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Introduction

About this lecture

@ Ordered pairs and Cartesian products
@ Relations
@ More about relations
@ Ordering relations
@ Closures
@ Equivalence relations

@ Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html
and the moodle page http://moodle.kaist.ac.kr

@ Grading and so on in the moodle. Ask questions in moodle.
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Some helpful references

@ Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
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Some helpful references

@ Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
@ http://plato.stanford.edu/contents.html has much resource.
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Some helpful references

@ Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

@ http://plato.stanford.edu/contents.html has much resource.
@ Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 2)
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Ordering relations

@ Arelation R C A x Ais antisymmetric if Vx € AVy € A((xRy A yRx) — y = x).
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Ordering relations

@ Arelation R C A x Ais antisymmetric if Vx € AVy € A((xRy A yRx) — y = x).
@ Ris a partial order on A if it is reflexive, transitive and antisymmetric.
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Ordering relations

@ Arelation R C A x Ais antisymmetricif Vx € AVy € A((xRy A yRx) — y = X).
@ Ris a partial order on A if it is reflexive, transitive and antisymmetric.
@ Ris a total orderon Afif it is a partial order and Vx € AVy € A(xRy V yRXx).
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Example

@ A= {1,2} and B = P(A).
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Example

@ A= {1,2} and B = P(A).

@ The subset relation is a partial order but not a total order.
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Example

e A= {1,2} and B = P(A).

@ The subset relation is a partial order but not a total order.
@ D={(x,y) € Z" x Z"|xdivides y}.

S. Choi (KAIST)

Logic and set theory

N



Ordering relations

Example

e A= {1,2} and B = P(A).

@ The subset relation is a partial order but not a total order.
@ D={(x,y) € Z" x Z"|xdivides y}.

@ G={(x,y) €ERxR|x > y}.
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Smallest element

Definition

Let R be a partial orderonaset A. Let BC Aand b € B.

@ bis called a smallest element of B if Vx € B(bRXx).
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Smallest element

Definition

Let R be a partial orderonaset A. Let BC Aand b € B.

@ bis called a smallest element of B if Vx € B(bRXx).
@ bis R-minimal if ~3x € B(xRb A x # b).
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Smallest element

Definition

Let R be a partial orderonaset A. Let BC Aand b € B.

@ bis called a smallest element of B if Vx € B(bRXx).
@ bis R-minimal if ~3x € B(xRb A x # b).
@ Which is a stronger concept?
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Example

C={xeRix>T7}

o L={(x,y) € R xR|x < y} whichis atotal orderonR. B = {x € R|x > 7}.
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Example

C={xeRix>T7}

o L ={(x,y) € R xR|x <y} which is a total order on R. B = {x € R|x > 7}.
@ L-minimal ? L-smallest?
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Example

o L={(x,y) € R xR|x < y} whichis atotal orderonR. B = {x € R|x > 7}.
C={xeRix>T7}

@ [-minimal ? L-smallest?

@ 7" with divisibility relation. B = {3,4,5,6,7,8,9}. R-minimal? R-smallest?
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Example

o L={(x,y) € R xR|x < y} whichis atotal orderonR. B = {x € R|x > 7}.
C={xeR|x>T7}.

@ [-minimal ? L-smallest?

@ 7" with divisibility relation. B = {3,4,5,6,7,8,9}. R-minimal? R-smallest?

@ S={(x,y) e PZ*)x P(ZN)|x Cy}. F={xe P(Z")]2e X A3 € X}.
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Example

L={(x,y) € R x R|x < y} whichis a total orderon R. B = {x € R|x > 7}.
C={xeRix>T7}

L-minimal ? L-smallest?

7" with divisibility relation. B = {3,4,5,6,7,8,9}. R-minimal? R-smallest?
S={(x,y) e P(Z")x P(Z")|x Cy}. F={x€e P(Z")|2e X A3 € X}.
R-minimal? R-smallest?
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Ordering relations

Theorem
Let R be a partial order on A. B C A.

@ If B has a smallest element, then the smallest element is unique.
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Ordering relations

Theorem
Let R be a partial order on A. B C A.
@ If B has a smallest element, then the smallest element is unique.

