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Introduction

About this lecture

Proof by mathematical inductions

More examples

Recursion

Strong induction

Closures again

Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html
and the moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.
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Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

http://plato.stanford.edu/contents.html has much resource.

Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))

Mathematical logic, J. Shoenfield, Assoc. for Symbolic logic.
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Proof by mathematical inductions

Proof by mathematical inductions

Definition
(The induction principle) Let P(x) be a property. Assume that

P(1) holds

For all n ∈ N, P(n) implies P(n + 1).

Then P holds for all natural numbers.

Definition
(The induction principle: strong version) Let P(x) be a property. Assume that for all
n ∈ N,

(∀k < n,P(k))→ P(n).

Then P holds for all natural numbers.
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Proof by mathematical inductions

Proof by mathematical inductions

Lemma
1 ≤ n for all n ∈ N.

For all k, n ∈ N, k < n + 1 if and only if k < n or k = n.

Theorem
N is a linearly ordered set.
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Proof by mathematical inductions

Examples

For all n ∈ N, (3|n3 − n).

n = 1, 13 − 1 = 0 and 3|0.

n > 1
Given Goal
n ∈ N ∃j ∈ Z(3j = (n + 1)3 − (n + 1))

∃k ∈ Z(3k = n3 − n)

Guess j .

(n + 1)3 − (n + 1) = n3 + 3n2 + 3n + 1− n − 1
= (n3 − n) + 3n2 + 3n = 3k + 3n2 + 3n
= 3(k + n2 + n)
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More examples

Let R be a partial order on A. Prove that each finite nonempty subset B has an
R-minimal element

∀n ≥ 1, ∀B ⊂ A(B has finitely many elements )→
B has an R-minimal element

For n = 1, this is true.

Given n ≥ 1,

∀B ⊂ A(B has n elements )→ B has an R-minimal element

Goal:

∀B ⊂ A(B has n + 1 elements )→ B has an R-minimal element

Let B′ = B − b for an element of B. B′ has a minimal element c. c 6= b.

Either we have bRc or ¬bRc.
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More examples

Case 1 bRc

Given Goal
bRc b is the R-minimal element of B

Given Goal
bRc contradiction

b is not the R-minimal element of B
xRb, x 6= b

Then x ∈ B′. Since xRb and bRc, we obtain xRc.

Since c is R-minimal in B′, x = c.

Hence cRb by xRb. We also have bRc, we have c = b contradiction.
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More examples

Case 2 ¬bRc

Given Goal
¬bRc c is the R-minimal element of B

Given Goal
¬bRc contradiction

c is not the R-minimal element of B

∃x ∈ B(xRc ∧ x 6= c).

x /∈ B′ since c is the minimal of B′.

Thus, x = b. ¬bRc. A contradiction.
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Recursions

Recursions

Theorem
(Recursion Theorem) Given a function g : A× N→ A, a ∈ A, There exists a unique
function f : N→ A such that

f (1) = a.

f (n + 1) = g(f (n), n) for all n ∈ N.

Definition
f is said to be recursively defined function. In general recursive functions are more
general than this. (See Shoenfield Ch. 6).

Example
The definition of f (n) = n!.

f (1) = 1.

For all n, f (n + 1) = (n + 1)f (n).
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Recursions

Example

Define a1 = a and an+1 = ana inductively.

a ∈ R. n,m ∈ N, Prove am+n = aman.

∀a ∈ R∀m ∈ N∀n ∈ N(am+n = aman).

Given Goal
a,m, n am+n = aman

For n = 1, true by definition:

Given Goal
a,m, n = 1 am+1 = ama
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Recursions

Example

For n > 1

Given Goal
a,m ∀n ∈ N(am+n = aman)→ (am+n+1 = aman+1)

Given Goal
a,m am+n+1 = aman+1

n ∈ N, (am+n = aman)

am+n+1 = am+na = amana = aman+1.
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Strong induction

Strong induction

Definition

∀n ∈ NP(n)

can be shown by
∀n((∀k < nP(k))→ P(n))

Theorem
(The well-ordering principle) Every nonempty set of N has a smallest element.

∀S ⊂ N((S 6= ∅)→ S has a smallest element. )

We prove
∀S ⊂ N(S has no smallest element→ S = ∅)
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Strong induction

Proof.
Goal: ∀n ∈ N, n /∈ S.

n = 1. Then S = {1, ...}. True.

We show ∀n((∀k < n(k 6∈ S))→ (n 6∈ S)).

Given Goal
∀S ⊂ N n 6∈ S

S has no smallest element
∀k < n(k 6∈ S)

Given Goal
∀S ⊂ N contradiction

S has no smallest element
∀k < n(k 6∈ S), n ∈ S

n is a minimal element of S. S is totally ordered. n is a smallest element. Thus
contradiction arises.
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Closures

Closures

Definition

Let R be a relation on A. Define recursively R1 = R. Rn+1 = Rn ◦ R.

Lemma
Rm+n = Rm ◦ Rn.

Theorem
The transitive closure of R is

⋃
n∈N Rn.
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Closures

Proof.
Let S =

⋃
n∈N Rn.

Transitive: (x , y) ∈ S, (y , z) ∈ S. Then (x , y) ∈ Rm, (y , z) ∈ Rn. Thus
(x , z) ∈ Rm ◦ Rn = Rm+n ⊂ S.

Closure: Let T be a transtive relation ⊃ R. We show S ⊂ T .

We show for all n ∈ N(Rn ⊂ T ).

for n = 1. True,

∀n ∈ N(Rn ⊂ T → Rn+1 ⊂ T ).

Omit
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