Logic and the set theory Lecture 16: Relations in How to Prove It.

S. Choi

Department of Mathematical Science
KAIST, Daejeon, South Korea

Fall semester, 2012

About this lecture

- Ordered pairs and Cartesian products

About this lecture

- Ordered pairs and Cartesian products
- Relations

About this lecture

- Ordered pairs and Cartesian products
- Relations
- More about relations

About this lecture

- Ordered pairs and Cartesian products
- Relations
- More about relations
- Ordering relations

About this lecture

- Ordered pairs and Cartesian products
- Relations
- More about relations
- Ordering relations
- Closures

About this lecture

- Ordered pairs and Cartesian products
- Relations
- More about relations
- Ordering relations
- Closures
- Equivalence relations

About this lecture

- Ordered pairs and Cartesian products
- Relations
- More about relations
- Ordering relations
- Closures
- Equivalence relations
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr

About this lecture

- Ordered pairs and Cartesian products
- Relations
- More about relations
- Ordering relations
- Closures
- Equivalence relations
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 2)

Ordering relations

- A relation $R \subset A \times A$ is antisymmetric if $\forall x \in A \forall y \in A((x R y \wedge y R x) \rightarrow y=x)$.

Ordering relations

- A relation $R \subset A \times A$ is antisymmetric if $\forall x \in A \forall y \in A((x R y \wedge y R x) \rightarrow y=x)$.
- R is a partial order on A if it is reflexive, transitive and antisymmetric.

Ordering relations

- A relation $R \subset A \times A$ is antisymmetric if $\forall x \in A \forall y \in A((x R y \wedge y R x) \rightarrow y=x)$.
- R is a partial order on A if it is reflexive, transitive and antisymmetric.
- R is a total order on A if it is a partial order and $\forall x \in A \forall y \in A(x R y \vee y R x)$.

Example

- $A=\{1,2\}$ and $B=P(A)$.

Example

- $A=\{1,2\}$ and $B=P(A)$.
- The subset relation is a partial order but not a total order.

Example

- $A=\{1,2\}$ and $B=P(A)$.
- The subset relation is a partial order but not a total order.
- $D=\left\{(x, y) \in \mathbb{Z}^{+} \times \mathbb{Z}^{+} \mid x\right.$ divides $\left.y\right\}$.

Example

- $A=\{1,2\}$ and $B=P(A)$.
- The subset relation is a partial order but not a total order.
- $D=\left\{(x, y) \in \mathbb{Z}^{+} \times \mathbb{Z}^{+} \mid x\right.$ divides $\left.y\right\}$.
- $G=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \geq y\}$.

Smallest element

Definition

Let R be a partial order on a set A. Let $B \subset A$ and $b \in B$.

- b is called a smallest element of B if $\forall x \in B(b R x)$.

Smallest element

Definition

Let R be a partial order on a set A. Let $B \subset A$ and $b \in B$.

- b is called a smallest element of B if $\forall x \in B(b R x)$.
- b is R-minimal if $\neg \exists x \in B(x R b \wedge x \neq b)$.

Smallest element

Definition

Let R be a partial order on a set A. Let $B \subset A$ and $b \in B$.

- b is called a smallest element of B if $\forall x \in B(b R x)$.
- b is R-minimal if $\neg \exists x \in B(x R b \wedge x \neq b)$.
- Which is a stronger concept?

Example

- $L=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \leq y\}$ which is a total order on \mathbb{R}. $B=\{x \in \mathbb{R} \mid x \geq 7\}$. $C=\{x \in \mathbb{R} \mid x>7\}$.

Example

- $L=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \leq y\}$ which is a total order on \mathbb{R}. $B=\{x \in \mathbb{R} \mid x \geq 7\}$. $C=\{x \in \mathbb{R} \mid x>7\}$.
- L-minimal ? L-smallest?

Example

- $L=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \leq y\}$ which is a total order on \mathbb{R}. $B=\{x \in \mathbb{R} \mid x \geq 7\}$. $C=\{x \in \mathbb{R} \mid x>7\}$.
- L-minimal ? L-smallest?
- \mathbb{Z}^{+}with divisibility relation. $B=\{3,4,5,6,7,8,9\}$. R-minimal? R-smallest?