@ Suppose that b is a smallest element of B. Then b is minimal element of B and the
unique minimal element of b.
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Ordering relations

Theorem
Let R be a partial order on A. B C A.
@ If B has a smallest element, then the smallest element is unique.
@ Suppose that b is a smallest element of B. Then b is minimal element of B and the
unique minimal element of b.
@ If R is a total order and b is a minimal element of B, then b is the smallest element
of B. (not proved)

v
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Proof of 1
o

Given Goal
3Ib(vx € B(bRx))

3lbVx(bRXx)

o F = = DA
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Proof of 1
o

Given Goal
3b(Vx € B(bRx)) 3!bvx(bRx)
Given Goal
Vx € B(boRx) Vx(cRx) — c=bo
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Ordering relations

Proof of 1
°
Given Goal
3b(vx € B(bRx)) 3!'bvx(bRx)
°
Given Goal
Vx € B(boRx) Vx(cRx) — c=bo
°
Given Goal
Vx € B(bpRx) c=by
Vx(cRx)
cRby, bgRc
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Proof of 2
@ Divide goal. b is minimal and b is uniquely minimal.
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Proof of 2
@ Divide goal. b is minimal and b is uniquely minimal.
°

Given Goal
b(Vx € B(bRx)) —3x € B(xRbA x # b)
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Proof of 2

@ Divide goal. b is minimal and b is uniquely minimal.

°
Given Goal

b(Vx € B(bRx)) —3x € B(xRbA x # b)

Given Goal
(Vx € B(bRx)) Vx € B-(xRbAXx #b)
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Proof of 2

@ Divide goal. b is minimal and b is uniquely minimal.

°
Given Goal
b(Vx € B(bRx)) —3x € B(xRbA x # b)
o
Given Goal
(Vx € B(bRx)) Vx € B-(xRbAXx #b)
°

Given Goal
(vx € B(bRx)) Vx € B(xRb— x = b)
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Proof of 2

@ Divide goal. b is minimal and b is uniquely minimal.

°
Given Goal
b(Vx € B(bRx)) —3x € B(xRbA x # b)
°
Given Goal
(Vx € B(bRx)) Vx € B-(xRbAXx #b)
°
Given Goal
(vx € B(bRx)) Vx € B(xRb— x = b)
°
Given Goal
(vx € B(bRx)) x=0»b
x € B, xRb
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Proof of 2 continued
@ Divide goal. b is minimal and b is uniquely minimal.

=} F = = DA
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Proof of 2 continued
@ Divide goal. b is minimal and b is uniquely minimal.
°
Given

Goal
b(Vx € B(bRx)) Vc e B((Vx € B(xRc — x=c)) - b=c¢)
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Proof of 2 continued

@ Divide goal. b is minimal and b is uniquely minimal.

)
Given Goal
b(Vx € B(bRx)) Vce B((Vx € B(xRc - x=¢c)) > b=rc)
*]
Given Goal
b(¥Vx € B(bRx)) b=c
ceB

Vx € B(xRc — x = ¢))
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Proof of 2 continued

@ Divide goal. b is minimal and b is uniquely minimal.

)
Given Goal
b(Vx € B(bRx)) Vce B((Vx € B(xRc - x=¢c)) > b=rc)
*]
Given Goal
b(¥Vx € B(bRx)) b=c
ceB
Vx € B(xRc — x = ¢))
°
Given Goal
b(Vx € B(bRx)) b=rc
ceB

Vx € B(xRc — x = ¢))
bRc, hence b=c
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@ » Largestelements: B C A. Vx € B(xRb)
> maximal element: —=3x € B(bRx A b # x).
= = E DA



Ordering relations

@ » Largestelements: B C A. Vx € B(xRb)
» maximal element: —=3x € B(bRx A b # Xx).

Definition
B C A. ais a lower bound of B if Vx € B(aRx).
a € Ais an upper bound of B if Vx € B(xRa).
Let U be the set of upper bounds for B and let L be the set of lower bounds for B.

If U has a smallest element, this smallest element is said to be the least upper bound (lub,
supremum).

If L has a greatest element, this element is said to be the greatest lower bound (glb, infimum).
v
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Ordering relations

@ » Largestelements: B C A. Vx € B(xRb)
» maximal element: —=3x € B(bRx A b # Xx).

Definition
B C A. ais a lower bound of B if Vx € B(aRx).
a € Ais an upper bound of B if Vx € B(xRa).
Let U be the set of upper bounds for B and let L be the set of lower bounds for B.

If U has a smallest element, this smallest element is said to be the least upper bound (lub,
supremum).

If L has a greatest element, this element is said to be the greatest lower bound (glb, infimum).
v

@ These elements may not equal the smallest, minimal (greatest, maximal) element
of B...

