Logic and the set theory
 Lecture 17: Functions in How to Prove It.

S. Choi

Department of Mathematical Science
KAIST, Daejeon, South Korea

Fall semester, 2012

About this lecture

- Functions

About this lecture

- Functions
- One to one and onto

About this lecture

- Functions
- One to one and onto
- Inverse of functions

About this lecture

- Functions
- One to one and onto
- Inverse of functions
- Images and inverse images

About this lecture

- Functions
- One to one and onto
- Inverse of functions
- Images and inverse images
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://KLMS.kaist.ac.kr

About this lecture

- Functions
- One to one and onto
- Inverse of functions
- Images and inverse images
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://KLMS.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 2)

Functions

- Let F be a relation from A to B. F is said to be a function from A to B if

$$
\forall a \in A \exists!b \in B((a, b) \in F) .
$$

Functions

- Let F be a relation from A to B. F is said to be a function from A to B if

$$
\forall a \in A \exists!b \in B((a, b) \in F) .
$$

- If $(a, b) \in f$, we write $b=f(a)$ the value of a.

Functions

- Let F be a relation from A to B. F is said to be a function from A to B if

$$
\forall a \in A \exists!b \in B((a, b) \in F) .
$$

- If $(a, b) \in f$, we write $b=f(a)$ the value of a.
- Examples:

$$
f=\{(s, p) \mid \text { Prof } p \text { is the advisor of the student } \mathrm{s}\} .
$$

Functions

Theorem

$f, g: A \rightarrow B$. If $\forall a \in A(f(a)=g(a))$, then $f=g$.

Functions

Theorem

$f, g: A \rightarrow B$. If $\forall a \in A(f(a)=g(a))$, then $f=g$.

Proof.

Given $f(a)=g(a)$ for all $a \in A$, we show $f \subset g$ and $g \subset f$. Given $\forall a \in A, f(a)=g(a)$, we show $(a, b) \in f \rightarrow(a, b) \in g$ first. But $(a, b=f(a))=(a, b=g(a))$. Thus clear. We show $(a, b) \in g \rightarrow(a, b) \in f$ similarly.

Composition

- $\operatorname{Ran}(f)=\{f(a) \mid a \in A\} . \operatorname{Dom}(f)=A$.

Composition

- $\operatorname{Ran}(f)=\{f(a) \mid a \in A\}$. $\operatorname{Dom}(f)=A$.
- Given $f: A \rightarrow B$ and $g: B \rightarrow C$, we define $g \circ f$ as relation.

Composition

- $\operatorname{Ran}(f)=\{f(a) \mid a \in A\}$. $\operatorname{Dom}(f)=A$.
- Given $f: A \rightarrow B$ and $g: B \rightarrow C$, we define $g \circ f$ as relation.

Theorem

Let $f: A \rightarrow B, g: B \rightarrow C$. Then $g \circ f: A \rightarrow C$ and for all $a \in A, g \circ f(a)=g(f(a))$.

Proof

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
f: A \rightarrow B, g: B \rightarrow C & g \circ f: A \rightarrow C \\
& \forall a \in A \exists!c \in C((a, c) \in g \circ f)
\end{array}
$$

Proof

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
f: A \rightarrow B, g: B \rightarrow C & g \circ f: A \rightarrow C \\
& \forall a \in A \exists!c \in C((a, c) \in g \circ f)
\end{array}
$$

Given
$f: A \rightarrow B, g: B \rightarrow C$ $a \in A$

Goal
$\exists c \in C((a, c) \in g \circ f)$
$\forall c_{1} \in C \forall c_{2} \in C$
$\left(\left(\left(a, c_{1}\right) \in g \circ f \wedge\left(a, c_{2}\right) \in g \circ f\right) \rightarrow c_{1}=c_{2}\right)$

Proof

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
f: A \rightarrow B, g: B \rightarrow C & g \circ f: A \rightarrow C \\
& \forall a \in A \exists!c \in C((a, c) \in g \circ f)
\end{array}
$$

$$
\begin{gathered}
\text { Given } \\
f: A \rightarrow B, g: B \rightarrow C \\
\quad a \in A
\end{gathered}
$$

Goal

$$
\exists c \in C((a, c) \in g \circ f)
$$

$$
\forall c_{1} \in C \forall c_{2} \in C
$$

$$
\left(\left(\left(a, c_{1}\right) \in g \circ f \wedge\left(a, c_{2}\right) \in g \circ f\right) \rightarrow c_{1}=c_{2}\right)
$$

- Existence part. clear.