Example

- $L=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \leq y\}$ which is a total order on $\mathbb{R} . B=\{x \in \mathbb{R} \mid x \geq 7\}$. $C=\{x \in \mathbb{R} \mid x>7\}$.
- L-minimal ? L-smallest?
- \mathbb{Z}^{+}with divisibility relation. $B=\{3,4,5,6,7,8,9\}$. R-minimal? R-smallest?
- $S=\left\{(x, y) \in P\left(\mathbb{Z}^{+}\right) \times P\left(\mathbb{Z}^{+}\right) \mid x \subset y\right\} . \mathcal{F}=\left\{x \in P\left(\mathbb{Z}^{+}\right) \mid 2 \in X \wedge 3 \in X\right\}$.

Example

- $L=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \leq y\}$ which is a total order on $\mathbb{R} . B=\{x \in \mathbb{R} \mid x \geq 7\}$. $C=\{x \in \mathbb{R} \mid x>7\}$.
- L-minimal ? L-smallest?
- \mathbb{Z}^{+}with divisibility relation. $B=\{3,4,5,6,7,8,9\}$. R-minimal? R-smallest?
- $S=\left\{(x, y) \in P\left(\mathbb{Z}^{+}\right) \times P\left(\mathbb{Z}^{+}\right) \mid x \subset y\right\} . \mathcal{F}=\left\{x \in P\left(\mathbb{Z}^{+}\right) \mid 2 \in X \wedge 3 \in X\right\}$.
- R-minimal? R-smallest?

Theorem

Let R be a partial order on A. $B \subset A$.

- If B has a smallest element, then the smallest element is unique.

Theorem

Let R be a partial order on A. $B \subset A$.

- If B has a smallest element, then the smallest element is unique.
- Suppose that b is a smallest element of B. Then b is minimal element of B and the unique minimal element of b.

Theorem

Let R be a partial order on A. $B \subset A$.

- If B has a smallest element, then the smallest element is unique.
- Suppose that b is a smallest element of B. Then b is minimal element of B and the unique minimal element of b.
- If R is a total order and b is a minimal element of B, then b is the smallest element of B. (not proved)

Proof of 1

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\exists b(\forall x \in B(b R x)) & \exists!b \forall x(b R x)
\end{array}
$$

Proof of 1

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\exists b(\forall x \in B(b R x)) & \exists!b \forall x(b R x) \\
\text { Given } & \text { Goal } \\
\forall x \in B\left(b_{0} R x\right) & \forall x(c R x) \rightarrow c=b_{0}
\end{array}
$$

Proof of 1

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\exists b(\forall x \in B(b R x)) & \exists!b \forall x(b R x)
\end{array}
$$

$\begin{array}{cc}\text { Given } & \text { Goal } \\ \forall x \in B\left(b_{0} R x\right)\end{array} \quad \forall x(c R x) \rightarrow c=b_{0}$
Given Goal
$\forall x \in B\left(b_{0} R x\right) \quad c=b_{0}$
$\forall x(c R x)$
$c R b_{0}, b_{0} R c$

Proof of 2

- Divide goal. b is minimal and b is uniquely minimal.

Proof of 2

- Divide goal. b is minimal and b is uniquely minimal.
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
b(\forall x \in B(b R x)) & \neg \exists x \in B(x R b \wedge x \neq b)
\end{array}
$$

Proof of 2

- Divide goal. b is minimal and b is uniquely minimal.
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
b(\forall x \in B(b R x)) & \neg \exists x \in B(x R b \wedge x \neq b)
\end{array}
$$

Given
Goal
$(\forall x \in B(b R x)) \quad \forall x \in B \neg(x R b \wedge x \neq b)$

Proof of 2

- Divide goal. b is minimal and b is uniquely minimal.
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
b(\forall x \in B(b R x)) & \neg \exists x \in B(x R b \wedge x \neq b)
\end{array}
$$

-

Given
Goal
$(\forall x \in B(b R x)) \quad \forall x \in B \neg(x R b \wedge x \neq b)$
Given
Goal
$(\forall x \in B(b R x)) \quad \forall x \in B(x R b \rightarrow x=b)$