S. Choi (KAIST) Logic and set theory November 6, 2012 12/29



Definition
Let R be a relation on A.

@ Ris irreflexive if Vx € A((x, x) € R).
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Ordering relations

Definition
Let R be a relation on A.
@ Ris irreflexive if Vx € A((x, x) € R).

@ R is a strict partial order if it is irreflexive and transitive.

S. Choi (KAIST) Logic and set theory

November 6, 2012

13/29



Ordering relations

Definition
Let R be a relation on A.
@ Ris irreflexive if Vx € A((x, x) € R).
@ R is a strict partial order if it is irreflexive and transitive.

@ Ris a strict total order if it is a strict partial order and satisfies
Vx € AVy € A(xRy V yRx V x = y).
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Ordering relations

Definition
Let R be a relation on A.
@ Ris irreflexive if Vx € A((x, x) € R).
@ R is a strict partial order if it is irreflexive and transitive.

@ Ris a strict total order if it is a strict partial order and satisfies
Vx € AVy € A(xRy V yRx V x = y).
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Ordering relations

Definition
Let R be a relation on A.
@ Ris irreflexive if Vx € A((x, x) € R).
@ R is a strict partial order if it is irreflexive and transitive.

@ Ris a strict total order if it is a strict partial order and satisfies
Vx € AVy € A(xRy V yRx V x = y).

The reflexive closure of a strict partial order (resp. strict total order) is a partial order
(resp. total order).
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Real number system (Hrbaceck 4.5)

@ < a strict total order.

o F = = DA
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Real number system (Hrbaceck 4.5)

@ < a strict total order.

@ An ordered set is dense if it has at least two elements and if for all a,b € X, a< b
implies there exists x € X such that a < x < b.

S. Choi (KAIST) Logic and set theory November 6, 2012 14/29



Real number system (Hrbaceck 4.5)

@ < a strict total order.

@ An ordered set is dense if it has at least two elements and if for all a,b € X, a< b
implies there exists x € X such that a < x < b.

@ Let (P, <) be a dense linearly (totally) ordered set. P is complete if every
nonempty subset S bounded above has a supremum.
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Real number system (Hrbaceck 4.5)

=} F = = DA
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Real number system (Hrbaceck 4.5)

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a
complete linearly ordered set (C, <) unique up to isomorphism such that
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Ordering relations

Real number system (Hrbaceck 4.5)

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a

complete linearly ordered set (C, <) unique up to isomorphism such that
P C C. order preserved
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Ordering relations

Real number system (Hrbaceck 4.5)

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a
complete linearly ordered set (C, <) unique up to isomorphism such that

P C C. order preserved

P is dense in C.
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Real number system (Hrbaceck 4.5)

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a
complete linearly ordered set (C, <) unique up to isomorphism such that
-] P C C. order preserved
P is dense in C.
C does not have endpoints.
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Real number system (Hrbaceck 4.5)

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a
complete linearly ordered set (C, <) unique up to isomorphism such that
-] P C C. order preserved
P is dense in C.
C does not have endpoints.

@ The real number system is the completion of Q.
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Ordering relations

Real number system (Hrbaceck 4.5)

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a
complete linearly ordered set (C, <) unique up to isomorphism such that

P C C. order preserved

P is dense in C.

C does not have endpoints.

@ The real number system is the completion of Q.

@ The real number system is the unique complete linearly ordered set without
endpoints that has a countable subset dense in it.
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Real number system (Hrbaceck 4.5)

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a
complete linearly ordered set (C, <) unique up to isomorphism such that
-] P C C. order preserved
P is dense in C.
C does not have endpoints.

@ The real number system is the completion of Q.

@ The real number system is the unique complete linearly ordered set without
endpoints that has a countable subset dense in it.

@ Conway, Knuth invented surreal numbers...
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Reflexive closures

Definition
@ Let R be a relation. The reflexive closure of R is the smallest set S C A x A such
that R ¢ S and S is reflexive.
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Reflexive closures

Definition
@ Let R be a relation. The reflexive closure of R is the smallest set S C A x A such
that R ¢ S and S is reflexive.

@ In other words, S is such that R C S, S is reflexive, for every T ¢ A x A and if
R C T and T is reflexive, then S C T.
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Theorem

(4.5.2) Suppose that S is a relation on A. Then R has a reflexive closure.

=} F = = DA
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Closures

Theorem

(4.5.2) Suppose that S is a relation on A. Then R has a reflexive closure.

