Logic and the set theory

Lecture 19: The set theory

S. Choi

Department of Mathematical Science
KAIST, Daejeon, South Korea

Fall semester, 2012

About this lecture

- Axioms of the set theory

About this lecture

- Axioms of the set theory
- Axiom of extension

About this lecture

- Axioms of the set theory
- Axiom of extension
- Axiom of specification

About this lecture

- Axioms of the set theory
- Axiom of extension
- Axiom of specification
- Axiom of null set

About this lecture

- Axioms of the set theory
- Axiom of extension
- Axiom of specification
- Axiom of null set
- Axiom of pairing

About this lecture

- Axioms of the set theory
- Axiom of extension
- Axiom of specification
- Axiom of null set
- Axiom of pairing
- Axiom of unions

About this lecture

- Axioms of the set theory
- Axiom of extension
- Axiom of specification
- Axiom of null set
- Axiom of pairing
- Axiom of unions
- Axiom of power sets

About this lecture

- Axioms of the set theory
- Axiom of extension
- Axiom of specification
- Axiom of null set
- Axiom of pairing
- Axiom of unions
- Axiom of power sets
- Axiom of infinity

About this lecture

- Axioms of the set theory
- Axiom of extension
- Axiom of specification
- Axiom of null set
- Axiom of pairing
- Axiom of unions
- Axiom of power sets
- Axiom of infinity
- Axiom of regularity

About this lecture

- Axioms of the set theory
- Axiom of extension
- Axiom of specification
- Axiom of null set
- Axiom of pairing
- Axiom of unions
- Axiom of power sets
- Axiom of infinity
- Axiom of regularity
- Axiom of choice

About this lecture

- Axioms of the set theory
- Axiom of extension
- Axiom of specification
- Axiom of null set
- Axiom of pairing
- Axiom of unions
- Axiom of power sets
- Axiom of infinity
- Axiom of regularity
- Axiom of choice
- Russell's paradox

About this lecture

- Axioms of the set theory
- Axiom of extension
- Axiom of specification
- Axiom of null set
- Axiom of pairing
- Axiom of unions
- Axiom of power sets
- Axiom of infinity
- Axiom of regularity
- Axiom of choice
- Russell's paradox
- Natural numbers

About this lecture

- Axioms of the set theory
- Axiom of extension
- Axiom of specification
- Axiom of null set
- Axiom of pairing
- Axiom of unions
- Axiom of power sets
- Axiom of infinity
- Axiom of regularity
- Axiom of choice
- Russell's paradox
- Natural numbers
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr

About this lecture

- Axioms of the set theory
- Axiom of extension
- Axiom of specification
- Axiom of null set
- Axiom of pairing
- Axiom of unions
- Axiom of power sets
- Axiom of infinity
- Axiom of regularity
- Axiom of choice
- Russell's paradox
- Natural numbers
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))
- Introduction to mathematical logic: set theory, computable functions, model theory, Malitz, J. Springer

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))
- Introduction to mathematical logic: set theory, computable functions, model theory, Malitz, J. Springer
- Sets for mathematics, F.W. Lawvere, R. Rosebrugh, Cambridge

Naive set theory (Zermelo-Fraenkel, ZFC)

Sets

- \{\}.

Naive set theory (Zermelo-Fraenkel, ZFC)

Sets

- \{\}.
- \in, \subset, \emptyset

Naive set theory (Zermelo-Fraenkel, ZFC)

Sets

- \{\}.
- \in, \subset, \emptyset
- These satisfy certain axioms.

Naive set theory (Zermelo-Fraenkel, ZFC)

Sets

- $\}$.
- \in, \subset, \emptyset
- These satisfy certain axioms.
- The meaning of the symbols are not given per say... You can read \in as "is an ancester of ".

Naive set theory (Zermelo-Fraenkel, ZFC)

Sets

- $\}$.
- \in, \subset, \emptyset
- These satisfy certain axioms.
- The meaning of the symbols are not given per say... You can read \in as "is an ancester of ".
- The axioms are in fact temporary ones until we find better ones.

Naive set theory (Zermelo-Fraenkel, ZFC)

Sets

- $\}$.
- \in, \subset, \emptyset
- These satisfy certain axioms.
- The meaning of the symbols are not given per say... You can read \in as "is an ancester of ".
- The axioms are in fact temporary ones until we find better ones.
- The main reason that they exist is to aid in the proof and to follow the classical logic, and finally to avoid possible self-contradictions such as Russell's.

Naive set theory (Zermelo-Fraenkel, ZFC)

Sets

- $\}$.
- \in, \subset, \emptyset
- These satisfy certain axioms.
- The meaning of the symbols are not given per say... You can read \in as "is an ancester of ".
- The axioms are in fact temporary ones until we find better ones.
- The main reason that they exist is to aid in the proof and to follow the classical logic, and finally to avoid possible self-contradictions such as Russell's.
- The set theory can be characterized within the category theory.

