Logic and the set theory Lecture 18: Mathematical Inductions in How to Prove It.

S. Choi

Department of Mathematical Science KAIST, Daejeon, South Korea

Fall semester, 2012

(D) (A) (A) (A)

• Proof by mathematical inductions

イロト イヨト イヨト イヨト

- Proof by mathematical inductions
- More examples

・ロト ・回 ト ・ ヨト ・ ヨ

- Proof by mathematical inductions
- More examples
- Recursion

ヘロト ヘヨト ヘヨト ヘヨ

- Proof by mathematical inductions
- More examples
- Recursion
- Strong induction

イロト イヨト イヨト イヨ

- Proof by mathematical inductions
- More examples
- Recursion
- Strong induction
- Closures again

ъ

< D > < B >

→ ∃ →

- Proof by mathematical inductions
- More examples
- Recursion
- Strong induction
- Closures again
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr

Image: Image:

- Proof by mathematical inductions
- More examples
- Recursion
- Strong induction
- Closures again
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

• • = • • =

• Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

(D) (A) (A) (A)

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.

Image: A matrix

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 3 (3.2, 3.3))
- Mathematical logic, J. Shoenfield, Assoc. for Symbolic logic.

Definition

(The induction principle) Let P(x) be a property. Assume that

- P(1) holds
- For all $n \in \mathbb{N}$, P(n) implies P(n+1).

Then P holds for all natural numbers.

(I)

Definition

(The induction principle) Let P(x) be a property. Assume that

- P(1) holds
- For all $n \in \mathbb{N}$, P(n) implies P(n+1).

Then P holds for all natural numbers.

Definition

(The induction principle: strong version) Let P(x) be a property. Assume that for all $n \in \mathbb{N}$,

$$(\forall k < n, P(k)) \rightarrow P(n).$$

Then P holds for all natural numbers.

Lemma

- $1 \leq n$ for all $n \in \mathbb{N}$.
- For all $k, n \in \mathbb{N}$, k < n + 1 if and only if k < n or k = n.

イロト イヨト イヨト イヨト

Lemma

- $1 \leq n$ for all $n \in \mathbb{N}$.
- For all $k, n \in \mathbb{N}$, k < n + 1 if and only if k < n or k = n.

Theorem

 \mathbb{N} is a linearly ordered set.

• For all $n \in \mathbb{N}$, $(3|n^3 - n)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- For all $n \in \mathbb{N}$, $(3|n^3 n)$.
- n = 1, $1^3 1 = 0$ and 3|0.

イロト イヨト イヨト イヨト

• For all
$$n \in \mathbb{N}$$
, $(3|n^3 - n)$.
• $n = 1, 1^3 - 1 = 0$ and $3|0$.
• $n > 1$
Given
 $n \in \mathbb{N}$
 $\exists k \in \mathbb{Z}(3k = n^3 - n)$
Goal
 $\exists j \in \mathbb{Z}(3j = (n+1)^3 - (n+1))$

◆□ > ◆□ > ◆豆 > ◆豆 > →

• For all
$$n \in \mathbb{N}$$
, $(3|n^3 - n)$.
• $n = 1, 1^3 - 1 = 0$ and $3|0$.
• $n > 1$
Given
 $n \in \mathbb{N}$
 $\exists k \in \mathbb{Z}(3k = n^3 - n)$
• Guess *j*.
Goal
 $\exists j \in \mathbb{Z}(3j = (n+1)^3 - (n+1))$

$$\begin{array}{rcl} (n+1)^3 - (n+1) &=& n^3 + 3n^2 + 3n + 1 - n - 1 \\ &=& (n^3 - n) + 3n^2 + 3n = 3k + 3n^2 + 3n \\ &=& 3(k+n^2+n) \end{array}$$

◆□ > ◆□ > ◆豆 > ◆豆 > →

 $\forall n \geq 1, \forall B \subset A(B \text{ has finitely many elements }) \rightarrow B \text{ has an } R\text{-minimal element}$

 $\forall n \geq 1, \forall B \subset A(B \text{ has finitely many elements }) \rightarrow B \text{ has an } R\text{-minimal element}$

• For n = 1, this is true.