Proof of 2

- Divide goal. b is minimal and b is uniquely minimal.
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
b(\forall x \in B(b R x)) & \neg \exists x \in B(x R b \wedge x \neq b)
\end{array}
$$

\bullet
Given
Goal
$(\forall x \in B(b R x)) \quad \forall x \in B \neg(x R b \wedge x \neq b)$
$\begin{array}{cc}\text { Given } & \text { Goal } \\ (\forall x \in B(b R x)) & \forall x \in B(x R b \rightarrow x=b)\end{array}$
Given Goal
$(\forall x \in B(b R x)) \quad x=b$
$x \in B, x R b$

Proof of 2 continued

- Divide goal. b is minimal and b is uniquely minimal.

Proof of 2 continued

- Divide goal. b is minimal and b is uniquely minimal.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
b(\forall x \in B(b R x))
\end{array} \quad \forall c \in B((\forall x \in B(x R c \rightarrow x=c)) \rightarrow b=c)
$$

Proof of 2 continued

- Divide goal. b is minimal and b is uniquely minimal.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
b(\forall x \in B(b R x))
\end{array} \quad \forall c \in B((\forall x \in B(x R c \rightarrow x=c)) \rightarrow b=c)
$$

$$
\begin{array}{cr}
\text { Given } & \text { Goal } \\
b(\forall x \in B(b R x)) & b=c \\
c \in B & \\
\forall x \in B(x R c \rightarrow x=c)) &
\end{array}
$$

Proof of 2 continued

- Divide goal. b is minimal and b is uniquely minimal.

$$
\begin{array}{cl}
\text { Given } & \text { Goal } \\
b(\forall x \in B(b R x)) & \forall c \in B((\forall x \in B(x R c \rightarrow x=c)) \rightarrow b=c)
\end{array}
$$

-

> Given
> $b(\forall x \in B(b R x))$
> $c \in B$
> $\forall x \in B(x R c \rightarrow x=c))$

Given
$b(\forall x \in B(b R x))$ $c \in B$
$\forall x \in B(x R c \rightarrow x=c))$
$b R c$, hence $b=c$

- Largest elements: $B \subset A . \forall x \in B(x R b)$
- maximal element: $\neg \exists x \in B(b R x \wedge b \neq x)$.
- Largest elements: $B \subset A . \forall x \in B(x R b)$
- maximal element: $\neg \exists x \in B(b R x \wedge b \neq x)$.

Definition

$B \subset A$. a is a lower bound of B if $\forall x \in B(a R x)$.
$a \in A$ is an upper bound of B if $\forall x \in B(x R a)$.

- Let U be the set of upper bounds for B and let L be the set of lower bounds for B.
- If U has a smallest element, this smallest element is said to be the least upper bound (lub, supremum).
If L has a greatest element, this element is said to be the greatest lower bound (glb, infimum).
- Largest elements: $B \subset A . \forall x \in B(x R b)$
- maximal element: $\neg \exists x \in B(b R x \wedge b \neq x)$.

Definition

$B \subset A$. a is a lower bound of B if $\forall x \in B(a R x)$.
$a \in A$ is an upper bound of B if $\forall x \in B(x R a)$.
Let U be the set of upper bounds for B and let L be the set of lower bounds for B.
If U has a smallest element, this smallest element is said to be the least upper bound (lub, supremum).
If L has a greatest element, this element is said to be the greatest lower bound (glb, infimum).

- These elements may not equal the smallest, minimal (greatest, maximal) element of B...

Definition

Let R be a relation on A.

- R is irreflexive if $\forall x \in A((x, x) \notin R)$.

Definition

Let R be a relation on A.

- R is irreflexive if $\forall x \in A((x, x) \notin R)$.
- R is a strict partial order if it is irreflexive and transitive.

Definition

Let R be a relation on A.

- R is irreflexive if $\forall x \in A((x, x) \notin R)$.
- R is a strict partial order if it is irreflexive and transitive.
- R is a strict total order if it is a strict partial order and satisfies $\forall x \in A \forall y \in A(x R y \vee y R x \vee x=y)$.

Definition

Let R be a relation on A.

- R is irreflexive if $\forall x \in A((x, x) \notin R)$.
- R is a strict partial order if it is irreflexive and transitive.
- R is a strict total order if it is a strict partial order and satisfies $\forall x \in A \forall y \in A(x R y \vee y R x \vee x=y)$.

