Logic and the set theory Lecture 16: Relations in How to Prove It.

S. Choi

Department of Mathematical Science KAIST, Daejeon, South Korea

Fall semester, 2012

• 3 > 4 3

• Ordered pairs and Cartesian products

・ロト ・回ト ・ヨト ・ヨト

- Ordered pairs and Cartesian products
- Relations

・ロト ・回ト ・ヨト ・ヨト

- Ordered pairs and Cartesian products
- Relations
- More about relations

- Ordered pairs and Cartesian products
- Relations
- More about relations
- Ordering relations

ъ

• • • • • • • • • • • • • •

- Ordered pairs and Cartesian products
- Relations
- More about relations
- Ordering relations
- Closures

ъ

• • • • • • • • • • • • • •

- Ordered pairs and Cartesian products
- Relations
- More about relations
- Ordering relations
- Closures
- Equivalence relations

ъ

Image: A matrix

• E •

- Ordered pairs and Cartesian products
- Relations
- More about relations
- Ordering relations
- Closures
- Equivalence relations
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr

- Ordered pairs and Cartesian products
- Relations
- More about relations
- Ordering relations
- Closures
- Equivalence relations
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

.

Some helpful references

• Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press. (Chapter 2)

Ordering relations

• A relation $R \subset A \times A$ is *antisymmetric* if $\forall x \in A \forall y \in A((xRy \land yRx) \rightarrow y = x)$.

イロト イポト イヨト イヨ

Ordering relations

- A relation $R \subset A \times A$ is *antisymmetric* if $\forall x \in A \forall y \in A((xRy \land yRx) \rightarrow y = x)$.
- *R* is a *partial order* on *A* if it is reflexive, transitive and antisymmetric.

Image: A matrix

Ordering relations

- A relation $R \subset A \times A$ is *antisymmetric* if $\forall x \in A \forall y \in A((xRy \land yRx) \rightarrow y = x)$.
- *R* is a *partial order* on *A* if it is reflexive, transitive and antisymmetric.
- *R* is a *total order* on *A* if it is a partial order and $\forall x \in A \forall y \in A(xRy \lor yRx)$.

Image: Image:

• $A = \{1, 2\}$ and B = P(A).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- $A = \{1, 2\}$ and B = P(A).
- The subset relation is a partial order but not a total order.

・ロト ・ 日 ・ ・ 目 ・ ・

- $A = \{1, 2\}$ and B = P(A).
- The subset relation is a partial order but not a total order.
- $D = \{(x, y) \in \mathbb{Z}^+ \times \mathbb{Z}^+ | x \text{ divides } y\}.$

- $A = \{1, 2\}$ and B = P(A).
- The subset relation is a partial order but not a total order.
- $D = \{(x, y) \in \mathbb{Z}^+ \times \mathbb{Z}^+ | x \text{ divides } y\}.$
- $G = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x \ge y\}.$

Smallest element

Definition

Let *R* be a partial order on a set *A*. Let $B \subset A$ and $b \in B$.

• *b* is called a *smallest element* of *B* if $\forall x \in B(bRx)$.

Smallest element

Definition

Let *R* be a partial order on a set *A*. Let $B \subset A$ and $b \in B$.

- *b* is called a *smallest element* of *B* if $\forall x \in B(bRx)$.
- *b* is *R*-minimal if $\neg \exists x \in B(xRb \land x \neq b)$.

(D) (A) (A) (A)

Smallest element

Definition

Let *R* be a partial order on a set *A*. Let $B \subset A$ and $b \in B$.

- *b* is called a *smallest element* of *B* if $\forall x \in B(bRx)$.
- *b* is *R*-minimal if $\neg \exists x \in B(xRb \land x \neq b)$.
- Which is a stronger concept?

(D) (A) (A) (A)

• $L = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x \le y\}$ which is a total order on \mathbb{R} . $B = \{x \in \mathbb{R} | x \ge 7\}$. $C = \{x \in \mathbb{R} | x > 7\}.$

・ロト ・回ト ・ヨト ・ヨト

- $L = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x \le y\}$ which is a total order on \mathbb{R} . $B = \{x \in \mathbb{R} | x \ge 7\}$. $C = \{x \in \mathbb{R} | x > 7\}.$
- L-minimal ? L-smallest?

イロト イヨト イヨト イヨト

- $L = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x \le y\}$ which is a total order on \mathbb{R} . $B = \{x \in \mathbb{R} | x \ge 7\}$. $C = \{x \in \mathbb{R} | x > 7\}.$
- L-minimal ? L-smallest?
- \mathbb{Z}^+ with divisibility relation. $B = \{3, 4, 5, 6, 7, 8, 9\}$. *R*-minimal? *R*-smallest?