Axiom of extension

- Two sets are equal if and only if they have the same elements.

Axiom of extension

- Two sets are equal if and only if they have the same elements.
- $A=B$ and $A \neq B$.

Axiom of extension

- Two sets are equal if and only if they have the same elements.
- $A=B$ and $A \neq B$.
- $A \subset B$ is defined as $\forall x(x \in A \rightarrow x \in B)$.

Axiom of extension

- Two sets are equal if and only if they have the same elements.
- $A=B$ and $A \neq B$.
- $A \subset B$ is defined as $\forall x(x \in A \rightarrow x \in B)$.
- Reflexivity $A \subset A$.

Axiom of extension

- Two sets are equal if and only if they have the same elements.
- $A=B$ and $A \neq B$.
- $A \subset B$ is defined as $\forall x(x \in A \rightarrow x \in B)$.
- Reflexivity $A \subset A$.
- Transitivity: $A \subset B, B \subset C$ Then $A \subset C$.

Axiom of extension

- Two sets are equal if and only if they have the same elements.
- $A=B$ and $A \neq B$.
- $A \subset B$ is defined as $\forall x(x \in A \rightarrow x \in B)$.
- Reflexivity $A \subset A$.
- Transitivity: $A \subset B, B \subset C$ Then $A \subset C$.
- Antisymmetry: $A \subset B$ and $B \subset A$. Then $A=B$.

Axiom of specification

- To every set and to any condition $S(x)$ there corresponds a set B whose elements are exactly those of A satisfying $S(x)$.

Axiom of specification

- To every set and to any condition $S(x)$ there corresponds a set B whose elements are exactly those of A satisfying $S(x)$.
- A the set of all men. $\{x \in A \mid x$ is married . $\}$.

Axiom of a null-set

- A set with no element exists $\}$ or \emptyset.

Axiom of a null-set

- A set with no element exists $\}$ or \emptyset.
- $\emptyset \subset A$ for any set A.

Axiom of pairing

- For any two sets, there exists a set that they both belong to.

Axiom of pairing

- For any two sets, there exists a set that they both belong to.
- Sets X, Y. There exists $Z \ni X, Y$.

Axiom of pairing

- For any two sets, there exists a set that they both belong to.
- Sets X, Y. There exists $Z \ni X, Y$.
- There exists $\{a, b\}$. (To see this use the first item to get a set A and form $\{x \in A \mid x=a, x=b\}$.

Axiom of pairing

- For any two sets, there exists a set that they both belong to.
- Sets X, Y. There exists $Z \ni X, Y$.
- There exists $\{a, b\}$. (To see this use the first item to get a set A and form $\{x \in A \mid x=a, x=b\}$.
- Singleton $\{a\}$ exists.

Axiom of pairing

- For any two sets, there exists a set that they both belong to.
- Sets X, Y. There exists $Z \ni X, Y$.
- There exists $\{a, b\}$. (To see this use the first item to get a set A and form $\{x \in A \mid x=a, x=b\}$.
- Singleton $\{a\}$ exists.
- Example: $\{\emptyset\},\{\emptyset,\{\emptyset\}\},\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}, \ldots$.

Axiom of union

- Given a collection of sets, there exists a set U that contains all the elements that belong to at least one set in the given collection \mathcal{C}.

Axiom of union

- Given a collection of sets, there exists a set U that contains all the elements that belong to at least one set in the given collection \mathcal{C}.
- U may be too general.

Axiom of union

- Given a collection of sets, there exists a set U that contains all the elements that belong to at least one set in the given collection \mathcal{C}.
- U may be too general.
- We specify $\bigcup_{X \in \mathcal{C}} X:=\{x \in U \mid \exists X \in \mathcal{C}(x \in X)\}$.

Axiom of union

- Given a collection of sets, there exists a set U that contains all the elements that belong to at least one set in the given collection \mathcal{C}.
- U may be too general.
- We specify $\bigcup_{X \in \mathcal{C}} X:=\{x \in U \mid \exists X \in \mathcal{C}(x \in X)\}$.
- Example: $\bigcup\{X \mid X \in \emptyset\}=\emptyset$.

Axiom of union

- Given a collection of sets, there exists a set U that contains all the elements that belong to at least one set in the given collection \mathcal{C}.
- U may be too general.
- We specify $\bigcup_{X \in \mathcal{C}} X:=\{x \in U \mid \exists X \in \mathcal{C}(x \in X)\}$.
- Example: $\bigcup\{X \mid X \in \emptyset\}=\emptyset$.
- $\bigcup\left\{A_{1}, A_{2}, . ., A_{n}\right\}=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$.

Axiom of union

- $\bigcup\{X \mid X \in\{A\}\}=A$.