Definition

Let R be a relation on A.

- R is irreflexive if $\forall x \in A((x, x) \notin R)$.
- R is a strict partial order if it is irreflexive and transitive.
- R is a strict total order if it is a strict partial order and satisfies $\forall x \in A \forall y \in A(x R y \vee y R x \vee x=y)$.

The reflexive closure of a strict partial order (resp. strict total order) is a partial order (resp. total order).

Real number system (Hrbaceck 4.5)

- < a strict total order.

Real number system (Hrbaceck 4.5)

- < a strict total order.
- An ordered set is dense if it has at least two elements and if for all $a, b \in X, a<b$ implies there exists $x \in X$ such that $a<x<b$.

Real number system (Hrbaceck 4.5)

- < a strict total order.
- An ordered set is dense if it has at least two elements and if for all $a, b \in X, a<b$ implies there exists $x \in X$ such that $a<x<b$.
- Let $(P,<)$ be a dense linearly (totally) ordered set. P is complete if every nonempty subset S bounded above has a supremum.

Real number system (Hrbaceck 4.5)

Real number system (Hrbaceck 4.5)

Theorem

Let $(P,<)$ be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set $\left(C,<^{\prime}\right)$ unique up to isomorphism such that

Real number system (Hrbaceck 4.5)

Theorem

Let $(P,<)$ be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set $\left(C,<^{\prime}\right)$ unique up to isomorphism such that
$P \subset C$. order preserved

Real number system (Hrbaceck 4.5)

Theorem

Let $(P,<)$ be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set $\left(C,<^{\prime}\right)$ unique up to isomorphism such that
$P \subset C$. order preserved
P is dense in C.

Real number system (Hrbaceck 4.5)

Theorem

Let $(P,<)$ be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set $\left(C,<^{\prime}\right)$ unique up to isomorphism such that
$P \subset C$. order preserved
P is dense in C.
C does not have endpoints.

Real number system (Hrbaceck 4.5)

Theorem

Let $(P,<)$ be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set $\left(C,<^{\prime}\right)$ unique up to isomorphism such that
$P \subset C$. order preserved
P is dense in C.
C does not have endpoints.

- The real number system is the completion of \mathbb{Q}.

Real number system (Hrbaceck 4.5)

Theorem

Let $(P,<)$ be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set $\left(C,<^{\prime}\right)$ unique up to isomorphism such that
$P \subset C$. order preserved
P is dense in C.
C does not have endpoints.

- The real number system is the completion of \mathbb{Q}.
- The real number system is the unique complete linearly ordered set without endpoints that has a countable subset dense in it.

Real number system (Hrbaceck 4.5)

Theorem

Let $(P,<)$ be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set $\left(C,<^{\prime}\right)$ unique up to isomorphism such that
$P \subset C$. order preserved
P is dense in C.
C does not have endpoints.

- The real number system is the completion of \mathbb{Q}.
- The real number system is the unique complete linearly ordered set without endpoints that has a countable subset dense in it.
- Conway, Knuth invented surreal numbers...

Reflexive closures

Definition

- Let R be a relation. The reflexive closure of R is the smallest set $S \subset A \times A$ such that $R \subset S$ and S is reflexive.

Reflexive closures

Definition

- Let R be a relation. The reflexive closure of R is the smallest set $S \subset A \times A$ such that $R \subset S$ and S is reflexive.
- In other words, S is such that $R \subset S, S$ is reflexive, for every $T \subset A \times A$ and if $R \subset T$ and T is reflexive, then $S \subset T$.

Theorem

(4.5.2) Suppose that S is a relation on A. Then R has a reflexive closure.

Theorem

(4.5.2) Suppose that S is a relation on A. Then R has a reflexive closure.

Proof.

Let $S=R \cup i_{A}$. Properties 1, 2 are obvious. For $3, R \subset T$. Since T is reflexive, $i_{A} \subset T$. Thus $S=R \cup i_{A} \subset T$.

Definition

Let R be a relation on A. The symmetric closure of R is the smallest set $S \subset A \times A$ such that $R \subset S$ and S is symmetric. This is equivalent to.

- $R \subset S$.

