \mathcal{C}} X).$
- $\bigcup_{X \in \mathcal{C}} P(X) \subset P(\bigcup_{X \in \mathcal{C}} X).$
- $\bigcap_{X \in P(E)} X = \emptyset$.

- $P(E) \cap P(F) = P(E \cap F), P(E) \cup P(F) \subset P(E \cup F).$
- $\bigcap_{X\in\mathcal{C}} P(X) = P(\bigcap_{X\in\mathcal{C}} X).$
- $\bigcup_{X\in\mathcal{C}} P(X) \subset P(\bigcup_{X\in\mathcal{C}} X).$
- $\bigcap_{X \in P(E)} X = \emptyset.$
- $E \subset F \rightarrow P(E) \subset P(F)$.

<ロ> <同> <同> < 回> < 回> < 回> = 三

- $P(E) \cap P(F) = P(E \cap F), P(E) \cup P(F) \subset P(E \cup F).$
- $\bigcap_{X \in \mathcal{C}} P(X) = P(\bigcap_{X \in \mathcal{C}} X).$
- $\bigcup_{X\in\mathcal{C}} P(X) \subset P(\bigcup_{X\in\mathcal{C}} X).$
- $\bigcap_{X \in P(E)} X = \emptyset.$
- $E \subset F \rightarrow P(E) \subset P(F)$.
- $E = \bigcup P(E)$.

<ロ> <同> <同> < 回> < 回> < 回> = 三

Question

• What type of sets can you construct with the axioms given? Give us examples...

イロト イヨト イヨト イヨト

Question

What type of sets can you construct with the axioms given? Give us examples...
{Ø, {Ø, {Ø}}}, ...

イロト イヨト イヨト イヨト

Question

- What type of sets can you construct with the axioms given? Give us examples...
- { \emptyset , { \emptyset , { \emptyset }}}, ...
- Can we get an infinite set now?

イロト イヨト イヨト

• There is a set *X* such that $\phi \in X$ and whenever $y \in X$, then $y \cup \{y\} \in X$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- There is a set *X* such that $\phi \in X$ and whenever $y \in X$, then $y \cup \{y\} \in X$.
- Numbers $x^+ = x \cup \{x\}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- There is a set X such that $\phi \in X$ and whenever $y \in X$, then $y \cup \{y\} \in X$.
- Numbers $x^+ = x \cup \{x\}$.
- $0 := \emptyset, 1 = 0^+ = \{0\} = \{\emptyset\}, 2 = 1^+ = \{0, 1\} = \{\emptyset, \{\emptyset\}\},\$

- There is a set X such that $\phi \in X$ and whenever $y \in X$, then $y \cup \{y\} \in X$.
- Numbers $x^+ = x \cup \{x\}$.
- $0 := \emptyset, 1 = 0^+ = \{0\} = \{\emptyset\}, 2 = 1^+ = \{0, 1\} = \{\emptyset, \{\emptyset\}\},\$
- $3 = 2^+ = \{0, 1, 2\} = \{0, 1, \{0, 1\}\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}.$

イロト イポト イラト イラト 一戸

- There is a set *X* such that $\phi \in X$ and whenever $y \in X$, then $y \cup \{y\} \in X$.
- Numbers $x^+ = x \cup \{x\}$.
- $0 := \emptyset, 1 = 0^+ = \{0\} = \{\emptyset\}, 2 = 1^+ = \{0, 1\} = \{\emptyset, \{\emptyset\}\},\$
- $3 = 2^+ = \{0, 1, 2\} = \{0, 1, \{0, 1\}\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}.$
- 4 = 3⁺ =???.

イロト イポト イラト イラト 一戸

• Temporary definition: A set A is a *successor set* if $0 \in A$ and $y^+ \in A$ whenever $y \in A$.

(I) < ((i) <

- Temporary definition: A set A is a *successor set* if $0 \in A$ and $y^+ \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.

- Temporary definition: A set A is a *successor set* if $0 \in A$ and $y^+ \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?

(4) (1) (4) (4) (4)

Image: Image:

- Temporary definition: A set A is a *successor set* if $0 \in A$ and $y^+ \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?
- Define ω as the intersection of all collection of successor sets in A.

- Temporary definition: A set A is a *successor set* if $0 \in A$ and $y^+ \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?
- Define ω as the intersection of all collection of successor sets in A.
- Then ω is a subset of every successor set:

- Temporary definition: A set A is a *successor set* if $0 \in A$ and $y^+ \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?
- Define ω as the intersection of all collection of successor sets in A.
- Then ω is a subset of every successor set:
- Proof: Let *B* be a successor set. Then $\omega \subset A \cap B$ since ?. Thus, $\omega \subset B$.