Axiom of union

- $\bigcup\{X \mid X \in\{A\}\}=A$.
- $A \cup \emptyset=A, A \cup B=B \cup A$.

Axiom of union

- $\bigcup\{X \mid X \in\{A\}\}=A$.
- $A \cup \emptyset=A, A \cup B=B \cup A$.
- Prove for example $\{a\} \cup\{b\} \cup\{c\}=\{a, b, c\}$.

Axiom of union

- $\bigcup\{X \mid X \in\{A\}\}=A$.
- $A \cup \emptyset=A, A \cup B=B \cup A$.
- Prove for example $\{a\} \cup\{b\} \cup\{c\}=\{a, b, c\}$.
- $(A \cup B) \cup C=A \cup(B \cup C)$.

Axiom of union

- $\bigcup\{X \mid X \in\{A\}\}=A$.
- $A \cup \emptyset=A, A \cup B=B \cup A$.
- Prove for example $\{a\} \cup\{b\} \cup\{c\}=\{a, b, c\}$.
- $(A \cup B) \cup C=A \cup(B \cup C)$.
- $A \cup A=A$.

Axiom of union

- $\bigcup\{X \mid X \in\{A\}\}=A$.
- $A \cup \emptyset=A, A \cup B=B \cup A$.
- Prove for example $\{a\} \cup\{b\} \cup\{c\}=\{a, b, c\}$.
- $(A \cup B) \cup C=A \cup(B \cup C)$.
- $A \cup A=A$.
- $A \subset B \leftrightarrow A \cup B=B$.

Intersection

- For every collection \mathcal{C}, other than \emptyset, there exists a set V such that $x \in V$ if and only if $x \in X$ for every $X \in \mathcal{C}$.

Intersection

- For every collection \mathcal{C}, other than \emptyset, there exists a set V such that $x \in V$ if and only if $x \in X$ for every $X \in \mathcal{C}$.
- Let A be an element of \mathcal{C}. Then $V=\{x \in A \mid \forall X \in \mathcal{C} x \in X\}$.

Intersection

- For every collection \mathcal{C}, other than \emptyset, there exists a set V such that $x \in V$ if and only if $x \in X$ for every $X \in \mathcal{C}$.
- Let A be an element of \mathcal{C}. Then $V=\{x \in A \mid \forall X \in \mathcal{C} x \in X\}$.
- $V=\{x \mid \forall X \in \mathcal{C} x \in X\}$.

Intersection

- For every collection \mathcal{C}, other than \emptyset, there exists a set V such that $x \in V$ if and only if $x \in X$ for every $X \in \mathcal{C}$.
- Let A be an element of \mathcal{C}. Then $V=\{x \in A \mid \forall X \in \mathcal{C} x \in X\}$.
- $V=\{x \mid \forall X \in \mathcal{C} x \in X\}$.
- This is uniquely defined by the axiom of extension.

Intersection

- For every collection \mathcal{C}, other than \emptyset, there exists a set V such that $x \in V$ if and only if $x \in X$ for every $X \in \mathcal{C}$.
- Let A be an element of \mathcal{C}. Then $V=\{x \in A \mid \forall X \in \mathcal{C} x \in X\}$.
- $V=\{x \mid \forall X \in \mathcal{C} x \in X\}$.
- This is uniquely defined by the axiom of extension.
- Denote by $\cap \mathcal{C}$ or $\cap\{X: X \in \mathcal{C}\}$ or $\bigcap_{X \in \mathcal{C}} X$.

Intersection

- For every collection \mathcal{C}, other than \emptyset, there exists a set V such that $x \in V$ if and only if $x \in X$ for every $X \in \mathcal{C}$.
- Let A be an element of \mathcal{C}. Then $V=\{x \in A \mid \forall X \in \mathcal{C} x \in X\}$.
- $V=\{x \mid \forall X \in \mathcal{C} x \in X\}$.
- This is uniquely defined by the axiom of extension.
- Denote by $\cap \mathcal{C}$ or $\cap\{X: X \in \mathcal{C}\}$ or $\bigcap_{X \in \mathcal{C}} X$.
- Defintion of $A_{1} \cap A_{2} \cap \cdots \cap A_{n}$.

Intersection

- For every collection \mathcal{C}, other than \emptyset, there exists a set V such that $x \in V$ if and only if $x \in X$ for every $X \in \mathcal{C}$.
- Let A be an element of \mathcal{C}. Then $V=\{x \in A \mid \forall X \in \mathcal{C} x \in X\}$.
- $V=\{x \mid \forall X \in \mathcal{C} x \in X\}$.
- This is uniquely defined by the axiom of extension.
- Denote by $\cap \mathcal{C}$ or $\bigcap\{X: X \in \mathcal{C}\}$ or $\bigcap_{X \in \mathcal{C}} X$.
- Defintion of $A_{1} \cap A_{2} \cap \cdots \cap A_{n}$.
- Let \emptyset be a family of subsets of E. Then $\bigcap_{x \in \emptyset} X=E$. (For no $X, x \in X$ is false.)

