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About this lecture

Proof by mathematical inductions
More examples

Recursion

Strong induction

Closures again

Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html
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@ Grading and so on in the moodle. Ask questions in moodle.
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Proof by mathematical inductions

Definition

(The induction principle) Let P(x) be a property. Assume that
@ P(1) holds
@ Forall n e N, P(n) implies P(n+ 1).

Then P holds for all natural numbers.
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Proof by mathematical inductions

Definition

(The induction principle) Let P(x) be a property. Assume that
@ P(1) holds
@ Forall n e N, P(n) implies P(n+ 1).

Then P holds for all natural numbers.

Definition

(The induction principle: strong version) Let P(x) be a property. Assume that for all
neN,
(Vk < n, P(k)) — P(n).

Then P holds for all natural numbers.
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Proof by mathematical inductions
Lemma

@ 1 <nforallneN.

@ Forallk,neN, k< n-+1ifandonlyifk < nork = n.
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Proof by mathematical inductions

Lemma

@ 1 <nforallneN.

@ Forallk,neN, k< n-+1ifandonlyifk < nork = n.
Theorem

N js a linearly ordered set.
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Examples
@ Forallne N, (3|n® — n).
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Examples
@ Forallne N, (3|n® — n).

e n=1,1—-1=0and 3|0.

o F = = DA
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Examples
@ Forallne N, (3|n® — n).

@ n=1,13—-1=0and 3|0.
e n>1

Given Goal
neN G eZBj=(n+1)°—(n+1))
3k € Z(3k = n* — n)
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Proof by mathematical inductions

Examples

@ Forallne N, (3|n® — n).
e n=1,1—-1=0and 3|0.

en>1
Given Goal
neN FHez@Bi=(n+1)>—(n+1))
3k € Z(3k = n® — n)
@ Guess .
(n+1P2 —(n+1) = m+3m+3n+1-n-1
= (NP —=n)+3n*+3n=3k+3 +3n
= 3(k+n*+n)
S. Choi (KAIST)
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More examples

@ Let R be a partial order on A. Prove that each finite nonempty subset B has an
R-minimal element

vn > 1,VB C A(B has finitely many elements ) —
B has an R-minimal element
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More examples

@ Let R be a partial order on A. Prove that each finite nonempty subset B has an
R-minimal element

vn > 1,VB C A(B has finitely many elements ) —
B has an R-minimal element

@ For n=1, this is true.
@ Givenn>1,

VB C A(B has nelements ) — B has an R-minimal element
@ Goal:
VB C A(Bhas n+ 1 elements ) — B has an R-minimal element

@ Let B’ = B — b for an element of B. B has a minimal element c. ¢ # b.
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More examples

@ Let R be a partial order on A. Prove that each finite nonempty subset B has an
R-minimal element

vn > 1,VB C A(B has finitely many elements ) —
B has an R-minimal element

@ For n=1, this is true.
@ Givenn>1,

VB C A(B has nelements ) — B has an R-minimal element
@ Goal:
VB C A(Bhas n+ 1 elements ) — B has an R-minimal element

@ Let B’ = B — b for an element of B. B has a minimal element c. ¢ # b.
@ Either we have bRc or —-bRc.
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Case 1 bRc
(]

Given
bRc

Goal
b is the R-minimal element of B
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More examples

Case 1 bRc
°
Given Goal
bRc b is the R-minimal element of B
*]
Given Goal
bRc contradiction
b is not the R-minimal element of B
xRb,x # b
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More examples

Case 1 bRc
°
Given Goal
bRc b is the R-minimal element of B
*]
Given Goal
bRc contradiction
b is not the R-minimal element of B
xRb,x # b

@ Then x € B'. Since xRb and bRc, we obtain xRc.
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More examples

Case 1 bRc
°
Given Goal
bRc b is the R-minimal element of B
*]
Given Goal
bRc contradiction
b is not the R-minimal element of B
xRb,x # b

@ Then x € B'. Since xRb and bRc, we obtain xRc.
@ Since cis R-minimal in B, x = c.
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More examples