 $\forall n \geq 1, \forall B \subset A(B \text{ has finitely many elements }) \rightarrow B \text{ has an } R\text{-minimal element}$

- For n = 1, this is true.
- Given $n \ge 1$,

 $\forall B \subset A(B \text{ has } n \text{ elements }) \rightarrow B \text{ has an } R \text{-minimal element}$

 $\forall n \geq 1, \forall B \subset A(B \text{ has finitely many elements }) \rightarrow B \text{ has an } R\text{-minimal element}$

- For n = 1, this is true.
- Given $n \ge 1$,

 $\forall B \subset A(B \text{ has } n \text{ elements }) \rightarrow B \text{ has an } R \text{-minimal element}$

Goal:

 $\forall B \subset A(B \text{ has } n+1 \text{ elements }) \rightarrow B \text{ has an } R \text{-minimal element}$

 $\forall n \geq 1, \forall B \subset A(B \text{ has finitely many elements }) \rightarrow B \text{ has an } R\text{-minimal element}$

- For n = 1, this is true.
- Given $n \ge 1$,

 $\forall B \subset A(B \text{ has } n \text{ elements }) \rightarrow B \text{ has an } R \text{-minimal element}$

Goal:

 $\forall B \subset A(B \text{ has } n+1 \text{ elements }) \rightarrow B \text{ has an } R \text{-minimal element}$

• Let B' = B - b for an element of B. B' has a minimal element c. $c \neq b$.

 $\forall n \geq 1, \forall B \subset A(B \text{ has finitely many elements }) \rightarrow B \text{ has an } R\text{-minimal element}$

- For n = 1, this is true.
- Given *n* ≥ 1,

 $\forall B \subset A(B \text{ has } n \text{ elements }) \rightarrow B \text{ has an } R \text{-minimal element}$

Goal:

 $\forall B \subset A(B \text{ has } n+1 \text{ elements }) \rightarrow B \text{ has an } R \text{-minimal element}$

• Let B' = B - b for an element of B. B' has a minimal element c. $c \neq b$.

• Either we have bRc or $\neg bRc$.

Given Goal bRc b is the R-minimal element of B

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

۰

Given Goal bRc b is the R-minimal element of B

GivenGoalbRccontradictionb is not the R-minimal element of B $xRb, x \neq b$

イロト イヨト イヨト イヨト

• Then $x \in B'$. Since *xRb* and *bRc*, we obtain *xRc*.

- Then $x \in B'$. Since *xRb* and *bRc*, we obtain *xRc*.
- Since *c* is *R*-minimal in B', x = c.

(I)

GivenGoalbRccontradictionb is not the R-minimal element of B $xRb, x \neq b$

- Then $x \in B'$. Since *xRb* and *bRc*, we obtain *xRc*.
- Since *c* is *R*-minimal in B', x = c.
- Hence *cRb* by *xRb*. We also have *bRc*, we have c = b contradiction.

(I)

Case 2 ¬*bRc*

۲

Given Goal $\neg bRc$ *c* is the *R*-minimal element of *B*

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Case 2 ¬*bRc*

Given	Goal
eg bRc	contradiction
c is not the <i>R</i> -minimal element of <i>B</i>	

イロト イヨト イヨト イヨト

Case 2 $\neg bRc$

• $\exists x \in B(xRc \land x \neq c).$

Case 2 $\neg bRc$

۲

Given Goal $\neg bRc$ c is the R-minimal element of B Given Goal $\neg bRc$ contradiction c is not the R-minimal element of B

•
$$\exists x \in B(xRc \land x \neq c).$$

• $x \notin B'$ since *c* is the minimal of *B'*.

Case 2 $\neg bRc$

۲

Given Goal $\neg bRc$ c is the R-minimal element of B

Given	Goal
eg b R c	contradiction
c is not the R-minimal element of B	

•
$$\exists x \in B(xRc \land x \neq c).$$

- $x \notin B'$ since *c* is the minimal of *B'*.
- Thus, x = b. $\neg bRc$. A contradiction.

イロト イヨト イヨト イヨ

Theorem

(Recursion Theorem) Given a function $g : A \times \mathbb{N} \to A$, $a \in A$, There exists a unique function $f : \mathbb{N} \to A$ such that

- f(1) = a.
- f(n+1) = g(f(n), n) for all $n \in N$.

イロト イヨト イヨト

Theorem

(Recursion Theorem) Given a function $g : A \times \mathbb{N} \to A$, $a \in A$, There exists a unique function $f : \mathbb{N} \to A$ such that

- f(1) = a.
- f(n+1) = g(f(n), n) for all $n \in N$.

Definition

f is said to be *recursively defined function*. In general recursive functions are more general than this. (See Shoenfield Ch. 6).

Theorem

(Recursion Theorem) Given a function $g : A \times \mathbb{N} \to A$, $a \in A$, There exists a unique function $f : \mathbb{N} \to A$ such that

- f(1) = a.
- f(n+1) = g(f(n), n) for all $n \in N$.

Definition

f is said to be *recursively defined function*. In general recursive functions are more general than this. (See Shoenfield Ch. 6).

Example

The definition of f(n) = n!.

- f(1) = 1.
- For all n, f(n + 1) = (n + 1)f(n).

• Define $a^1 = a$ and $a^{n+1} = a^n a$ inductively.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Define $a^1 = a$ and $a^{n+1} = a^n a$ inductively.
- $a \in \mathbb{R}$. $n, m \in \mathbb{N}$, Prove $a^{m+n} = a^m a^n$.

