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Introduction

About this lecture

Ordered pairs and Cartesian products

Relations

More about relations

Ordering relations

Closures

Equivalence relations

Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html
and the moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.
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Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

http://plato.stanford.edu/contents.html has much resource.

Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 2)
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Ordering relations

Ordering relations

A relation R ⊂ A× A is antisymmetric if ∀x ∈ A∀y ∈ A((xRy ∧ yRx)→ y = x).

R is a partial order on A if it is reflexive, transitive and antisymmetric.

R is a total order on A if it is a partial order and ∀x ∈ A∀y ∈ A(xRy ∨ yRx).
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Ordering relations

Example

A = {1, 2} and B = P(A).

The subset relation is a partial order but not a total order.

D = {(x , y) ∈ Z+ × Z+|xdivides y}.
G = {(x , y) ∈ R× R|x ≥ y}.
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Ordering relations

Smallest element

Definition
Let R be a partial order on a set A. Let B ⊂ A and b ∈ B.

b is called a smallest element of B if ∀x ∈ B(bRx).

b is R-minimal if ¬∃x ∈ B(xRb ∧ x 6= b).

Which is a stronger concept?
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Ordering relations

Example

L = {(x , y) ∈ R× R|x ≤ y} which is a total order on R. B = {x ∈ R|x ≥ 7}.
C = {x ∈ R|x > 7}.

L-minimal ? L-smallest?

Z+ with divisibility relation. B = {3, 4, 5, 6, 7, 8, 9}. R-minimal? R-smallest?

S = {(x , y) ∈ P(Z+)× P(Z+)|x ⊂ y}. F = {x ∈ P(Z+)|2 ∈ X ∧ 3 ∈ X}.
R-minimal? R-smallest?
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Ordering relations

Theorem
Let R be a partial order on A. B ⊂ A.

If B has a smallest element, then the smallest element is unique.

Suppose that b is a smallest element of B. Then b is minimal element of B and the
unique minimal element of b.

If R is a total order and b is a minimal element of B, then b is the smallest element
of B. (not proved)
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Ordering relations

Proof of 1

Given Goal
∃b(∀x ∈ B(bRx)) ∃!b∀x(bRx)

Given Goal
∀x ∈ B(b0Rx) ∀x(cRx)→ c = b0

Given Goal
∀x ∈ B(b0Rx) c = b0

∀x(cRx)
cRb0, b0Rc
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Ordering relations

Proof of 2

Divide goal. b is minimal and b is uniquely minimal.

Given Goal
b(∀x ∈ B(bRx)) ¬∃x ∈ B(xRb ∧ x 6= b)

Given Goal
(∀x ∈ B(bRx)) ∀x ∈ B¬(xRb ∧ x 6= b)

Given Goal
(∀x ∈ B(bRx)) ∀x ∈ B(xRb → x = b)

Given Goal
(∀x ∈ B(bRx)) x = b

x ∈ B, xRb
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Ordering relations

Proof of 2 continued

Divide goal. b is minimal and b is uniquely minimal.

Given Goal
b(∀x ∈ B(bRx)) ∀c ∈ B((∀x ∈ B(xRc → x = c))→ b = c)

Given Goal
b(∀x ∈ B(bRx)) b = c

c ∈ B
∀x ∈ B(xRc → x = c))

Given Goal
b(∀x ∈ B(bRx)) b = c

c ∈ B
∀x ∈ B(xRc → x = c))

bRc, hence b = c
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Ordering relations

I Largest elements: B ⊂ A. ∀x ∈ B(xRb)
I maximal element: ¬∃x ∈ B(bRx ∧ b 6= x).

Definition
I B ⊂ A. a is a lower bound of B if ∀x ∈ B(aRx).
I a ∈ A is an upper bound of B if ∀x ∈ B(xRa).
I Let U be the set of upper bounds for B and let L be the set of lower bounds for B.
I If U has a smallest element, this smallest element is said to be the least upper bound (lub,

supremum).
I If L has a greatest element, this element is said to be the greatest lower bound (glb, infimum).

These elements may not equal the smallest, minimal (greatest, maximal) element
of B...
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Ordering relations

Definition
Let R be a relation on A.