Intersection

- For every collection \mathcal{C}, other than \emptyset, there exists a set V such that $x \in V$ if and only if $x \in X$ for every $X \in \mathcal{C}$.
- Let A be an element of \mathcal{C}. Then $V=\{x \in A \mid \forall X \in \mathcal{C} x \in X\}$.
- $V=\{x \mid \forall X \in \mathcal{C} x \in X\}$.
- This is uniquely defined by the axiom of extension.
- Denote by $\cap \mathcal{C}$ or $\cap\{X: X \in \mathcal{C}\}$ or $\bigcap_{X \in \mathcal{C}} X$.
- Defintion of $A_{1} \cap A_{2} \cap \cdots \cap A_{n}$.
- Let \emptyset be a family of subsets of E. Then $\bigcap_{x \in \emptyset} X=E$. (For no $X, x \in X$ is false.)
- Not specifying E gets you into trouble.

Distributivity

- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Distributivity

- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Distributivity

- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
- In fact $A \cap \cup \mathcal{C}=\bigcup \mathcal{C}_{1}$ where $\mathcal{C}_{1}=\{A \cap B \mid A \cap B \neq \emptyset \wedge B \in \mathcal{C}\}$

Distributivity

- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
- In fact $A \cap \cup \mathcal{C}=\bigcup \mathcal{C}_{1}$ where $\mathcal{C}_{1}=\{A \cap B \mid A \cap B \neq \emptyset \wedge B \in \mathcal{C}\}$
- $A \cup \cap \mathcal{C}=\cap \mathcal{C}_{2}$ where $\mathcal{C}_{2}=\{A \cup B \mid B \in \mathcal{C}\}$

Complements

- $A-B=\{x \in A \mid x \notin B\}$.

Complements

- $A-B=\{x \in A \mid x \notin B\}$.
- E. The set containing all sets here.

Complements

- $A-B=\{x \in A \mid x \notin B\}$.
- E. The set containing all sets here.
- $A^{\prime}:=E-A$.

Complements

- $A-B=\{x \in A \mid x \notin B\}$.
- E. The set containing all sets here.
- $A^{\prime}:=E-A$.
- $\left(A^{\prime}\right)^{\prime}=A$.

Complements

- $A-B=\{x \in A \mid x \notin B\}$.
- E. The set containing all sets here.
- $A^{\prime}:=E-A$.
- $\left(A^{\prime}\right)^{\prime}=A$.
- $\emptyset^{\prime}=E, E^{\prime}=\emptyset$.

Complements

- $A-B=\{x \in A \mid x \notin B\}$.
- E. The set containing all sets here.
- $A^{\prime}:=E-A$.
- $\left(A^{\prime}\right)^{\prime}=A$.
- $\emptyset^{\prime}=E, E^{\prime}=\emptyset$.
- $A \cap A^{\prime}=\emptyset$ and $A \cup A^{\prime}=E$.

Complements

- $A-B=\{x \in A \mid x \notin B\}$.
- E. The set containing all sets here.
- $A^{\prime}:=E-A$.
- $\left(A^{\prime}\right)^{\prime}=A$.
- $\emptyset^{\prime}=E, E^{\prime}=\emptyset$.
- $A \cap A^{\prime}=\emptyset$ and $A \cup A^{\prime}=E$.
- $A \subset B$ if and only if $B^{\prime} \subset A^{\prime}$.

Complements

- $A-B=\{x \in A \mid x \notin B\}$.
- E. The set containing all sets here.
- $A^{\prime}:=E-A$.
- $\left(A^{\prime}\right)^{\prime}=A$.
- $\emptyset^{\prime}=E, E^{\prime}=\emptyset$.
- $A \cap A^{\prime}=\emptyset$ and $A \cup A^{\prime}=E$.
- $A \subset B$ if and only if $B^{\prime} \subset A^{\prime}$.
- $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime},(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$. De Morgan's law

Complements

- $A-B=\{x \in A \mid x \notin B\}$.
- E. The set containing all sets here.
- $A^{\prime}:=E-A$.
- $\left(A^{\prime}\right)^{\prime}=A$.
- $\emptyset^{\prime}=E, E^{\prime}=\emptyset$.
- $A \cap A^{\prime}=\emptyset$ and $A \cup A^{\prime}=E$.
- $A \subset B$ if and only if $B^{\prime} \subset A^{\prime}$.
- $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime},(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$. De Morgan's law
- $A \triangle B=(A-B) \cup(B-A) .(A+B$ in NS $)$

The axiom of the power set

- For every set, there is a collection of sets that contains among its elements all the subsets of the given set.