- $L = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x \le y\}$ which is a total order on \mathbb{R} . $B = \{x \in \mathbb{R} | x \ge 7\}$. $C = \{x \in \mathbb{R} | x > 7\}.$
- L-minimal ? L-smallest?
- \mathbb{Z}^+ with divisibility relation. $B = \{3, 4, 5, 6, 7, 8, 9\}$. *R*-minimal? *R*-smallest?
- $S = \{(x, y) \in P(\mathbb{Z}^+) \times P(\mathbb{Z}^+) | x \subset y\}$. $\mathcal{F} = \{x \in P(\mathbb{Z}^+) | 2 \in X \land 3 \in X\}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- $L = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x \le y\}$ which is a total order on \mathbb{R} . $B = \{x \in \mathbb{R} | x \ge 7\}$. $C = \{x \in \mathbb{R} | x > 7\}.$
- L-minimal ? L-smallest?
- \mathbb{Z}^+ with divisibility relation. $B = \{3, 4, 5, 6, 7, 8, 9\}$. *R*-minimal? *R*-smallest?
- $S = \{(x, y) \in P(\mathbb{Z}^+) \times P(\mathbb{Z}^+) | x \subset y\}.$ $\mathcal{F} = \{x \in P(\mathbb{Z}^+) | 2 \in X \land 3 \in X\}.$
- R-minimal? R-smallest?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem

Let R be a partial order on A. $B \subset A$.

• If B has a smallest element, then the smallest element is unique.

・ロト ・回 ト ・ ヨト ・ ヨ

Theorem

Let R be a partial order on A. $B \subset A$.

- If B has a smallest element, then the smallest element is unique.
- Suppose that b is a smallest element of B. Then b is minimal element of B and the unique minimal element of b.

< ロ > < 回 > < 回 > < = > <

Theorem

Let R be a partial order on A. $B \subset A$.

- If B has a smallest element, then the smallest element is unique.
- Suppose that b is a smallest element of B. Then b is minimal element of B and the unique minimal element of b.
- If R is a total order and b is a minimal element of B, then b is the smallest element of B. (not proved)

Image: Image:

۲

$\begin{array}{ll} \text{Given} & \text{Goal} \\ \exists b (\forall x \in B(bRx)) & \exists ! b \forall x (bRx) \end{array}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

۲

・ロト ・回ト ・ヨト ・ヨト

۲

۲

 $\begin{array}{ll} \text{Given} & \text{Goal} \\ \exists b (\forall x \in B(bRx)) & \exists ! b \forall x (bRx) \\ \text{Given} & \text{Goal} \\ \forall x \in B(b_0Rx) & \forall x (cRx) \rightarrow c = b_0 \\ & \text{Given} & \text{Goal} \\ \forall x \in B(b_0Rx) & c = b_0 \\ & \forall x (cRx) \\ & cRb_0, b_0Rc \end{array}$

• Divide goal. *b* is minimal and *b* is uniquely minimal.

イロト イヨト イヨト イヨト

۲

• Divide goal. *b* is minimal and *b* is uniquely minimal.

 $\begin{array}{ll} \text{Given} & \text{Goal} \\ b(\forall x \in B(bRx)) & \neg \exists x \in B(xRb \land x \neq b) \end{array}$

イロト イヨト イヨト イヨト

۲

۲

• Divide goal. *b* is minimal and *b* is uniquely minimal.

GivenGoal $b(\forall x \in B(bRx))$ $\neg \exists x \in B(xRb \land x \neq b)$ GivenGoal $(\forall x \in B(bRx))$ $\forall x \in B \neg (xRb \land x \neq b)$
Proof of 2

• Divide goal. *b* is minimal and *b* is uniquely minimal.

Given Goal $b(\forall x \in B(bRx)) \neg \exists x \in B(xRb \land x \neq b)$ Given Goal $(\forall x \in B(bRx)) \forall x \in B \neg (xRb \land x \neq b)$ Given Goal $(\forall x \in B(bRx)) \forall x \in B(xRb \rightarrow x = b)$

Proof of 2

۲

۲

• Divide goal. *b* is minimal and *b* is uniquely minimal.

 $\begin{array}{lll} \begin{array}{lll} {\rm Given} & {\rm Goal} \\ b(\forall x \in B(bRx)) & \neg \exists x \in B(xRb \wedge x \neq b) \\ & {\rm Given} & {\rm Goal} \\ (\forall x \in B(bRx)) & \forall x \in B \neg (xRb \wedge x \neq b) \\ & {\rm Given} & {\rm Goal} \\ (\forall x \in B(bRx)) & \forall x \in B(xRb \rightarrow x = b) \\ & {\rm Given} & {\rm Goal} \\ (\forall x \in B(bRx)) & x = b \\ & x \in B, xRb \end{array}$

(4月) トイヨト イヨト

• Divide goal. *b* is minimal and *b* is uniquely minimal.