Proof.

Let S = RU ia. Properties 1, 2 are obvious. For 3, R C T. Since T is reflexive, is C T.
Thus S=RUixC T. O

v
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Closures

Definition
Let R be a relation on A. The symmetric closure of R is the smallestset SC Ax A
such that R C S and S is symmetric. This is equivalent to.

@ RcS.
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Closures

Definition

Let R be a relation on A. The symmetric closure of R is the smallestset SC Ax A
such that R C S and S is symmetric. This is equivalent to.

@ RCS.
@ Sis symmetric.
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Closures

Definition
Let R be a relation on A. The symmetric closure of R is the smallestset SC Ax A
such that R C S and S is symmetric. This is equivalent to.

@ RcS.

@ Sis symmetric.

@ Forany TC Ax Aand R C T and T is symmetric imply that S C T.
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Closures

Definition
Let R be a relation on A. The transitive closure of R is the smallest set S C A x A such
that R C S and S is transitive. This is equivalent to.

@ RcC S.

S. Choi (KAIST) Logic and set theory November 6, 2012 19/29



Closures

Definition
Let R be a relation on A. The transitive closure of R is the smallest set S C A x A such
that R C S and S is transitive. This is equivalent to.

@ RCS.

@ Sis transtive.
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Closures

Definition
Let R be a relation on A. The transitive closure of R is the smallest set S C A x A such
that R C S and S is transitive. This is equivalent to.

@ RCS.

@ Sis transtive.

@ Forany TC Ax Aand R C T and T is transitive imply that S C T.
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Closures

Definition
Let R be a relation on A. The transitive closure of R is the smallest set S C A x A such
that R C S and S is transitive. This is equivalent to.

@ RCS.

@ Sis transtive.

@ Forany TC Ax Aand R C T and T is transitive imply that S C T.
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Closures

Definition
Let R be a relation on A. The transitive closure of R is the smallest set S C A x A such
that R C S and S is transitive. This is equivalent to.

@ RCS.

@ Sis transtive.

@ Forany TC Ax Aand R C T and T is transitive imply that S C T.

Example
See Figures 1,2,3 in pages 206-207 in HTP.
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Theorems
Theorem

Suppose that R is a relation on A. Then R has a symmetric closure.

=} F = = DA
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Theorems

Theorem
Suppose that R is a relation on A. Then R has a symmetric closure.
Proof.
hint: RUR™". m|
=} = E £ DA
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Theorems

Theorem
Suppose that R is a relation on A. Then R has a symmetric closure.

Proof.
hint: RUR™'. 0

Theorem
Suppose that R is a relation on A. Then R has a transitive closure.
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Theorems

Theorem
Suppose that R is a relation on A. Then R has a symmetric closure.

Proof.
hint: RUR™'. O

Theorem
Suppose that R is a relation on A. Then R has a transitive closure.

Proof.
hint: Take intersections of all transitive relations containing R. O
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Equivalence relations

Definition
Suppose that A is a set and P(A) its power set. F C P(A) is pairwise disjoint if
VXeEFVY eF(X#£Y = XNY=0).

The family F is a partitition of Aif | JF = A, VX € F(X # 0), and F is pairwise disjoint.
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Equivalence relations

Definition
Suppose that A is a set and P(A) its power set. F C P(A) is pairwise disjoint if
VXeEFVY eF(X#£Y = XNY=0).

The family F is a partitition of Aif | JF = A, VX € F(X # 0), and F is pairwise disjoint.

v

Definition
Suppose that R is a relation on A. If R is a reflexive, symmetric, and transtive, then R is
an equivalence relation.

o
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Equivalence relations

Definition

Suppose that A is a set and P(A) its power set. F C P(A) is pairwise disjoint if
VXeEFVY eF(X#£Y = XNY=0).

The family F is a partitition of Aif | JF = A, VX € F(X # 0), and F is pairwise disjoint.

Definition
Suppose that R is a relation on A. If R is a reflexive, symmetric, and transtive, then R is

an equivalence relation.
.

Main aim

An equivalence relation <> a partition of a set.
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Equivalence relations
Definition

Suppose that R is an equivalence relation on A. Then the equivalence class of x w.r.t.
Ris [x]r = {y € AlyRx}.
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Equivalence relations

Definition

Suppose that R is an equivalence relation on A. Then the equivalence class of x w.r.t.
Ris [x]r = {y € AlyRx}.