イロト イヨト イヨト イヨト

Example

- Define $a^1 = a$ and $a^{n+1} = a^n a$ inductively.
- $a \in \mathbb{R}$. $n, m \in \mathbb{N}$, Prove $a^{m+n} = a^m a^n$.
- $\forall a \in \mathbb{R} \forall m \in \mathbb{N} \forall n \in \mathbb{N} (a^{m+n} = a^m a^n).$

イロト イヨト イヨト

Example

- Define $a^1 = a$ and $a^{n+1} = a^n a$ inductively.
- $a \in \mathbb{R}$. $n, m \in \mathbb{N}$, Prove $a^{m+n} = a^m a^n$.
- $\forall a \in \mathbb{R} \forall m \in \mathbb{N} \forall n \in \mathbb{N} (a^{m+n} = a^m a^n).$

۲

Given	Goal
a, m, n	$a^{m+n} = a^m a^n$

イロト イヨト イヨト

Example

- Define $a^1 = a$ and $a^{n+1} = a^n a$ inductively.
- $a \in \mathbb{R}$. $n, m \in \mathbb{N}$, Prove $a^{m+n} = a^m a^n$.
- $\forall a \in \mathbb{R} \forall m \in \mathbb{N} \forall n \in \mathbb{N} (a^{m+n} = a^m a^n).$

۲

Given	Goal
a, m, n	$a^{m+n} = a^m a^n$

• For *n* = 1, true by definition:

Given Goal
$$a, m, n = 1$$
 $a^{m+1} = a^m a$

• For *n* > 1

Given Goal

$$a, m \quad \forall n \in \mathbb{N}(a^{m+n} = a^m a^n) \to (a^{m+n+1} = a^m a^{n+1})$$

<ロ> <同> <同> < 回> < 回> < 回> = 三回

• For *n* > 1

۲

• For *n* > 1

Given Goal

$$a, m \quad \forall n \in \mathbb{N}(a^{m+n} = a^m a^n) \rightarrow (a^{m+n+1} = a^m a^{n+1})$$

Given Goal
 $a, m \quad a^{m+n+1} = a^m a^{n+1}$
 $n \in N, (a^{m+n} = a^m a^n)$
 $a^{m+n+1} = a^{m+n} a = a^m a^n a = a^m a^{n+1}.$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

 $\forall n \in \mathbb{N}P(n)$

can be shown by

$\forall n((\forall k < nP(k)) \rightarrow P(n))$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

 $\forall n \in \mathbb{N}P(n)$

can be shown by

$$\forall n((\forall k < nP(k)) \rightarrow P(n))$$

Theorem

(The well-ordering principle) Every nonempty set of N has a smallest element.

Definition

 $\forall n \in \mathbb{N}P(n)$

can be shown by

$$\forall n((\forall k < nP(k)) \rightarrow P(n))$$

Theorem

(The well-ordering principle) Every nonempty set of \mathbb{N} has a smallest element.

 $\forall S \subset \mathbb{N}((S \neq \emptyset) \rightarrow S \text{ has a smallest element. })$

Definition

 $\forall n \in \mathbb{N}P(n)$

can be shown by

$$\forall n((\forall k < nP(k)) \rightarrow P(n))$$

Theorem

(The well-ordering principle) Every nonempty set of \mathbb{N} has a smallest element.

 $\forall S \subset \mathbb{N}((S \neq \emptyset) \rightarrow S \text{ has a smallest element. })$

We prove

 $\forall S \subset \mathbb{N}(S \text{ has no smallest element} \rightarrow S = \emptyset)$

• Goal: $\forall n \in \mathbb{N}, n \notin S$.

・ロト ・回ト ・ヨト ・ヨト

- Goal: $\forall n \in \mathbb{N}, n \notin S$.
- n = 1. Then $S = \{1, ...\}$. True.

(ロ) (部) (E) (E) (E)

- Goal: $\forall n \in \mathbb{N}, n \notin S$.
- n = 1. Then $S = \{1, ...\}$. True.
- We show $\forall n((\forall k < n(k \notin S)) \rightarrow (n \notin S)).$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

۲

- Goal: $\forall n \in \mathbb{N}, n \notin S$.
- n = 1. Then $S = \{1, ...\}$. True.
- We show $\forall n((\forall k < n(k \notin S)) \rightarrow (n \notin S)).$

۲ ۲ ٥

۲

Goal: $\forall n \in \mathbb{N}, n \notin S$.		
$n = 1$. Then $S = \{1,\}$.	True.	
We show $\forall n((\forall k < n(k \notin$	$S)) ightarrow (n ot\in S)).$	
S	Given $orall S \subset \mathbb{N}$ has no smallest eleme $orall k < n(k ot \in S)$	Goal <i>n ∉ S</i> nt
S has ∀k -	Given $\forall S \subset \mathbb{N}$ no smallest element $< n(k \notin S), n \in S$	Goal contradiction