R is irreflexive if ∀x ∈ A((x , x) 6∈ R).

R is a strict partial order if it is irreflexive and transitive.

R is a strict total order if it is a strict partial order and satisfies
∀x ∈ A∀y ∈ A(xRy ∨ yRx ∨ x = y).

The reflexive closure of a strict partial order (resp. strict total order) is a partial order
(resp. total order).
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Ordering relations

Real number system (Hrbaceck 4.5)

< a strict total order.

An ordered set is dense if it has at least two elements and if for all a, b ∈ X , a < b
implies there exists x ∈ X such that a < x < b.

Let (P, <) be a dense linearly (totally) ordered set. P is complete if every
nonempty subset S bounded above has a supremum.
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Ordering relations

Real number system (Hrbaceck 4.5)

Theorem
Let (P, <) be dense linearly ordered set without endpoints. Then there exists a
complete linearly ordered set (C, <′) unique up to isomorphism such that

I P ⊂ C. order preserved
P is dense in C.
C does not have endpoints.

I I The real number system is the completion of Q.

The real number system is the unique complete linearly ordered set without
endpoints that has a countable subset dense in it.

Conway, Knuth invented surreal numbers...
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Closures

Reflexive closures

Definition
Let R be a relation. The reflexive closure of R is the smallest set S ⊂ A× A such
that R ⊂ S and S is reflexive.

In other words, S is such that R ⊂ S, S is reflexive, for every T ⊂ A× A and if
R ⊂ T and T is reflexive, then S ⊂ T .
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Closures

Theorem
(4.5.2) Suppose that S is a relation on A. Then R has a reflexive closure.

Proof.
Let S = R ∪ iA. Properties 1, 2 are obvious. For 3, R ⊂ T . Since T is reflexive, iA ⊂ T .
Thus S = R ∪ iA ⊂ T .
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Closures

Definition
Let R be a relation on A. The symmetric closure of R is the smallest set S ⊂ A× A
such that R ⊂ S and S is symmetric. This is equivalent to.

R ⊂ S.

S is symmetric.

For any T ⊂ A× A and R ⊂ T and T is symmetric imply that S ⊂ T .
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Closures

Definition
Let R be a relation on A. The transitive closure of R is the smallest set S ⊂ A× A such
that R ⊂ S and S is transitive. This is equivalent to.

R ⊂ S.

S is transtive.

For any T ⊂ A× A and R ⊂ T and T is transitive imply that S ⊂ T .

Example
See Figures 1,2,3 in pages 206-207 in HTP.
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Closures

Theorems

Theorem
Suppose that R is a relation on A. Then R has a symmetric closure.

Proof.

hint: R ∪ R−1.

Theorem
Suppose that R is a relation on A. Then R has a transitive closure.

Proof.
hint: Take intersections of all transitive relations containing R.
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Equivalence relations

Equivalence relations

Definition
Suppose that A is a set and P(A) its power set. F ⊂ P(A) is pairwise disjoint if

∀X ∈ F∀Y ∈ F(X 6= Y → X ∩ Y = ∅).

The family F is a partitition of A if
⋃
F = A, ∀X ∈ F(X 6= ∅), and F is pairwise disjoint.

Definition
Suppose that R is a relation on A. If R is a reflexive, symmetric, and transtive, then R is
an equivalence relation.

Main aim
An equivalence relation↔ a partition of a set.
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Equivalence relations

Equivalence relations

Definition
Suppose that A is a set and P(A) its power set. F ⊂ P(A) is pairwise disjoint if

∀X ∈ F∀Y ∈ F(X 6= Y → X ∩ Y = ∅).

The family F is a partitition of A if
⋃
F = A, ∀X ∈ F(X 6= ∅), and F is pairwise disjoint.

Definition
Suppose that R is a relation on A. If R is a reflexive, symmetric, and transtive, then R is
an equivalence relation.

Main aim
An equivalence relation↔ a partition of a set.

S. Choi (KAIST) Logic and set theory November 6, 2012 21 / 29



Equivalence relations

Equivalence relations

Definition
Suppose that A is a set and P(A) its power set. F ⊂ P(A) is pairwise disjoint if

∀X ∈ F∀Y ∈ F(X 6= Y → X ∩ Y = ∅).