The axiom of the power set

- For every set, there is a collection of sets that contains among its elements all the subsets of the given set.
- For every x, there is y such that for all $z, z \in y$ iff $z \subset x$.

The axiom of the power set

- For every set, there is a collection of sets that contains among its elements all the subsets of the given set.
- For every x, there is y such that for all $z, z \in y$ iff $z \subset x$.
- $\forall x \exists y \forall z(z \in y \leftrightarrow z \subset x)$.

The axiom of the power set

- For every set, there is a collection of sets that contains among its elements all the subsets of the given set.
- For every x, there is y such that for all $z, z \in y$ iff $z \subset x$.
- $\forall x \exists y \forall z(z \in y \leftrightarrow z \subset x)$.
- $X, P(X)$ the power set of X

The axiom of the power set

- For every set, there is a collection of sets that contains among its elements all the subsets of the given set.
- For every x, there is y such that for all $z, z \in y$ iff $z \subset x$.
- $\forall x \exists y \forall z(z \in y \leftrightarrow z \subset x)$.
- $X, P(X)$ the power set of X
- $P(X)=\{x \mid x \subset X\}$.

The axiom of the power set

- For every set, there is a collection of sets that contains among its elements all the subsets of the given set.
- For every x, there is y such that for all $z, z \in y$ iff $z \subset x$.
- $\forall x \exists y \forall z(z \in y \leftrightarrow z \subset x)$.
- $X, P(X)$ the power set of X
- $P(X)=\{x \mid x \subset X\}$.
- $P(\emptyset)=\{\emptyset\}$.

The axiom of the power set

- For every set, there is a collection of sets that contains among its elements all the subsets of the given set.
- For every x, there is y such that for all $z, z \in y$ iff $z \subset x$.
- $\forall x \exists y \forall z(z \in y \leftrightarrow z \subset x)$.
- $X, P(X)$ the power set of X
- $P(X)=\{x \mid x \subset X\}$.
- $P(\emptyset)=\{\emptyset\}$.
- $P(\{a, b\})=$?

The power set

- $P(E) \cap P(F)=P(E \cap F), P(E) \cup P(F) \subset P(E \cup F)$.

The power set

- $P(E) \cap P(F)=P(E \cap F), P(E) \cup P(F) \subset P(E \cup F)$.
- $\bigcap_{x \in \mathcal{C}} P(X)=P\left(\bigcap_{x \in \mathcal{C}} X\right)$.

The power set

- $P(E) \cap P(F)=P(E \cap F), P(E) \cup P(F) \subset P(E \cup F)$.
- $\bigcap_{x \in \mathcal{C}} P(X)=P\left(\bigcap_{x \in \mathcal{C}} X\right)$.
- $\bigcup_{x \in \mathcal{C}} P(X) \subset P\left(\bigcup_{x \in \mathcal{C}} X\right)$.

The power set

- $P(E) \cap P(F)=P(E \cap F), P(E) \cup P(F) \subset P(E \cup F)$.
- $\bigcap_{x \in \mathcal{C}} P(X)=P\left(\bigcap_{x \in \mathcal{C}} X\right)$.
- $\bigcup_{x \in \mathcal{C}} P(X) \subset P\left(\cup_{x \in \mathcal{C}} X\right)$.
- $\bigcap_{X \in P(E)} X=\emptyset$.

The power set

- $P(E) \cap P(F)=P(E \cap F), P(E) \cup P(F) \subset P(E \cup F)$.
- $\bigcap_{x \in \mathcal{C}} P(X)=P\left(\bigcap_{x \in \mathcal{C}} X\right)$.
- $\bigcup_{x \in \mathcal{C}} P(X) \subset P\left(\cup_{x \in \mathcal{C}} X\right)$.
- $\bigcap_{X \in P(E)} X=\emptyset$.
- $E \subset F \rightarrow P(E) \subset P(F)$.

The power set

- $P(E) \cap P(F)=P(E \cap F), P(E) \cup P(F) \subset P(E \cup F)$.
- $\bigcap_{x \in \mathcal{C}} P(X)=P\left(\bigcap_{x \in \mathcal{C}} X\right)$.
- $\bigcup_{x \in \mathcal{C}} P(X) \subset P\left(\cup_{x \in \mathcal{C}} X\right)$.
- $\bigcap_{X \in P(E)} X=\emptyset$.
- $E \subset F \rightarrow P(E) \subset P(F)$.
- $E=\bigcup P(E)$.

Question

- What type of sets can you construct with the axioms given? Give us examples...

Question

- What type of sets can you construct with the axioms given? Give us examples...
- $\{\emptyset,\{\emptyset,\{\emptyset\}\}\}, \ldots$

Question

- What type of sets can you construct with the axioms given? Give us examples...
- $\{\emptyset,\{\emptyset,\{\emptyset\}\}\}, \ldots$
- Can we get an infinite set now?