Definition

Let R be a relation on A. The symmetric closure of R is the smallest set $S \subset A \times A$ such that $R \subset S$ and S is symmetric. This is equivalent to.

- $R \subset S$.
- S is symmetric.

Definition

Let R be a relation on A. The symmetric closure of R is the smallest set $S \subset A \times A$ such that $R \subset S$ and S is symmetric. This is equivalent to.

- $R \subset S$.
- S is symmetric.
- For any $T \subset A \times A$ and $R \subset T$ and T is symmetric imply that $S \subset T$.

Definition

Let R be a relation on A. The transitive closure of R is the smallest set $S \subset A \times A$ such that $R \subset S$ and S is transitive. This is equivalent to.

- $R \subset S$.

Definition

Let R be a relation on A. The transitive closure of R is the smallest set $S \subset A \times A$ such that $R \subset S$ and S is transitive. This is equivalent to.

- $R \subset S$.
- S is transtive.

Definition

Let R be a relation on A. The transitive closure of R is the smallest set $S \subset A \times A$ such that $R \subset S$ and S is transitive. This is equivalent to.

- $R \subset S$.
- S is transtive.
- For any $T \subset A \times A$ and $R \subset T$ and T is transitive imply that $S \subset T$.

Definition

Let R be a relation on A. The transitive closure of R is the smallest set $S \subset A \times A$ such that $R \subset S$ and S is transitive. This is equivalent to.

- $R \subset S$.
- S is transtive.
- For any $T \subset A \times A$ and $R \subset T$ and T is transitive imply that $S \subset T$.

Definition

Let R be a relation on A. The transitive closure of R is the smallest set $S \subset A \times A$ such that $R \subset S$ and S is transitive. This is equivalent to.

- $R \subset S$.
- S is transtive.
- For any $T \subset A \times A$ and $R \subset T$ and T is transitive imply that $S \subset T$.

Example

See Figures 1,2,3 in pages 206-207 in HTP.

Theorems

Theorem

Suppose that R is a relation on A. Then R has a symmetric closure.

Theorems

Theorem

Suppose that R is a relation on A. Then R has a symmetric closure.

Proof.

hint: $R \cup R^{-1}$.

Theorems

Theorem

Suppose that R is a relation on A. Then R has a symmetric closure.

Proof.

hint: $R \cup R^{-1}$.

Theorem

Suppose that R is a relation on A. Then R has a transitive closure.

Theorems

Theorem

Suppose that R is a relation on A. Then R has a symmetric closure.

Proof.

hint: $R \cup R^{-1}$.

Theorem

Suppose that R is a relation on A. Then R has a transitive closure.

Proof.

hint: Take intersections of all transitive relations containing R.

Equivalence relations

Definition

Suppose that A is a set and $P(A)$ its power set. $\mathcal{F} \subset P(A)$ is pairwise disjoint if

$$
\forall X \in \mathcal{F} \forall Y \in \mathcal{F}(X \neq Y \rightarrow X \cap Y=\emptyset) .
$$

The family \mathcal{F} is a partitition of A if $\bigcup \mathcal{F}=A, \forall X \in \mathcal{F}(X \neq \emptyset)$, and \mathcal{F} is pairwise disjoint.

Equivalence relations

Definition

Suppose that A is a set and $P(A)$ its power set. $\mathcal{F} \subset P(A)$ is pairwise disjoint if

$$
\forall X \in \mathcal{F} \forall Y \in \mathcal{F}(X \neq Y \rightarrow X \cap Y=\emptyset) .
$$

The family \mathcal{F} is a partitition of A if $\bigcup \mathcal{F}=A, \forall X \in \mathcal{F}(X \neq \emptyset)$, and \mathcal{F} is pairwise disjoint.

Definition

Suppose that R is a relation on A. If R is a reflexive, symmetric, and transtive, then R is an equivalence relation.

Equivalence relations

Definition

Suppose that A is a set and $P(A)$ its power set. $\mathcal{F} \subset P(A)$ is pairwise disjoint if

$$
\forall X \in \mathcal{F} \forall Y \in \mathcal{F}(X \neq Y \rightarrow X \cap Y=\emptyset) .
$$

The family \mathcal{F} is a partitition of A if $\bigcup \mathcal{F}=A, \forall X \in \mathcal{F}(X \neq \emptyset)$, and \mathcal{F} is pairwise disjoint.