- Temporary definition: A set A is a *successor set* if $0 \in A$ and $y^+ \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?
- Define ω as the intersection of all collection of successor sets in A.
- Then ω is a subset of every successor set:
- Proof: Let *B* be a successor set. Then $\omega \subset A \cap B$ since ?. Thus, $\omega \subset B$.
- ω is uniquely defined:

- Temporary definition: A set A is a *successor set* if $0 \in A$ and $y^+ \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?
- Define ω as the intersection of all collection of successor sets in A.
- Then ω is a subset of every successor set:
- Proof: Let *B* be a successor set. Then $\omega \subset A \cap B$ since ?. Thus, $\omega \subset B$.
- ω is uniquely defined:
- Proof: ω exists. Suppose ω' is another...

- Temporary definition: A set A is a *successor set* if $0 \in A$ and $y^+ \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?
- Define ω as the intersection of all collection of successor sets in A.
- Then ω is a subset of every successor set:
- Proof: Let *B* be a successor set. Then $\omega \subset A \cap B$ since ?. Thus, $\omega \subset B$.
- ω is uniquely defined:
- Proof: ω exists. Suppose ω' is another...
- A natural number is an element of ω : 0, 1, 2,

 Every nonempty set has an ∈-least member. That is, if there is some y ∈ x, then there exists z ∈ x for which there is no w ∈ z ∩ x. (There is no element of x that is an element of z).

- Every nonempty set has an ∈-least member. That is, if there is some y ∈ x, then there exists z ∈ x for which there is no w ∈ z ∩ x. (There is no element of x that is an element of z).
- Consequences:

- Every nonempty set has an ∈-least member. That is, if there is some y ∈ x, then there exists z ∈ x for which there is no w ∈ z ∩ x. (There is no element of x that is an element of z).
- Consequences:
- (1) No nonempty set can be a member of itself. No $A = \{A, ...\}...$

- Every nonempty set has an ∈-least member. That is, if there is some y ∈ x, then there exists z ∈ x for which there is no w ∈ z ∩ x. (There is no element of x that is an element of z).
- Consequences:
- (1) No nonempty set can be a member of itself. No $A = \{A, ...\}...$
- (2) If A, B are both nonempty sets, then it is not possible that both A ∈ B and B ∈ A are true.

• (1) Suppose that $\exists A$ such that $A \in A$, and A is not empty, then $\{A\}$ would be a set. A is the only element.

- (1) Suppose that $\exists A$ such that $A \in A$, and A is not empty, then $\{A\}$ would be a set. A is the only element.
- However, in $\{A\}$ there is no z as above.

- (1) Suppose that $\exists A$ such that $A \in A$, and A is not empty, then $\{A\}$ would be a set. A is the only element.
- However, in $\{A\}$ there is no z as above.
- (2) Suppose there exists nonempty sets A and B with $A \in B$ and $B \in A$. Then $\{A, B\}$ is a set.

(日)

- (1) Suppose that $\exists A$ such that $A \in A$, and A is not empty, then $\{A\}$ would be a set. A is the only element.
- However, in $\{A\}$ there is no z as above.
- (2) Suppose there exists nonempty sets A and B with $A \in B$ and $B \in A$. Then $\{A, B\}$ is a set.
- $B \in A \cap \{A, B\}$ since $B \in A$.

- (1) Suppose that $\exists A$ such that $A \in A$, and A is not empty, then $\{A\}$ would be a set. A is the only element.
- However, in {*A*} there is no *z* as above.
- (2) Suppose there exists nonempty sets A and B with $A \in B$ and $B \in A$. Then $\{A, B\}$ is a set.
- $B \in A \cap \{A, B\}$ since $B \in A$.
- $A \in B \cap \{A, B\}$ since $A \in B$.

- (1) Suppose that ∃A such that A ∈ A, and A is not empty, then {A} would be a set.
 A is the only element.
- However, in $\{A\}$ there is no z as above.
- (2) Suppose there exists nonempty sets A and B with $A \in B$ and $B \in A$. Then $\{A, B\}$ is a set.
- $B \in A \cap \{A, B\}$ since $B \in A$.
- $A \in B \cap \{A, B\}$ since $A \in B$.
- Thus there is no z for $\{A, B\}$ since we can keep finding one less than any element.

- (1) Suppose that ∃A such that A ∈ A, and A is not empty, then {A} would be a set.
 A is the only element.
- However, in $\{A\}$ there is no z as above.
- (2) Suppose there exists nonempty sets A and B with $A \in B$ and $B \in A$. Then $\{A, B\}$ is a set.
- $B \in A \cap \{A, B\}$ since $B \in A$.
- $A \in B \cap \{A, B\}$ since $A \in B$.
- Thus there is no z for $\{A, B\}$ since we can keep finding one less than any element.

• Let A be a set.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Let A be a set.
- Define $B = \{x \in A : \neg (x \in x)\}$:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Let A be a set.
- Define $B = \{x \in A : \neg (x \in x)\}$:
- $y \in B \leftrightarrow y \in A \land y \notin y$.

- Let A be a set.
- Define $B = \{x \in A : \neg (x \in x)\}$:
- $y \in B \leftrightarrow y \in A \land y \notin y$.
- Is B ∈ A?