Case 1 bRc
°
Given Goal
bRc b is the R-minimal element of B
*]
Given Goal
bRc contradiction
b is not the R-minimal element of B
xRb,x # b

@ Then x € B'. Since xRb and bRc, we obtain xRc.
@ Since cis R-minimal in B, x = c.
@ Hence cRb by xRb. We also have bRc, we have ¢ = b contradiction.
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Case 2 —-bRc
[+

Given Goal
-bRc

c is the R-minimal element of B
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Case 2 —-bRc

°
Given Goal
-bRc cis the R-minimal element of B
°
Given Goal
-bRc contradiction
c is not the R-minimal element of B
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More examples

Case 2 -bRc
°
Given Goal
-bRc cis the R-minimal element of B
°
Given Goal
-bRc contradiction

c is not the R-minimal element of B
@ dx € B(xRc A x # ¢).
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Case 2 -bRc

Given Goal
-bRc cis the R-minimal element of B

Given
-bRc

c is not the R-minimal element of B

@ dx € B(xRc A x # ¢).
@ x ¢ B’ since cis the minimal of B'.
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More examples

Case 2 -bRc
°
Given Goal
-bRc cis the R-minimal element of B
°
Given Goal
-bRc contradiction

c is not the R-minimal element of B
Ix € B(xRc A x # c¢).
x ¢ B’ since c is the minimal of B'.
Thus, x = b. =bRc. A contradiction.

S. Choi (KAIST) Logic and set theory November 12, 2012 9/16



Recursions

Theorem

(Recursion Theorem) Given a function g : Ax N — A, a € A, There exists a unique
function f : N — A such that

e f(1)=a.
e f(n+1)=g(f(n),n) foralln e N.
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(Recursion Theorem) Given a function g : Ax N — A, a € A, There exists a unique
function f : N — A such that

e f(1)=a.
e f(n+1)=g(f(n),n) foralln e N.

Definition

f is said to be recursively defined function. In general recursive functions are more
general than this. (See Shoenfield Ch. 6).
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Recursions

Theorem

(Recursion Theorem) Given a function g : Ax N — A, a € A, There exists a unique
function f : N — A such that

e f(1)=a.
e f(n+1)=g(f(n),n) foralln e N.

Definition
f is said to be recursively defined function. In general recursive functions are more
general than this. (See Shoenfield Ch. 6).

Example
The definition of f(n) = n!.
e f(1)=1.
@ Foralln, f(n+1) = (n+1)f(n).
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Example
@ Define a' = aand 8" = a"ainductively.
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@ acR. nmeN,Prove a

m--n

Example
@ Define a' = aand 8" = a"ainductively.

=3a"a".
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@ acR. nmeN,Prove a

m--n

Example
@ Define a' = aand 8" = a"ainductively.

=a"a".
@ Vac RVYm e Nvn e N(@™" = a"a").
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Example

@ Define a' = aand 8" = a"ainductively.

@ acR.nmeN, Prove a™" = a"a".
@ Vac RVm e Nvn € N(@™" = a"a").
. .
Given Goal

amn at"=a"a"

=] F
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Example

@ Define a' = aand 8" = a"ainductively.
@ acR.nmeN, Prove a™" = a"a".
@ Vac RVm e Nvn € N(@™" = a"a").

°
Given Goal
amn at"=a"a"

@ For n =1, true by definition:

Given Goal
amn=1 a™' =a"a
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Example
@ Forn>1

Given
am

Goal
vn e N(g™"

— aman) N (am+n+1 — aman+1)
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Example

Given N
am VneN@™" =a"a") - (8" = g"a)
°
Given _
a,m gttt — gmgnt!
)
neN,(a™" =a"a")
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Example

Given N
am VneN@™" =a"a") - (8" = g"a)
°
Given _
a,m gttt — gmgnt!
neN,(a™" =a"a")
o am+n+1 = alTH-"a = amana = aman+1 -
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Strong induction
Definition

can be shown by

Vn € NP(n)

vn((Yk < nP(k)) — P(n))
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Strong induction

Definition
¥n € NP(n)

can be shown by
vn((Vk < nP(k)) — P(n))

Theorem
(The well-ordering principle) Every nonempty set of N has a smallest element.
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Strong induction

Definition
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Theorem
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Strong induction

Definition

vn € NP(n)

can be shown by
vn((Vk < nP(k)) — P(n))

Theorem
(The well-ordering principle) Every nonempty set of N has a smallest element.