Definition

Suppose that R is a relation on A. If R is a reflexive, symmetric, and transtive, then R is an equivalence relation.

Main aim

An equivalence relation \leftrightarrow a partition of a set.

Equivalence relations

Definition

Suppose that R is an equivalence relation on A. Then the equivalence class of x w.r.t. R is $[x]_{R}=\{y \in A \mid y R x\}$.

Equivalence relations

Definition

Suppose that R is an equivalence relation on A. Then the equivalence class of x w.r.t. R is $[x]_{R}=\{y \in A \mid y R x\}$.

The set of all equivalence classes is denoted $A / R(A \bmod R)$

$$
A / R:=\left\{[x]_{R} \mid x \in A\right\}=\left\{X \subset A \mid \exists x \in A\left(X=[x]_{R}\right)\right\}
$$

Equivalence relations

Definition

Suppose that R is an equivalence relation on A. Then the equivalence class of x w.r.t. R is $[x]_{R}=\{y \in A \mid y R x\}$.

The set of all equivalence classes is denoted $A / R(A \bmod R)$

$$
A / R:=\left\{[x]_{R} \mid x \in A\right\}=\left\{X \subset A \mid \exists x \in A\left(X=[x]_{R}\right)\right\}
$$

Theorem

(4.6.5) Suppose that R is an equivalence relation on A. Then for

- For all $x \in A, x \in[x]_{R}$.
- For all $x \in A$ and $y \in A, y \in[x]_{R} \leftrightarrow[y]_{R}=[x]_{R}$.

proof

- 1. $x \in A$. Then $x R x$ by reflexivity. Thus $x \in[x]_{R}$.

proof

- 1. $x \in A$. Then $x R x$ by reflexivity. Thus $x \in[x]_{R}$.
- 2.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
y \in[x]_{R} & {[y]_{R}=[x]_{R}}
\end{array}
$$

proof

- 1. $x \in A$. Then $x R x$ by reflexivity. Thus $x \in[x]_{R}$.
- 2.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
y \in[x]_{R} & {[y]_{R}=[x]_{R}}
\end{array}
$$

- To show:

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
y \in[x]_{R} & \forall z\left(z \in[y]_{R} \leftrightarrow z \in[x]_{R}\right)
\end{array}
$$

proof

- 1. $x \in A$. Then $x R x$ by reflexivity. Thus $x \in[x]_{R}$.
- 2.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
y \in[x]_{R} & {[y]_{R}=[x]_{R}}
\end{array}
$$

- To show:

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
y \in[x]_{R} & \forall z\left(z \in[y]_{R} \leftrightarrow z \in[x]_{R}\right)
\end{array}
$$

- \rightarrow part:

Given Goal

$$
y \in[x]_{R} \quad \forall z\left(z \in[y]_{R} \rightarrow z \in[x]_{R}\right)
$$

proof

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
y \in[x]_{R} & z R x \\
z \in[y]_{R}, y R x, z R y &
\end{array}
$$

proof

-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
y \in[x]_{R} & z R x \\
z \in[y]_{R, ~ y R x, z R y} &
\end{array}
$$

- \leftarrow part :

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
y \in[x]_{R} & \forall z\left(z \in[x]_{R} \rightarrow z \in[y]_{R}\right)
\end{array}
$$

proof

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
y \in[x]_{R} & z R x \\
z \in[y]_{R, ~ y R x, z R y} &
\end{array}
$$

- \leftarrow part :

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
y \in[x]_{R} & \forall z\left(z \in[x]_{R} \rightarrow z \in[y]_{R}\right)
\end{array}
$$

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
y \in[x]_{R} & \left.z \in[y]_{R}\right) \\
z \in[x]_{R} &
\end{array}
$$

Equivalence relation \rightarrow Partition

Theorem

Suppose that R is an equivalence relation on a set A. Then A / R is a partition of A.

Equivalence relation \rightarrow Partition

Theorem

Suppose that R is an equivalence relation on a set A. Then A / R is a partition of A.

Proof.