< □ > < □ > < □ > < □ > < □ > = Ξ

• Goal: $\forall n \in \mathbb{N}, n \notin S$.		
• <i>n</i> = 1. Then <i>S</i> = {1,}. True.		
• We show $\forall n((\forall k < n(k \notin S)) \rightarrow (n \notin S))$;)).	
● Giver ∀S ⊂ 1 S has no smalle ∀k < n(k	Goal $N n \notin S$ ist element $q \in S$	
• Given $\forall S \subset \mathbb{N}$ <i>S</i> has no smallest effective $\forall k < n(k \notin S), n$	Goal contradiction ement $\in S$	
• <i>n</i> is a minimal element of <i>S</i> . <i>S</i> is totally ordered. <i>n</i> is a smallest element. Thus contradiction arises.		

◆□→ ◆□→ ◆三→ ◆三→ 三三

Closures

Definition

Let *R* be a relation on *A*. Define recursively $R^1 = R$. $R^{n+1} = R^n \circ R$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Closures

Definition

Let *R* be a relation on *A*. Define recursively $R^1 = R$. $R^{n+1} = R^n \circ R$.

Lemma

 $R^{m+n}=R^m\circ R^n.$

(ロ) (部) (E) (E) (E)

Closures

Definition

Let *R* be a relation on *A*. Define recursively $R^1 = R$. $R^{n+1} = R^n \circ R$.

Lemma

 $R^{m+n}=R^m\circ R^n.$

Theorem

The transitive closure of R is $\bigcup_{n \in \mathbb{N}} R^n$.

Proof. • Let $S = \bigcup_{n \in \mathbb{N}} R^n$.

S. Choi (KAIST)

<ロ> <同> <同> < 同> < 同> < 三> < 三> 三三

- Let $S = \bigcup_{n \in \mathbb{N}} R^n$.
- Transitive: $(x, y) \in S, (y, z) \in S$. Then $(x, y) \in R^m, (y, z) \in R^n$. Thus $(x, z) \in R^m \circ R^n = R^{m+n} \subset S$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Let $S = \bigcup_{n \in \mathbb{N}} R^n$.
- Transitive: $(x, y) \in S, (y, z) \in S$. Then $(x, y) \in R^m, (y, z) \in R^n$. Thus $(x, z) \in R^m \circ R^n = R^{m+n} \subset S$.
- Closure: Let *T* be a transtive relation $\supset R$. We show $S \subset T$.

(I) < ((i) <

- Let $S = \bigcup_{n \in \mathbb{N}} R^n$.
- Transitive: $(x, y) \in S, (y, z) \in S$. Then $(x, y) \in R^m, (y, z) \in R^n$. Thus $(x, z) \in R^m \circ R^n = R^{m+n} \subset S$.
- Closure: Let T be a transtive relation $\supset R$. We show $S \subset T$.
- We show for all $n \in \mathbb{N}(\mathbb{R}^n \subset T)$.

- Let $S = \bigcup_{n \in \mathbb{N}} R^n$.
- Transitive: $(x, y) \in S, (y, z) \in S$. Then $(x, y) \in R^m, (y, z) \in R^n$. Thus $(x, z) \in R^m \circ R^n = R^{m+n} \subset S$.
- Closure: Let T be a transtive relation $\supset R$. We show $S \subset T$.
- We show for all $n \in \mathbb{N}(\mathbb{R}^n \subset T)$.
- for *n* = 1. True,

- Let $S = \bigcup_{n \in \mathbb{N}} R^n$.
- Transitive: $(x, y) \in S, (y, z) \in S$. Then $(x, y) \in R^m, (y, z) \in R^n$. Thus $(x, z) \in R^m \circ R^n = R^{m+n} \subset S$.
- Closure: Let *T* be a transtive relation $\supset R$. We show $S \subset T$.
- We show for all $n \in \mathbb{N}(\mathbb{R}^n \subset T)$.
- for n = 1. True,
- $\forall n \in \mathbb{N}(R^n \subset T \to R^{n+1} \subset T).$

- Let $S = \bigcup_{n \in \mathbb{N}} R^n$.
- Transitive: $(x, y) \in S, (y, z) \in S$. Then $(x, y) \in R^m, (y, z) \in R^n$. Thus $(x, z) \in R^m \circ R^n = R^{m+n} \subset S$.
- Closure: Let *T* be a transtive relation $\supset R$. We show $S \subset T$.
- We show for all $n \in \mathbb{N}(\mathbb{R}^n \subset T)$.
- for n = 1. True,
- $\forall n \in \mathbb{N}(R^n \subset T \to R^{n+1} \subset T).$
- Omit

・ロト ・日本 ・ヨト ・ヨト