Axiom of infinity

- There is a set X such that $\phi \in X$ and whenever $y \in X$, then $y \cup\{y\} \in X$.

Axiom of infinity

- There is a set X such that $\phi \in X$ and whenever $y \in X$, then $y \cup\{y\} \in X$.
- Numbers $x^{+}=x \cup\{x\}$.

Axiom of infinity

- There is a set X such that $\phi \in X$ and whenever $y \in X$, then $y \cup\{y\} \in X$.
- Numbers $x^{+}=x \cup\{x\}$.
- $0:=\emptyset, 1=0^{+}=\{0\}=\{\emptyset\}, 2=1^{+}=\{0,1\}=\{\emptyset,\{\emptyset\}\}$,

Axiom of infinity

- There is a set X such that $\phi \in X$ and whenever $y \in X$, then $y \cup\{y\} \in X$.
- Numbers $x^{+}=x \cup\{x\}$.
- $0:=\emptyset, 1=0^{+}=\{0\}=\{\emptyset\}, 2=1^{+}=\{0,1\}=\{\emptyset,\{\emptyset\}\}$,
- $3=2^{+}=\{0,1,2\}=\{0,1,\{0,1\}\}=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$.

Axiom of infinity

- There is a set X such that $\phi \in X$ and whenever $y \in X$, then $y \cup\{y\} \in X$.
- Numbers $x^{+}=x \cup\{x\}$.
- $0:=\emptyset, 1=0^{+}=\{0\}=\{\emptyset\}, 2=1^{+}=\{0,1\}=\{\emptyset,\{\emptyset\}\}$,
- $3=2^{+}=\{0,1,2\}=\{0,1,\{0,1\}\}=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$.
- $4=3^{+}=$???.

Definition of \mathbb{N} or ω.

- Temporary definition: A set A is a successor set if $0 \in A$ and $y^{+} \in A$ whenever $y \in A$.

Definition of \mathbb{N} or ω.

- Temporary definition: A set A is a successor set if $0 \in A$ and $y^{+} \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.

Definition of \mathbb{N} or ω.

- Temporary definition: A set A is a successor set if $0 \in A$ and $y^{+} \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?

Definition of \mathbb{N} or ω.

- Temporary definition: A set A is a successor set if $0 \in A$ and $y^{+} \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?
- Define ω as the intersection of all collection of successor sets in A.

Definition of \mathbb{N} or ω.

- Temporary definition: A set A is a successor set if $0 \in A$ and $y^{+} \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?
- Define ω as the intersection of all collection of successor sets in A.
- Then ω is a subset of every successor set:

Definition of \mathbb{N} or ω.

- Temporary definition: A set A is a successor set if $0 \in A$ and $y^{+} \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?
- Define ω as the intersection of all collection of successor sets in A.
- Then ω is a subset of every successor set:
- Proof: Let B be a successor set. Then $\omega \subset A \cap B$ since ?. Thus, $\omega \subset B$.

Definition of \mathbb{N} or ω.

- Temporary definition: A set A is a successor set if $0 \in A$ and $y^{+} \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?
- Define ω as the intersection of all collection of successor sets in A.
- Then ω is a subset of every successor set:
- Proof: Let B be a successor set. Then $\omega \subset A \cap B$ since ?. Thus, $\omega \subset B$.
- ω is uniquely defined:

Definition of \mathbb{N} or ω.

- Temporary definition: A set A is a successor set if $0 \in A$ and $y^{+} \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?
- Define ω as the intersection of all collection of successor sets in A.
- Then ω is a subset of every successor set:
- Proof: Let B be a successor set. Then $\omega \subset A \cap B$ since ?. Thus, $\omega \subset B$.
- ω is uniquely defined:
- Proof: ω exists. Suppose ω^{\prime} is another...

Definition of \mathbb{N} or ω.

- Temporary definition: A set A is a successor set if $0 \in A$ and $y^{+} \in A$ whenever $y \in A$.
- The axiom of infinity says a successor set exists, say A.
- The intersection of a family of successor sets is a successor set. Proof: ?
- Define ω as the intersection of all collection of successor sets in A.
- Then ω is a subset of every successor set:
- Proof: Let B be a successor set. Then $\omega \subset A \cap B$ since ?. Thus, $\omega \subset B$.
- ω is uniquely defined:
- Proof: ω exists. Suppose ω^{\prime} is another...
- A natural number is an element of $\omega: 0,1,2, \ldots$.

The axiom of regularity (foundation)

- Every nonempty set has an \in-least member. That is, if there is some $y \in x$, then there exists $z \in x$ for which there is no $w \in z \cap x$. (There is no element of x that is an element of z).