イロト イヨト イヨト イヨト

۲

• Divide goal. b is minimal and b is uniquely minimal.

 $\begin{array}{ll} \text{Given} & \text{Goal} \\ b(\forall x \in B(bRx)) & \forall c \in B((\forall x \in B(xRc \rightarrow x = c)) \rightarrow b = c) \end{array}$

۲

۲

• Divide goal. b is minimal and b is uniquely minimal.

Given $b(\forall x \in B(bRx))$ $\forall c \in B((\forall x \in B(xRc \rightarrow x = c)) \rightarrow b = c)$ Given $b(\forall x \in B(bRx))$ b = c $c \in B$

$$\forall x \in B(xRc \rightarrow x = c))$$

• Divide goal. b is minimal and b is uniquely minimal.

۲ Given Goal $b(\forall x \in B(bRx)) \quad \forall c \in B((\forall x \in B(xRc \rightarrow x = c)) \rightarrow b = c)$ Given Goal $b(\forall x \in B(bRx))$ b = c $c \in B$ $\forall x \in B(xRc \rightarrow x = c))$ ۰ Given Goal $b(\forall x \in B(bRx))$ b = c $c \in B$ $\forall x \in B(xRc \rightarrow x = c))$ *bRc*, hence b = c

> < 国 > < 国 >

- Largest elements: B ⊂ A. ∀x ∈ B(xRb)
 maximal element: ¬∃x ∈ B(bRx ∧ b ≠ x).

イロト イヨト イヨト イヨト

- Largest elements: $B \subset A$. $\forall x \in B(xRb)$
 - ▶ maximal element: $\neg \exists x \in B(bRx \land b \neq x)$.

- $B \subset A$. *a* is a *lower bound* of *B* if $\forall x \in B(aRx)$.
- $a \in A$ is an *upper bound* of *B* if $\forall x \in B(xRa)$.
- Let *U* be the set of upper bounds for *B* and let *L* be the set of lower bounds for *B*.
- If *U* has a smallest element, this smallest element is said to be the *least upper bound* (lub, supremum).
- If L has a greatest element, this element is said to be the greatest lower bound (glb, infimum).

- Largest elements: $B \subset A$. $\forall x \in B(xRb)$
 - ▶ maximal element: $\neg \exists x \in B(bRx \land b \neq x)$.

- $B \subset A$. *a* is a *lower bound* of *B* if $\forall x \in B(aRx)$.
- $a \in A$ is an *upper bound* of *B* if $\forall x \in B(xRa)$.
- Let U be the set of upper bounds for B and let L be the set of lower bounds for B.
- If *U* has a smallest element, this smallest element is said to be the *least upper bound* (lub, supremum).
- If L has a greatest element, this element is said to be the greatest lower bound (glb, infimum).
- These elements may not equal the smallest, minimal (greatest, maximal) element of *B*...

(D) (A) (A) (A)

Let *R* be a relation on *A*.

• *R* is *irreflexive* if $\forall x \in A((x, x) \notin R)$.

イロト イヨト イヨト イヨト

Let *R* be a relation on *A*.

- *R* is *irreflexive* if $\forall x \in A((x, x) \notin R)$.
- *R* is a *strict partial order* if it is irreflexive and transitive.

ヘロト ヘロト ヘヨト

Let *R* be a relation on *A*.

- *R* is *irreflexive* if $\forall x \in A((x, x) \notin R)$.
- *R* is a *strict partial order* if it is irreflexive and transitive.
- *R* is a *strict total order* if it is a strict partial order and satisfies $\forall x \in A \forall y \in A(xRy \lor yRx \lor x = y).$

- A 🖻 🕨

Image: Image:

Let *R* be a relation on *A*.

- *R* is *irreflexive* if $\forall x \in A((x, x) \notin R)$.
- *R* is a *strict partial order* if it is irreflexive and transitive.
- *R* is a *strict total order* if it is a strict partial order and satisfies $\forall x \in A \forall y \in A(xRy \lor yRx \lor x = y).$

- A 🖻 🕨

Image: Image:

Let *R* be a relation on *A*.

- *R* is *irreflexive* if $\forall x \in A((x, x) \notin R)$.
- *R* is a *strict partial order* if it is irreflexive and transitive.
- *R* is a *strict total order* if it is a strict partial order and satisfies $\forall x \in A \forall y \in A(xRy \lor yRx \lor x = y).$

The reflexive closure of a strict partial order (resp. strict total order) is a partial order (resp. total order).

< □ > < 同 > < 回 > < 回

• < a strict total order.