- Let A be a set.
- Define $B = \{x \in A : \neg (x \in x)\}$:
- $y \in B \leftrightarrow y \in A \land y \notin y$.
- Is *B* ∈ *A*?
- If $B \in A$, then

- Let A be a set.
- Define $B = \{x \in A : \neg (x \in x)\}$:
- $y \in B \leftrightarrow y \in A \land y \notin y$.
- Is B ∈ A?
- If $B \in A$, then
 - ▶ (i) $B \notin B$: Then $B \in A$ and $B \notin B$ imply $B \in B$. Contradiction.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Let A be a set.
- Define $B = \{x \in A : \neg (x \in x)\}$:
- $y \in B \leftrightarrow y \in A \land y \notin y$.
- Is B ∈ A?
- If $B \in A$, then
 - ▶ (i) $B \notin B$: Then $B \in A$ and $B \notin B$ imply $B \in B$. Contradiction.
 - ▶ (ii) $B \in B$: Then $B \in A$ implies $B \notin B$. Contr.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Let A be a set.
- Define $B = \{x \in A : \neg (x \in x)\}$:
- $y \in B \leftrightarrow y \in A \land y \notin y$.
- Is B ∈ A?
- If $B \in A$, then
 - ▶ (i) $B \notin B$: Then $B \in A$ and $B \notin B$ imply $B \in B$. Contradiction.
 - (ii) $B \in B$: Then $B \in A$ implies $B \notin B$. Contr.
- Thus, $B \not\in A$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Let *U* be the "set" of all sets.

・ロト ・回ト ・ヨト ・ヨト

- Let U be the "set" of all sets.
- A set x is *normal* if $x \notin x$. the "set" of all normal sets.

- Let U be the "set" of all sets.
- A set x is *normal* if $x \notin x$. the "set" of all normal sets.
- Let $A = \{x \in U : \neg(x \in x)\}$. The "set" of all normal sets.

- Let U be the "set" of all sets.
- A set x is *normal* if $x \notin x$. the "set" of all normal sets.
- Let $A = \{x \in U : \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.

Image: A matrix

- Let U be the "set" of all sets.
- A set x is *normal* if $x \notin x$. the "set" of all normal sets.
- Let $A = \{x \in U : \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.

- Let U be the "set" of all sets.
- A set x is *normal* if $x \notin x$. the "set" of all normal sets.
- Let $A = \{x \in U : \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.
- Hence A is not a set. (a collection)

- Let U be the "set" of all sets.
- A set x is *normal* if $x \notin x$. the "set" of all normal sets.
- Let $A = \{x \in U : \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.
- Hence A is not a set. (a collection)
- There is no 'universal set' U.

- Let U be the "set" of all sets.
- A set x is normal if $x \notin x$. the "set" of all normal sets.
- Let $A = \{x \in U : \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.
- Hence A is not a set. (a collection)
- There is no 'universal set' U.
- Originally, Russell used his argument to show that the set theory is not consistent. (See Malitz Section 1.11)

.

- Let U be the "set" of all sets.
- A set x is *normal* if $x \notin x$. the "set" of all normal sets.
- Let $A = \{x \in U : \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.
- Hence A is not a set. (a collection)
- There is no 'universal set' U.
- Originally, Russell used his argument to show that the set theory is not consistent. (See Malitz Section 1.11)
- The axiom of regularity also rules out the set of all sets.

- Let U be the "set" of all sets.
- A set x is *normal* if $x \notin x$. the "set" of all normal sets.
- Let $A = \{x \in U : \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.
- Hence A is not a set. (a collection)
- There is no 'universal set' U.
- Originally, Russell used his argument to show that the set theory is not consistent. (See Malitz Section 1.11)
- The axiom of regularity also rules out the set of all sets.
- $U \in U$. See above.

- Let U be the "set" of all sets.
- A set x is *normal* if $x \notin x$. the "set" of all normal sets.
- Let $A = \{x \in U : \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.
- Hence A is not a set. (a collection)
- There is no 'universal set' U.
- Originally, Russell used his argument to show that the set theory is not consistent. (See Malitz Section 1.11)
- The axiom of regularity also rules out the set of all sets.
- $U \in U$. See above.
- A is not a set but is a "class". (Von Neumann)

・ 同 ト ・ ヨ ト ・ ヨ ト

Classes

• A class is an object defined by \in , {}.

・ロト ・回ト ・ヨト ・ヨト

Classes

- A class is an object defined by \in , {}.
- Axioms: extension and specification only.

Classes

- A class is an object defined by \in , {}.
- Axioms: extension and specification only.
- A class is a set if it is a member of another class.

-

The axiom of choice

• Cartesian product (define later)

The axiom of choice

- Cartesian product (define later)
- $\prod_{i \in I} X_i := \{(x_i), | x_i \in X_i \text{ for each } i \in I\}.$

・ロト ・日本 ・ヨト ・ヨト

The axiom of choice

- Cartesian product (define later)
- $\prod_{i \in I} X_i := \{(x_i), | x_i \in X_i \text{ for each } i \in I\}.$
- Axiom of Choice: The Cartesian product of a non-empty family of nonempty sets is nonempty.