The axiom of regularity (foundation)

- Every nonempty set has an \in-least member. That is, if there is some $y \in x$, then there exists $z \in x$ for which there is no $w \in z \cap x$. (There is no element of x that is an element of z).
- Consequences:

The axiom of regularity (foundation)

- Every nonempty set has an \in-least member. That is, if there is some $y \in x$, then there exists $z \in x$ for which there is no $w \in z \cap x$. (There is no element of x that is an element of z).
- Consequences:
- (1) No nonempty set can be a member of itself. No $A=\{A, \ldots\} \ldots$

The axiom of regularity (foundation)

- Every nonempty set has an \in-least member. That is, if there is some $y \in x$, then there exists $z \in x$ for which there is no $w \in z \cap x$. (There is no element of x that is an element of z).
- Consequences:
- (1) No nonempty set can be a member of itself. No $A=\{A, \ldots\} \ldots$
- (2) If A, B are both nonempty sets, then it is not possible that both $A \in B$ and $B \in A$ are true.

The proofs

- (1) Suppose that $\exists A$ such that $A \in A$, and A is not empty, then $\{A\}$ would be a set. A is the only element.

The proofs

- (1) Suppose that $\exists A$ such that $A \in A$, and A is not empty, then $\{A\}$ would be a set. A is the only element.
- However, in $\{A\}$ there is no z as above.

The proofs

- (1) Suppose that $\exists A$ such that $A \in A$, and A is not empty, then $\{A\}$ would be a set. A is the only element.
- However, in $\{A\}$ there is no z as above.
- (2) Suppose there exists nonempty sets A and B with $A \in B$ and $B \in A$. Then $\{A, B\}$ is a set.

The proofs

- (1) Suppose that $\exists A$ such that $A \in A$, and A is not empty, then $\{A\}$ would be a set. A is the only element.
- However, in $\{A\}$ there is no z as above.
- (2) Suppose there exists nonempty sets A and B with $A \in B$ and $B \in A$. Then $\{A, B\}$ is a set.
- $B \in A \cap\{A, B\}$ since $B \in A$.

The proofs

- (1) Suppose that $\exists A$ such that $A \in A$, and A is not empty, then $\{A\}$ would be a set. A is the only element.
- However, in $\{A\}$ there is no z as above.
- (2) Suppose there exists nonempty sets A and B with $A \in B$ and $B \in A$. Then $\{A, B\}$ is a set.
- $B \in A \cap\{A, B\}$ since $B \in A$.
- $A \in B \cap\{A, B\}$ since $A \in B$.

The proofs

- (1) Suppose that $\exists A$ such that $A \in A$, and A is not empty, then $\{A\}$ would be a set. A is the only element.
- However, in $\{A\}$ there is no z as above.
- (2) Suppose there exists nonempty sets A and B with $A \in B$ and $B \in A$. Then $\{A, B\}$ is a set.
- $B \in A \cap\{A, B\}$ since $B \in A$.
- $A \in B \cap\{A, B\}$ since $A \in B$.
- Thus there is no z for $\{A, B\}$ since we can keep finding one less than any element.

The proofs

- (1) Suppose that $\exists A$ such that $A \in A$, and A is not empty, then $\{A\}$ would be a set. A is the only element.
- However, in $\{A\}$ there is no z as above.
- (2) Suppose there exists nonempty sets A and B with $A \in B$ and $B \in A$. Then $\{A, B\}$ is a set.
- $B \in A \cap\{A, B\}$ since $B \in A$.
- $A \in B \cap\{A, B\}$ since $A \in B$.
- Thus there is no z for $\{A, B\}$ since we can keep finding one less than any element.

Russell's paradox

- Let A be a set.

Russell's paradox

- Let A be a set.
- Define $B=\{x \in A: \neg(x \in x)\}$:

Russell's paradox

- Let A be a set.
- Define $B=\{x \in A: \neg(x \in x)\}$:
- $y \in B \leftrightarrow y \in A \wedge y \notin y$.

Russell's paradox

- Let A be a set.
- Define $B=\{x \in A: \neg(x \in x)\}$:
- $y \in B \leftrightarrow y \in A \wedge y \notin y$.
- Is $B \in A$?

Russell's paradox

- Let A be a set.
- Define $B=\{x \in A: \neg(x \in x)\}$:
- $y \in B \leftrightarrow y \in A \wedge y \notin y$.
- Is $B \in A$?
- If $B \in A$, then

Russell's paradox

- Let A be a set.
- Define $B=\{x \in A: \neg(x \in x)\}$:
- $y \in B \leftrightarrow y \in A \wedge y \notin y$.
- Is $B \in A$?
- If $B \in A$, then
- (i) $B \notin B$: Then $B \in A$ and $B \notin B$ imply $B \in B$. Contradiction.