VS C N((S # 0) — S has a smallest element. )

We prove
vS C N(S has no smallest element — S = ()
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Proof.
o Goal: VneN,n¢ .

S. Choi (KAIST)

Logic and set theory




Strong induction

Proof.
@ Goal: VneN,n¢ S.
@ n=1.Then S={1,...}. True.
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Strong induction

Proof.
@ Goal: VneN,n¢ S.

@ n=1.Then S={1,...}. True.
@ We show Vn((Vk < n(k ¢ S)) — (n ¢ S)).

Given
VS CcN
S has no smallest element
Vk < n(k € S)

Goal
ngS
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Strong induction

Proof.
@ Goal: VneN,n¢ S.
@ n=1.Then S={1,...}. True.
@ We show Vn((Vk < n(k ¢ S)) — (n ¢ S)).

°
Given Goal
VSCN ngS
S has no smallest element
Vk < n(k € S)
)
Given Goal
VSCN contradiction

S has no smallest element
Vk<nk¢S),neS
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Strong induction

Proof.
@ Goal: VneN,n¢ S.

@ n=1.Then S={1,.

..}. True.

@ We show Vn((Vk < n(k ¢ S)) — (n ¢ S)).

S has no smallest element

@ nis a minimal element of S. S is totally ordered. nis a smallest element. Thus

contradiction arises.

Given Goal
VSCN ngS
S has no smallest element
Vk < n(k ¢ S)
Given Goal
VSCN contradiction

Vk<nk¢S),neS
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Closures
Definition

Let R be a relation on A. Define recursively R' = R. R™' = R" o R.
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Closures
Definition

Let R be a relation on A. Define recursively R' = R. R™' = R" o R.
Lemma

R™" =R"o R".
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Closures

Closures

Definition

Let R be a relation on A. Define recursively R' = R. R™' = R" o R.

Lemma
R™" = R™o R".

Theorem

The transitive closure of R is o R"

u]

o)
I

ul
it
N
»
i)

S. Choi (KAIST) Logic and set theory



Proof.
o LetS= UneN o
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Closures

Proof.
o LetS=U,yR"

@ Transitive: (x,y) € S,(y,z) € S. Then (x,y) € R™,(y,z) € R". Thus
(x,2) e R"oR"=R™" C S.
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Closures

Proof.
o LetS=U,yR"

@ Transitive: (x,y) € S,(y,z) € S. Then (x,y) € R, (y,z) € R". Thus
(x,2) e R"oR"=R™" C S.
@ Closure: Let T be a transtive relation > R. We show S C T.
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Proof.
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Closures

Proof.
o LetS=U,yR"
@ Transitive: (x,y) € S,(y,z) € S. Then (x,y) € R™,(y,z) € R". Thus
(x,2) ER"oR"=R™"CS.
@ Closure: Let T be a transtive relation > R. We show S C T.
@ We show for all n € N(R" C T).
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Closures

Proof.

o LetS=U,yR"

@ Transitive: (x,y) € S,(y,z) € S. Then (x,y) € R™,(y,z) € R". Thus
(x,z2)e R"oR"=R™" C S.

@ Closure: Let T be a transtive relation > R. We show S C T.

@ We show for all n € N(R" C T).

@ for n=1. True,

evVneNR"CT— R™' cCT).
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Closures

Proof.

o LetS=U,yR"

@ Transitive: (x,y) € S,(y,z) € S. Then (x,y) € R™,(y,z) € R". Thus
(x,z2)e R"oR"=R™" C S.

@ Closure: Let T be a transtive relation > R. We show S C T.

@ We show for all n € N(R" C T).

@ for n=1. True,

evVneNR"CT— R™' cCT).

@ Omit
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