The family F is a partitition of A if
⋃
F = A, ∀X ∈ F(X 6= ∅), and F is pairwise disjoint.

Definition
Suppose that R is a relation on A. If R is a reflexive, symmetric, and transtive, then R is
an equivalence relation.

Main aim
An equivalence relation↔ a partition of a set.

S. Choi (KAIST) Logic and set theory November 6, 2012 21 / 29



Equivalence relations

Equivalence relations

Definition
Suppose that R is an equivalence relation on A. Then the equivalence class of x w.r.t.
R is [x ]R = {y ∈ A|yRx}.

The set of all equivalence classes is denoted A/R (A mod R )

A/R := {[x ]R |x ∈ A} = {X ⊂ A|∃x ∈ A(X = [x ]R)}

Theorem
(4.6.5) Suppose that R is an equivalence relation on A. Then for

For all x ∈ A, x ∈ [x ]R .

For all x ∈ A and y ∈ A, y ∈ [x ]R ↔ [y ]R = [x ]R .
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Equivalence relations

proof

1. x ∈ A. Then xRx by reflexivity. Thus x ∈ [x ]R .

2.
Given Goal

y ∈ [x ]R [y ]R = [x ]R

To show:
Given Goal

y ∈ [x ]R ∀z(z ∈ [y ]R ↔ z ∈ [x ]R)

→ part:
Given Goal

y ∈ [x ]R ∀z(z ∈ [y ]R → z ∈ [x ]R)
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Equivalence relations

proof

Given Goal
y ∈ [x ]R zRx

z ∈ [y ]R , yRx , zRy
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Equivalence relations

Equivalence relation→ Partition

Theorem
Suppose that R is an equivalence relation on a set A. Then A/R is a partition of A.

Proof.
To show A/R is a partition of A, we show that

⋃
A/R = A, A/R is pairwise disjoint,

and no element of A/R is empty.

For the first item,
⋃

A/R ⊂ A. We show A ⊂
⋃

A/R. Suppose x ∈ A. Then
x ∈ [x ]R . Thus x ∈

⋃
A/R.

The pairwise disjointness follows from what?

Suppose X ∈ A/R. Then X = [x ]R 3 x and hence is not empty.
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Equivalence relations

Equivalence relation← Partition

Theorem
(4.6.6) Let A be a set. F a partition of A. Then there exists an equivalence relation R
on a set A such that F = A/R.

We need two lemmas to prove this.

Lemma
(4.6.7) A a set. F a partition of A. Let R =

⋃
X∈F (X × X ). Then R is an equivalence

relation on A.

1 We call R the equivalence relation induced by F .
2 The proof: we verify the three properties of equivalence relations.
3 We prove the transitivity: xRy , yRz. (x , y) ∈ X × X and (y , z) ∈ Y × Y . Then

X ∩ Y 3 y . Thus, X = Y . Thus, (x , z) ∈ X × X and xRz.
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Equivalence relations

Lemma
(4.6.8) Let A be a set. F a partition of A. Let R be the equivalence relation determined
by F . Suppose X ∈ F and x ∈ X. Then [x ]R = X.

Given Goal
X ∈ F , x ∈ X [x ]R ⊂ X ,X ⊂ [x ]R

part 1:
Given Goal

X ∈ F , x ∈ X y ∈ X
y ∈ [x ]R

Given Goal
X ∈ F , x ∈ X y ∈ X

yRx or (y , x) ∈ Y × Y ,Thus, Y = X

part 2: omit
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Equivalence relations

Proof of Theorem 4.6.6

Let R =
⋃

X∈F X × X .

We show that A/R = F . That is, X ∈ A/R ↔ X ∈ F .

part 1: →.
Given Goal

X ∈ A/R X ∈ F

Given Goal
X = [x ]R , x ∈ A X ∈ F

x ∈ Y for some Y ∈ F
Y = [x ]R by 4.6.8

Y = X
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Equivalence relations

Proof of Theorem 4.6.6

part 2: ←.
Given Goal
X ∈ F X ∈ A/R

X 6= ∅, x ∈ X
X = [x ]R ∈ A/R by 4.6.8
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