Proof

- Uniqueness part:

Proof

- Uniqueness part:
-

$$
\begin{array}{cc}
& \text { Given } \\
& \text { Goal } \\
f: A \rightarrow B: B \rightarrow C & c_{1}=c_{2} \\
& \\
c_{1}, c_{2} \in A & \\
\left(a, c_{1}\right) \in g \circ f,\left(a, c_{2}\right) \in g \circ f &
\end{array}
$$

Proof

- Uniqueness part:

Given
$f: A \rightarrow \underset{a \in A}{B, g: B} \rightarrow C \quad c_{1}=c_{2}$
$c_{1}, c_{2} \in C$
$\left(a, c_{1}\right) \in g \circ f,\left(a, c_{2}\right) \in g \circ f$

- $\left(a, b_{1}\right) \in f,\left(b_{1}, c_{1}\right) \in g,\left(a, b_{2}\right) \in f,\left(b_{2}, c_{2}\right) \in g$. Here $b_{1}=b_{2}$ and hence $c_{1}=c_{2}$.

One to one and onto

Definition

- $f: A \rightarrow B$ is said to be one-to-one if

$$
\neg \exists a_{1} \in A \exists a_{2} \in A\left(f\left(a_{1}\right)=f\left(a_{2}\right) \wedge a_{1} \neq a_{2}\right) .
$$

- f is onto if $\forall b \in B \exists a \in A(f(a)=b)$.

One to one and onto

Definition

- $f: A \rightarrow B$ is said to be one-to-one if

$$
\neg \exists a_{1} \in A \exists a_{2} \in A\left(f\left(a_{1}\right)=f\left(a_{2}\right) \wedge a_{1} \neq a_{2}\right)
$$

- f is onto if $\forall b \in B \exists a \in A(f(a)=b)$.

Theorem

- f is one-to-one iff $\forall a_{1} \in A \forall a_{2} \in A\left(f\left(a_{1}\right)=f\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)$.
- f is onto iff $\operatorname{Ran}(f)=B$.

One to one and onto

Definition

- $f: A \rightarrow B$ is said to be one-to-one if

$$
\neg \exists a_{1} \in A \exists a_{2} \in A\left(f\left(a_{1}\right)=f\left(a_{2}\right) \wedge a_{1} \neq a_{2}\right)
$$

- f is onto if $\forall b \in B \exists a \in A(f(a)=b)$.

Theorem

- f is one-to-one iff $\forall a_{1} \in A \forall a_{2} \in A\left(f\left(a_{1}\right)=f\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)$.
- f is onto iff $\operatorname{Ran}(f)=B$.

Theorem

Let $f: A \rightarrow B, g: B \rightarrow C, g \circ f: A \rightarrow C$.

- If f and g are both one-to-one, then so is $g \circ f$.
- If f and g are both onto, then so is $g \circ f$.

Proof

- Injectivity only:

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall a_{1} \in B \forall a_{2} \in B & \forall a_{1} \in B \forall a_{2} \in B \\
\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)\right. & \left(\left(g \circ f\left(a_{1}\right)=g \circ f\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)\right. \\
\forall b_{1} \in B \forall b_{2} \in B & \\
\left(\left(g\left(b_{1}\right)=g\left(b_{2}\right) \rightarrow b_{1}=b_{2}\right)\right. &
\end{array}
$$

Proof

- Injectivity only:

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall a_{1} \in B \forall a_{2} \in B & \forall a_{1} \in B \forall a_{2} \in B \\
\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)\right. & \left(\left(g \circ f\left(a_{1}\right)=g \circ f\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)\right. \\
\forall b_{1} \in B \forall b_{2} \in B & \\
\left(\left(g\left(b_{1}\right)=g\left(b_{2}\right) \rightarrow b_{1}=b_{2}\right)\right. &
\end{array}
$$

Proof

- Injectivity only:

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall a_{1} \in B \forall a_{2} \in B & \forall a_{1} \in B \forall a_{2} \in B \\
\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)\right. & \left(\left(g \circ f\left(a_{1}\right)=g \circ f\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)\right. \\
\forall b_{1} \in B \forall b_{2} \in B & \\
\left(\left(g\left(b_{1}\right)=g\left(b_{2}\right) \rightarrow b_{1}=b_{2}\right)\right. &
\end{array}
$$

- Injectivity only:

Given

$$
\begin{aligned}
& \forall a_{1} \in B \forall a_{2} \in B\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right) \quad a_{1}=a_{2}\right. \\
& \forall b_{1} \in B \forall b_{2} \in B\left(\left(g\left(b_{1}\right)=g\left(b_{2}\right) \rightarrow b_{1}=b_{2}\right)\right. \\
& \quad a_{1} \in B, a_{2} \in B, g \circ f\left(a_{1}\right)=g \circ f\left(a_{2}\right)
\end{aligned}
$$

- $g\left(b_{1}\right)=g\left(b_{2}\right)$ for $b_{1}=f\left(a_{1}\right), b_{2}=f\left(a_{2}\right)$. Thus, $b_{1}=b_{2}$ and hence $a_{1}=a_{2}$.

Inverse of functions

Definition

The function that is one-to-one and onto are called bijections or one-to-one correspondence.

Inverse of functions

Definition

The function that is one-to-one and onto are called bijections or one-to-one correspondence.

Theorem (5.3.1)

$f: A \rightarrow B$. If f is one-to-one and onto, then $f^{-1}: B \rightarrow A$ is also a one-to-one and onto function.

Inverse of functions

Proof.

- We show first that f^{-1} is a function. That is $\forall b \exists!a \in A\left((b, a) \in f^{-1}\right)$. This is divided into $\forall b \in B \exists a \in A\left((b, a) \in f^{-1}\right)$ and

$$
\forall b \in B \forall a_{1} \in A \forall a_{2} \in A\left(\left(\left(b, a_{1}\right) \in f^{-1} \wedge\left(b, a_{2}\right) \in f^{-1}\right) \rightarrow a_{1}=a_{2}\right) .
$$

Inverse of functions

Proof.

- We show first that f^{-1} is a function. That is $\forall b \exists!a \in A\left((b, a) \in f^{-1}\right)$. This is divided into $\forall b \in B \exists a \in A\left((b, a) \in f^{-1}\right)$ and

$$
\forall b \in B \forall a_{1} \in A \forall a_{2} \in A\left(\left(\left(b, a_{1}\right) \in f^{-1} \wedge\left(b, a_{2}\right) \in f^{-1}\right) \rightarrow a_{1}=a_{2}\right) .
$$

- The first goal is equivalent to $\forall b \exists a \in A(b=f(a))$. Thus, f being onto implies this.

Inverse of functions

Proof.

- We show first that f^{-1} is a function. That is $\forall b \exists!a \in A\left((b, a) \in f^{-1}\right)$. This is divided into $\forall b \in B \exists a \in A\left((b, a) \in f^{-1}\right)$ and

$$
\forall b \in B \forall a_{1} \in A \forall a_{2} \in A\left(\left(\left(b, a_{1}\right) \in f^{-1} \wedge\left(b, a_{2}\right) \in f^{-1}\right) \rightarrow a_{1}=a_{2}\right)
$$

- The first goal is equivalent to $\forall b \exists a \in A(b=f(a))$. Thus, f being onto implies this.
- The second goal is equivalent to

$$
\forall b \in B \forall a_{1} \in A \forall a_{2} \in A\left(\left(b=f\left(a_{1}\right) \wedge b=f\left(a_{2}\right)\right) \rightarrow a_{1}=a_{2}\right) .
$$

Hence, f being one-to-one implies this.

Theorem (5.3.2)

$f: A \rightarrow B$ and $f^{-1}: B \rightarrow A$ are functions. Then $f^{-1} \circ f=i_{A}$ and $f \circ f^{-1}=i_{B}$.

Theorem (5.3.2)

$f: A \rightarrow B$ and $f^{-1}: B \rightarrow A$ are functions. Then $f^{-1} \circ f=i_{A}$ and $f \circ f^{-1}=i_{B}$.

Theorem (5.3.3)

$f: A \rightarrow B$.