The set of all equivalence classes is denoted A/R (Amod R)

A/R = {[x]g|x € A} = {X C A3x € A(X = [x]a)}
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Equivalence relations

Definition

Suppose that R is an equivalence relation on A. Then the equivalence class of x w.r.t.
Ris [x]r = {y € AlyRx}.

The set of all equivalence classes is denoted A/R (Amod R)

A/R = {[x]g|x € A} = {X C A3x € A(X = [x]a)}

Theorem

(4.6.5) Suppose that R is an equivalence relation on A. Then for
@ Forallx € A, x € [X]g.
@ Forallxce Aandy € A, y € [X]gr < [¥]r = [X]&.
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proof

@ 1. x € A. Then xRx by reflexivity. Thus x € [x]g.

o F = = DA
S. Choi (KAIST) Logic and set theory



proof
o 2.

@ 1. x € A. Then xRx by reflexivity. Thus x € [x]g.

Given

Goal
yelxls lr=I[xlr

=} F = = DA
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proof
o 2.

@ 1. x € A. Then xRx by reflexivity. Thus x € [x]g.
Given Goal
yelxls la=I[xr
@ To show:
Given

Goal
yeXlr Vz(z € ylp ¢+ z € [X]R)
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proof

@ 1. x € A. Then xRx by reflexivity. Thus x € [x]g.

o 2.
Given Goal
yelxls lr=I[xlr
@ To show:
Given Goal
yelxls Vz(z€[ylr < z € [X]R)
@ — part:

Given Goal
yelxls Vz(z€[ylr — z € [X]R)

S. Choi (KAIST) Logic and set theory November 6, 2012
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proof
o

Given Goal
y € [X]r zRx
z € [yla, yRx, zRy

o F = = DA
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proof
o

Given Goal
y €Xlr zRx
z € [ylm, yRx, zRy
@ + part:
Given

Goal
yelXlr Vz(z € [x]n — z € [y]r)

=} F = = DA
S. Choi (KAIST) Logic and set theory



proof

Given

Goal
y € [xla zRx
z € [ylm, yRx, zRy
@ + part:
Given Goal
yelXlr Vz(z € [x]n — z € [y]r)
°
Given Goal
yelxla z€lylr)
z€[xX]r
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Equivalence relation — Partition
Theorem

Suppose that R is an equivalence relation on a set A. Then A/R is a partition of A.

J
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Equivalence relation — Partition

Theorem
Suppose that R is an equivalence relation on a set A. Then A/ R is a partition of A.

Proof.

@ To show A/R is a partition of A, we show that [ JA/R = A, A/R is pairwise disjoint,
and no element of A/R is empty.
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Equivalence relation — Partition

Theorem
Suppose that R is an equivalence relation on a set A. Then A/ R is a partition of A.

Proof.
@ To show A/R is a partition of A, we show that [ JA/R = A, A/R is pairwise disjoint,
and no element of A/R is empty.

@ For the first item, | JA/R C A. We show A C |JA/R. Suppose x € A. Then
X € [X]a. Thus x € | JA/R.
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Equivalence relation — Partition

Theorem
Suppose that R is an equivalence relation on a set A. Then A/ R is a partition of A.

Proof.

@ To show A/R is a partition of A, we show that [ JA/R = A, A/R is pairwise disjoint,
and no element of A/R is empty.

@ For the first item, | JA/R C A. We show A C |JA/R. Suppose x € A. Then
X € [X]a. Thus x € | JA/R.

@ The pairwise disjointness follows from what?
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Equivalence relation — Partition

Theorem
Suppose that R is an equivalence relation on a set A. Then A/ R is a partition of A.

Proof.

@ To show A/R is a partition of A, we show that [ JA/R = A, A/R is pairwise disjoint,
and no element of A/R is empty.

@ For the first item, | JA/R C A. We show A C |JA/R. Suppose x € A. Then
X € [X]a. Thus x € | JA/R.

@ The pairwise disjointness follows from what?
@ Suppose X € A/R. Then X = [x]g 3 x and hence is not empty.

S. Choi (KAIST) Logic and set theory November 6, 2012 25/29




Equivalence relations

Equivalence relation < Partition

Theorem

(4.6.6) Let A be a set. F a partition of A. Then there exists an equivalence relation R
on a set A such that F = A/R.

We need two lemmas to prove this.
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Equivalence relation < Partition

Theorem

(4.6.6) Let A be a set. F a partition of A. Then there exists an equivalence relation R
on a set A such that F = A/R.