- To show A / R is a partition of A, we show that $\cup A / R=A, A / R$ is pairwise disjoint, and no element of A / R is empty.

Equivalence relation \rightarrow Partition

Theorem

Suppose that R is an equivalence relation on a set A. Then A / R is a partition of A.

Proof.

- To show A / R is a partition of A, we show that $\cup A / R=A, A / R$ is pairwise disjoint, and no element of A / R is empty.
- For the first item, $\cup A / R \subset A$. We show $A \subset \cup A / R$. Suppose $x \in A$. Then $x \in[x]_{R}$. Thus $x \in \cup A / R$.

Equivalence relation \rightarrow Partition

Theorem

Suppose that R is an equivalence relation on a set A. Then A / R is a partition of A.

Proof.

- To show A / R is a partition of A, we show that $\cup A / R=A, A / R$ is pairwise disjoint, and no element of A / R is empty.
- For the first item, $\cup A / R \subset A$. We show $A \subset \cup A / R$. Suppose $x \in A$. Then $x \in[x]_{R}$. Thus $x \in \cup A / R$.
- The pairwise disjointness follows from what?

Equivalence relation \rightarrow Partition

Theorem

Suppose that R is an equivalence relation on a set A. Then A / R is a partition of A.

Proof.

- To show A / R is a partition of A, we show that $\cup A / R=A, A / R$ is pairwise disjoint, and no element of A / R is empty.
- For the first item, $\cup A / R \subset A$. We show $A \subset \cup A / R$. Suppose $x \in A$. Then $x \in[x]_{R}$. Thus $x \in \cup A / R$.
- The pairwise disjointness follows from what?
- Suppose $X \in A / R$. Then $X=[x]_{R} \ni x$ and hence is not empty.

Equivalence relation \leftarrow Partition

Theorem

(4.6.6) Let A be a set. \mathcal{F} a partition of A. Then there exists an equivalence relation R on a set A such that $\mathcal{F}=A / R$.

We need two lemmas to prove this.

Equivalence relation \leftarrow Partition

Theorem

(4.6.6) Let A be a set. \mathcal{F} a partition of A. Then there exists an equivalence relation R on a set A such that $\mathcal{F}=A / R$.

We need two lemmas to prove this.

Lemma

(4.6.7) A a set. \mathcal{F} a partition of A. Let $R=\bigcup_{X \in \mathcal{F}}(X \times X)$. Then R is an equivalence relation on A.

Equivalence relation \leftarrow Partition

Theorem

(4.6.6) Let A be a set. \mathcal{F} a partition of A. Then there exists an equivalence relation R on a set A such that $\mathcal{F}=A / R$.

We need two lemmas to prove this.

Lemma

(4.6.7) A a set. \mathcal{F} a partition of A. Let $R=\bigcup_{x \in \mathcal{F}}(X \times X)$. Then R is an equivalence relation on A.
(1) We call R the equivalence relation induced by \mathcal{F}.

Equivalence relation \leftarrow Partition

Theorem

(4.6.6) Let A be a set. \mathcal{F} a partition of A. Then there exists an equivalence relation R on a set A such that $\mathcal{F}=A / R$.

We need two lemmas to prove this.

Lemma

(4.6.7) A a set. \mathcal{F} a partition of A. Let $R=\bigcup_{x \in \mathcal{F}}(X \times X)$. Then R is an equivalence relation on A.
(1) We call R the equivalence relation induced by \mathcal{F}.
(2) The proof: we verify the three properties of equivalence relations.

Equivalence relation \leftarrow Partition

Theorem

(4.6.6) Let A be a set. \mathcal{F} a partition of A. Then there exists an equivalence relation R on a set A such that $\mathcal{F}=A / R$.

We need two lemmas to prove this.

Lemma

(4.6.7) A a set. \mathcal{F} a partition of A. Let $R=\bigcup_{x \in \mathcal{F}}(X \times X)$. Then R is an equivalence relation on A.
(1) We call R the equivalence relation induced by \mathcal{F}.
(2) The proof: we verify the three properties of equivalence relations.
(3) We prove the transitivity: $x R y, y R z .(x, y) \in X \times X$ and $(y, z) \in Y \times Y$. Then $X \cap Y \ni y$. Thus, $X=Y$. Thus, $(x, z) \in X \times X$ and $x R z$.