- If there is a function $g: B \rightarrow A$ such that $g \circ f=i_{A}$, then f is one-to-one.
- If there is a function $g: B \rightarrow A$ such that $f \circ g=i_{B}$, then f is onto.

Proof.

- 1) We are given $f: A \rightarrow B, g: B \rightarrow A$ with $g \circ f=i_{A}$. Our goal is $\forall a_{1} \in A \forall a_{2} \in A\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)\right.$. Suppose $a_{1}, a_{2} \in A$ be arbitrary and $f\left(a_{1}\right)=f\left(a_{2}\right)$. Then $a_{1}=i_{A}\left(a_{1}\right)=g \circ f\left(a_{1}\right)=g \circ f\left(a_{2}\right)=i_{A}\left(a_{2}\right)=a_{2}$.

Proof.

- 1) We are given $f: A \rightarrow B, g: B \rightarrow A$ with $g \circ f=i_{A}$. Our goal is $\forall a_{1} \in A \forall a_{2} \in A\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right) \rightarrow a_{1}=a_{2}\right)\right.$. Suppose $a_{1}, a_{2} \in A$ be arbitrary and $f\left(a_{1}\right)=f\left(a_{2}\right)$. Then $a_{1}=i_{A}\left(a_{1}\right)=g \circ f\left(a_{1}\right)=g \circ f\left(a_{2}\right)=i_{A}\left(a_{2}\right)=a_{2}$.
- 2) We are given $f \circ g=i_{B}$. We show $\forall b \exists a(b=f(a))$. Let $b \in B$ be arbitrary. Then we try to guess a. We have $b=f \circ g(b)=f(g(b))$. Let $a=g(b)$. Then $b=f(a)=f(g(b))=b$.

Theorem (5.3.4)

The following statements are equivalent:

- f is one-to-one and onto
- $f^{-1}: B \rightarrow A$ is a function.
- There is a function $g: B \rightarrow A$ such that $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Proof.

Theorem (5.3.4)

The following statements are equivalent:

- f is one-to-one and onto
- $f^{-1}: B \rightarrow A$ is a function.
- There is a function $g: B \rightarrow A$ such that $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Proof.

- $1 \rightarrow 2$: Theorem 5.3.1.

Theorem (5.3.4)

The following statements are equivalent:

- f is one-to-one and onto
- $f^{-1}: B \rightarrow A$ is a function.
- There is a function $g: B \rightarrow A$ such that $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Proof.

- $1 \rightarrow 2$: Theorem 5.3.1.
- $2 \rightarrow 3$ Theorem 5.3.2.

Theorem (5.3.4)

The following statements are equivalent:

- f is one-to-one and onto
- $f^{-1}: B \rightarrow A$ is a function.
- There is a function $g: B \rightarrow A$ such that $g \circ f=i_{A}$ and $f \circ g=i_{B}$.

Proof.

- $1 \rightarrow 2$: Theorem 5.3.1.
- $2 \rightarrow 3$ Theorem 5.3.2.
- $3 \rightarrow 1$ Theorem 5.3.3.

Theorem (5.3.5)

Suppose that we have $f: A \rightarrow B$ and $g: B \rightarrow A$ and $g \circ f=i_{A}$ and $f \circ g=i_{B}$. Then $g=f^{-1}$.

Proof.

Theorem (5.3.5)

Suppose that we have $f: A \rightarrow B$ and $g: B \rightarrow A$ and $g \circ f=i_{A}$ and $f \circ g=i_{B}$. Then $g=f^{-1}$.

Proof.

- By Theorem 5.3.4 $(2 \leftrightarrow 3), f^{-1}: B \rightarrow A$ is a function.

Theorem (5.3.5)

Suppose that we have $f: A \rightarrow B$ and $g: B \rightarrow A$ and $g \circ f=i_{A}$ and $f \circ g=i_{B}$. Then $g=f^{-1}$.

Proof.

- By Theorem 5.3.4 $(2 \leftrightarrow 3), f^{-1}: B \rightarrow A$ is a function.
- By Theorem 5.3.2, $f^{-1} \circ f=i_{A}$.

Theorem (5.3.5)

Suppose that we have $f: A \rightarrow B$ and $g: B \rightarrow A$ and $g \circ f=i_{A}$ and $f \circ g=i_{B}$. Then $g=f^{-1}$.