We need two lemmas to prove this.

Lemma

(4.6.7) A a set. F a partition of A. Let R = Jy. (X x X). Then R is an equivalence
relation on A.
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Equivalence relation < Partition

Theorem

(4.6.6) Let A be a set. F a partition of A. Then there exists an equivalence relation R
on a set A such that F = A/R.

We need two lemmas to prove this.

Lemma

(4.6.7) A a set. F a partition of A. Let R = Jy. (X x X). Then R is an equivalence
relation on A.

@ We call R the equivalence relation induced by F.
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Equivalence relation < Partition

Theorem

(4.6.6) Let A be a set. F a partition of A. Then there exists an equivalence relation R
on a set A such that F = A/R.

We need two lemmas to prove this.

Lemma

(4.6.7) A a set. F a partition of A. Let R = Jx. (X x X). Then R is an equivalence
relation on A.

@ We call R the equivalence relation induced by F.
@ The proof: we verify the three properties of equivalence relations.
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Equivalence relation < Partition

Theorem

(4.6.6) Let A be a set. F a partition of A. Then there exists an equivalence relation R
on a set A such that F = A/R.

We need two lemmas to prove this.

Lemma

(4.6.7) A a set. F a partition of A. Let R = Jx. (X x X). Then R is an equivalence
relation on A.

@ We call R the equivalence relation induced by F.
@ The proof: we verify the three properties of equivalence relations.

© We prove the transitivity: xRy, yRz. (x,y) € X x X'and (y,z) € Y x Y. Then
XNY>y. Thus, X =Y. Thus, (x,z) € X x X and xRz.
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Lemma
by F. Suppose X € F and x € X. Then [x]a = X.

(4.6.8) Let A be a set. F a partition of A. Let R be the equivalence relation determined

S. Choi (KAIST)
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Equivalence relations

Lemma

(4.6.8) Let A be a set. F a partition of A. Let R be the equivalence relation determined
by F. Suppose X € F and x € X. Then [x]g = X.

°
Given Goal

XeF,xeX [XlgC X,XC[x]r
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Equivalence relations

Lemma

(4.6.8) Let A be a set. F a partition of A. Let R be the equivalence relation determined
by F. Suppose X € F and x € X. Then [x]g = X.

°
Given Goal
XeF,xeX [XlgC X,XC[x]r
@ part 1:
Given Goal
XeF,xeX yeX
y€xla
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Equivalence relations

Lemma

(4.6.8) Let A be a set. F a partition of A. Let R be the equivalence relation determined

by F. Suppose X € F and x € X. Then [x]g = X.

°
Given Goal
XeF,xeX [XlgC X,XC[x]r
@ part 1:
Given Goal
XeF,xeX yeX
y€xla
*]
Given Goal
XeF,xeX yeX

yRxor(y,x) e YxY,Thus, Y =X
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Equivalence relations

Lemma

(4.6.8) Let A be a set. F a partition of A. Let R be the equivalence relation determined

by F. Suppose X € F and x € X. Then [x]g = X.

°
Given Goal
XeF,xeX [XlgC X,XC[x]r
@ part 1:
Given Goal
XeF,xeX yeX
y€xla
*]
Given Goal
XeF,xeX yeX

yRxor(y,x) e YxY,Thus, Y =X
@ part 2: omit

S. Choi (KAIST) Logic and set theory November 6, 2012
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Proof of Theorem 4.6.6
O Let R=Uycr X x X.

=} F = = DA
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Proof of Theorem 4.6.6

o Let R= Uy » X x X.

@ We show that A/R = F. Thatis, X € A/R+ X € F.

=} F = = DA
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Proof of Theorem 4.6.6

o Let R= Uy » X x X.

@ We show that A/R = F. Thatis, X € A/R+ X € F.
@ part1: —.

Given

Goal
XeA/R XeF
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Proof of Theorem 4.6.6

@ Let A=y X xX.
@ We show that A/R = F. Thatis, X € A/R+ X € F.
@ part1: —.

Given Goal
XeA/R XeF

Given Goal
X =[x]g,x €A XeF
x € YforsomeY e F
Y = [x]r by 4.6.8
Y=X

S. Choi (KAIST) Logic and set theory November 6, 2012
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Proof of Theorem 4.6.6

@ part2: +.

Given Goal

XeF X eA/R
X#£0xeX

X =[x]r€ A/Rby 4.6.8

=} F = = DA
S. Choi (KAIST) Logic and set theory
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