Russell's paradox

- Let A be a set.
- Define $B=\{x \in A: \neg(x \in x)\}$:
- $y \in B \leftrightarrow y \in A \wedge y \notin y$.
- Is $B \in A$?
- If $B \in A$, then
- (i) $B \notin B$: Then $B \in A$ and $B \notin B$ imply $B \in B$. Contradiction.
- (ii) $B \in B$: Then $B \in A$ implies $B \notin B$. Contr.

Russell's paradox

- Let A be a set.
- Define $B=\{x \in A: \neg(x \in x)\}$:
- $y \in B \leftrightarrow y \in A \wedge y \notin y$.
- Is $B \in A$?
- If $B \in A$, then
- (i) $B \notin B$: Then $B \in A$ and $B \notin B$ imply $B \in B$. Contradiction.
- (ii) $B \in B$: Then $B \in A$ implies $B \notin B$. Contr.
- Thus, $B \notin A$.

Russell's paradox

- Let U be the "set" of all sets.

Russell's paradox

- Let U be the "set" of all sets.
- A set x is normal if $x \notin x$. the "set" of all normal sets.

Russell's paradox

- Let U be the "set" of all sets.
- A set x is normal if $x \notin x$. the "set" of all normal sets.
- Let $A=\{x \in U: \neg(x \in x)\}$. The "set" of all normal sets.

Russell's paradox

- Let U be the "set" of all sets.
- A set x is normal if $x \notin x$. the "set" of all normal sets.
- Let $A=\{x \in U: \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.

Russell's paradox

- Let U be the "set" of all sets.
- A set x is normal if $x \notin x$. the "set" of all normal sets.
- Let $A=\{x \in U: \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.

Russell's paradox

- Let U be the "set" of all sets.
- A set x is normal if $x \notin x$. the "set" of all normal sets.
- Let $A=\{x \in U: \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.
- Hence A is not a set. (a collection)

Russell's paradox

- Let U be the "set" of all sets.
- A set x is normal if $x \notin x$. the "set" of all normal sets.
- Let $A=\{x \in U: \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.
- Hence A is not a set. (a collection)
- There is no 'universal set' U.

Russell's paradox

- Let U be the "set" of all sets.
- A set x is normal if $x \notin x$. the "set" of all normal sets.
- Let $A=\{x \in U: \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.
- Hence A is not a set. (a collection)
- There is no 'universal set' U.
- Originally, Russell used his argument to show that the set theory is not consistent. (See Malitz Section 1.11)

Russell's paradox

- Let U be the "set" of all sets.
- A set x is normal if $x \notin x$. the "set" of all normal sets.
- Let $A=\{x \in U: \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.
- Hence A is not a set. (a collection)
- There is no 'universal set' U.
- Originally, Russell used his argument to show that the set theory is not consistent. (See Malitz Section 1.11)
- The axiom of regularity also rules out the set of all sets.

Russell's paradox

- Let U be the "set" of all sets.
- A set x is normal if $x \notin x$. the "set" of all normal sets.
- Let $A=\{x \in U: \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.
- Hence A is not a set. (a collection)
- There is no 'universal set' U.
- Originally, Russell used his argument to show that the set theory is not consistent. (See Malitz Section 1.11)
- The axiom of regularity also rules out the set of all sets.
- $U \in U$. See above.

Russell's paradox

- Let U be the "set" of all sets.
- A set x is normal if $x \notin x$. the "set" of all normal sets.
- Let $A=\{x \in U: \neg(x \in x)\}$. The "set" of all normal sets.
- By above $A \notin U$. But U is the "set" of all sets: a contradiction.
- Also, $A \notin A$ if and only if $A \in A$ by definition: a contradiction.
- Hence A is not a set. (a collection)
- There is no 'universal set' U.
- Originally, Russell used his argument to show that the set theory is not consistent. (See Malitz Section 1.11)
- The axiom of regularity also rules out the set of all sets.
- $U \in U$. See above.
- A is not a set but is a "class". (Von Neumann)

Classes

- A class is an object defined by $\in,\{ \}$.

Classes

- A class is an object defined by $\in,\{ \}$.
- Axioms: extension and specification only.

Classes

- A class is an object defined by $\in,\{ \}$.
- Axioms: extension and specification only.
- A class is a set if it is a member of another class.

The axiom of choice

- Cartesian product (define later)

The axiom of choice

- Cartesian product (define later)
- $\prod_{i \in I} X_{i}:=\left\{\left(x_{i}\right), \mid x_{i} \in X_{i}\right.$ for each $\left.i \in I\right\}$.

The axiom of choice

- Cartesian product (define later)
- $\prod_{i \in I} X_{i}:=\left\{\left(x_{i}\right), \mid x_{i} \in X_{i}\right.$ for each $\left.i \in I\right\}$.
- Axiom of Choice: The Cartesian product of a non-empty family of nonempty sets is nonempty.