Proof.

- By Theorem 5.3.4 $(2 \leftrightarrow 3), f^{-1}: B \rightarrow A$ is a function.
- By Theorem 5.3.2, $f^{-1} \circ f=i_{A}$.
- Then $g=i_{A} \circ g=\left(f^{-1} \circ f\right) \circ g=f^{-1} \circ(f \circ g)=f^{-1} \circ i_{B}=f^{-1}$.

Images and Inverse images

- Given $f: A \rightarrow B . X \subset A$.

Images and Inverse images

- Given $f: A \rightarrow B . X \subset A$.
- The image of X :

$$
f(X)=\{f(x) \mid x \in X\}=\{b \in B \mid \exists x \in X(f(x)=b)\} .
$$

Images and Inverse images

- Given $f: A \rightarrow B . X \subset A$.
- The image of X :

$$
f(X)=\{f(x) \mid x \in X\}=\{b \in B \mid \exists x \in X(f(x)=b)\} .
$$

- Inverse image of Y for $Y \subset B$:

$$
f^{-1}(Y)=\{a \in A \mid f(a) \in Y\}
$$

Images and Inverse images

- Given $f: A \rightarrow B . X \subset A$.
- The image of X :

$$
f(X)=\{f(x) \mid x \in X\}=\{b \in B \mid \exists x \in X(f(x)=b)\} .
$$

- Inverse image of Y for $Y \subset B$:

$$
f^{-1}(Y)=\{a \in A \mid f(a) \in Y\} .
$$

Theorem (5.4.2)

$f: A \rightarrow B, W, X \subset A$. Then (1) $f(W \cap X) \subset f(W) \cap f(X)$. And (2) $f(W \cap X)=f(W) \cap f(X)$ if f is one to one.

Proof

- (1)

Given
$f: A \rightarrow B, W, X \subset A \quad f(W \cap X) \subset f(W) \cap f(X)$

Proof

- (1)

Given
Goal
$f: A \rightarrow B, W, X \subset A \quad f(W \cap X) \subset f(W) \cap f(X)$
Given
Goal

$$
\begin{aligned}
& f: A \rightarrow B, W, X \subset A \quad b \in f(W) \cap f(X) \\
& \quad b \in f(W \cap X) \\
& b=f(a), a \in W \cap X
\end{aligned}
$$

Proof

- (2)

Given
$f: A \rightarrow B, W, X \subset A$
$\forall a_{1} \in A, \forall a_{2} \in A$

$$
\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \rightarrow a_{1}=a_{2}\right.
$$

Proof

- (2)

Given
$f: A \rightarrow B, W, X \subset A$ $\forall a_{1} \in A, \forall a_{2} \in A$ $\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \rightarrow a_{1}=a_{2}\right.$

$$
\left(\left(t\left(a_{1}\right)=t\left(a_{2}\right)\right) \rightarrow a_{1}=a_{2}\right.
$$

$$
\begin{gathered}
\text { Goal } \\
\forall b \in B \quad b \in f(W \cap X) \leftrightarrow \\
b \in f(W) \cap f(X)
\end{gathered}
$$

- \rightarrow part is done in (1)

Proof

- (2)

Given

$$
\begin{gathered}
f: A \rightarrow B, W, X \subset A \\
\forall a_{1} \in A, \forall a_{2} \in A \\
\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \rightarrow a_{1}=a_{2}\right.
\end{gathered}
$$

- \rightarrow part is done in (1)
- (2)(ii)

Goal
$\forall b \in B \quad b \in f(W \cap X) \leftrightarrow$

$$
b \in f(W) \cap f(X)
$$

$$
y
$$

n (1)

$$
\begin{gathered}
\text { Given } \\
f: A \rightarrow B, W, X \subset A \\
\left(\forall a_{1} \in A, \forall a_{2} \in A\right. \\
\left(\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \rightarrow a_{1}=a_{2}\right) \\
b \in f(W) \cap f(X) \\
b=f(w)=f(x), w \in W, x \in X, w=x
\end{gathered}
$$

Goal
$b \in f(W \cap X)$

Project homework

- See page 258,259 1-6. Do this individually (see klms for details)

Project homework

- See page 258,259 1-6. Do this individually (see klms for details)
- Due date is: November 30th (Friday)