Lemma

(4.6.8) Let A be a set. \mathcal{F} a partition of A. Let R be the equivalence relation determined by \mathcal{F}. Suppose $X \in \mathcal{F}$ and $x \in X$. Then $[x]_{R}=X$.

Lemma

(4.6.8) Let A be a set. \mathcal{F} a partition of A. Let R be the equivalence relation determined by \mathcal{F}. Suppose $X \in \mathcal{F}$ and $x \in X$. Then $[x]_{R}=X$.

$$
\underset{x \in \mathcal{F}, x \in X}{ } \quad \stackrel{\text { Given }}{ } \quad[x]_{R} \subset X, X \subset[x]_{R}
$$

Lemma

(4.6.8) Let A be a set. \mathcal{F} a partition of A. Let R be the equivalence relation determined by \mathcal{F}. Suppose $X \in \mathcal{F}$ and $x \in X$. Then $[x]_{R}=X$.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
X \in \mathcal{F}, x \in X & {[x]_{R} \subset X, X \subset[x]_{R}}
\end{array}
$$

- part 1:

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
x \in \mathcal{F}, x \in X \\
y \in[x]_{R} & y \in X
\end{array}
$$

Lemma

(4.6.8) Let A be a set. \mathcal{F} a partition of A. Let R be the equivalence relation determined by \mathcal{F}. Suppose $X \in \mathcal{F}$ and $x \in X$. Then $[x]_{R}=X$.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
X \in \mathcal{F}, x \in X & {[x]_{R} \subset X, X \subset[x]_{R}}
\end{array}
$$

- part 1:

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
x \in \mathcal{F}, x \in X & y \in X \\
y \in[x]_{R} &
\end{array}
$$

Given
$X \in \mathcal{F}, x \in X \quad y \in X$
$y R x$ or $(y, x) \in Y \times Y$, Thus, $Y=X$

Lemma

(4.6.8) Let A be a set. \mathcal{F} a partition of A. Let R be the equivalence relation determined by \mathcal{F}. Suppose $X \in \mathcal{F}$ and $x \in X$. Then $[x]_{R}=X$.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
X \in \mathcal{F}, x \in X & {[x]_{R} \subset X, X \subset[x]_{R}}
\end{array}
$$

- part 1:

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
x \in \mathcal{F}, x \in X & y \in X \\
y \in[x]_{R} &
\end{array}
$$

Given
$X \in \mathcal{F}, x \in X \quad y \in X$ $y R x$ or $(y, x) \in Y \times Y$, Thus, $Y=X$

- part 2: omit

Proof of Theorem 4.6.6

- Let $R=\bigcup_{X \in \mathcal{F}} X \times X$.

Proof of Theorem 4.6.6

- Let $R=\bigcup_{X \in \mathcal{F}} X \times X$.
- We show that $A / R=\mathcal{F}$. That is, $X \in A / R \leftrightarrow X \in \mathcal{F}$.

Proof of Theorem 4.6.6

- Let $R=\cup_{X \in \mathcal{F}} X \times X$.
- We show that $A / R=\mathcal{F}$. That is, $X \in A / R \leftrightarrow X \in \mathcal{F}$.
- part 1: \rightarrow.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
x \in A / R & X \in \mathcal{F}
\end{array}
$$

Proof of Theorem 4.6.6

- Let $R=\cup_{X \in \mathcal{F}} X \times X$.
- We show that $A / R=\mathcal{F}$. That is, $X \in A / R \leftrightarrow X \in \mathcal{F}$.
- part 1: \rightarrow.

Given	Goal
$X \in A / R \quad X \in \mathcal{F}$	

Given
$X=[x]_{R}, x \in A \quad X \in \mathcal{F}$
$x \in Y$ for some $Y \in \mathcal{F}$
$Y=[x]_{R}$ by 4.6.8
$Y=X$

Proof of Theorem 4.6.6

- part 2: \leftarrow.

$$
\begin{array}{cr}
\text { Given } & \text { Goal } \\
x \in \mathcal{F} & x \in A / \\
x \neq \emptyset, x \in X & \\
X=[x]_{R} \in A / R \text { by } 4.6 .8 &
\end{array}
$$