・ロト ・回 ト ・ ヨト ・ ヨ

- < a strict total order.
- An ordered set is *dense* if it has at least two elements and if for all *a*, *b* ∈ *X*, *a* < *b* implies there exists *x* ∈ *X* such that *a* < *x* < *b*.

- < a strict total order.
- An ordered set is *dense* if it has at least two elements and if for all *a*, *b* ∈ *X*, *a* < *b* implies there exists *x* ∈ *X* such that *a* < *x* < *b*.
- Let (*P*, <) be a dense linearly (totally) ordered set. *P* is *complete* if every nonempty subset *S* bounded above has a supremum.

・ロト ・同ト ・ヨト ・ヨ

イロト イヨト イヨト イヨト

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set (C, <') unique up to isomorphism such that

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set (C, <') unique up to isomorphism such that $P \subset C$. order preserved

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set (C, <') unique up to isomorphism such that $P \subset C$. order preserved

P is dense in C.

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set (C, <') unique up to isomorphism such that

P ⊂ C. order preserved
 P is dense in C.
 C does not have endpoints.

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set (C, <') unique up to isomorphism such that

P ⊂ C. order preserved
 P is dense in C.
 C does not have endpoints.

• The real number system is the completion of \mathbb{Q} .

• □ ▶ • • □ ▶ • • □ ▶ •

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set (C, <') unique up to isomorphism such that

P ⊂ C. order preserved P is dense in C. C does not have endpoints.

- The real number system is the completion of Q.
- The real number system is the unique complete linearly ordered set without endpoints that has a countable subset dense in it.

< □ > < 同 > < 回 > < 回

Theorem

Let (P, <) be dense linearly ordered set without endpoints. Then there exists a complete linearly ordered set (C, <') unique up to isomorphism such that

P ⊂ C. order preserved P is dense in C. C does not have endpoints.

- The real number system is the completion of Q.
- The real number system is the unique complete linearly ordered set without endpoints that has a countable subset dense in it.
- Conway, Knuth invented surreal numbers...

Reflexive closures

Definition

• Let *R* be a relation. The *reflexive closure* of *R* is the smallest set *S* ⊂ *A* × *A* such that *R* ⊂ *S* and *S* is reflexive.

(I) < ((i) <

Reflexive closures

Definition

- Let *R* be a relation. The *reflexive closure* of *R* is the smallest set $S \subset A \times A$ such that $R \subset S$ and *S* is reflexive.
- In other words, *S* is such that $R \subset S$, *S* is reflexive, for every $T \subset A \times A$ and if $R \subset T$ and *T* is reflexive, then $S \subset T$.

Theorem

(4.5.2) Suppose that S is a relation on A. Then R has a reflexive closure.

イロト イヨト イヨト イヨト

Theorem

(4.5.2) Suppose that S is a relation on A. Then R has a reflexive closure.

Proof.

Let $S = R \cup i_A$. Properties 1, 2 are obvious. For 3, $R \subset T$. Since *T* is reflexive, $i_A \subset T$. Thus $S = R \cup i_A \subset T$.

• □ ▶ • • □ ▶ • • □ ▶ •

Let *R* be a relation on *A*. The *symmetric closure* of *R* is the smallest set $S \subset A \times A$ such that $R \subset S$ and *S* is symmetric. This is equivalent to.

• $R \subset S$.

(D) (A) (A) (A)

Let *R* be a relation on *A*. The *symmetric closure* of *R* is the smallest set $S \subset A \times A$ such that $R \subset S$ and *S* is symmetric. This is equivalent to.

- *R* ⊂ *S*.
- S is symmetric.

Let *R* be a relation on *A*. The *symmetric closure* of *R* is the smallest set $S \subset A \times A$ such that $R \subset S$ and *S* is symmetric. This is equivalent to.

- *R* ⊂ *S*.
- S is symmetric.
- For any $T \subset A \times A$ and $R \subset T$ and T is symmetric imply that $S \subset T$.

Let *R* be a relation on *A*. The *transitive closure* of *R* is the smallest set $S \subset A \times A$ such that $R \subset S$ and *S* is transitive. This is equivalent to.

● *R* ⊂ *S*.

(D) (A) (A) (A)

Let *R* be a relation on *A*. The *transitive closure* of *R* is the smallest set $S \subset A \times A$ such that $R \subset S$ and *S* is transitive. This is equivalent to.

- $R \subset S$.
- S is transtive.

(D) (A) (A) (A)

Let *R* be a relation on *A*. The *transitive closure* of *R* is the smallest set $S \subset A \times A$ such that $R \subset S$ and *S* is transitive. This is equivalent to.

- $R \subset S$.
- S is transtive.
- For any $T \subset A \times A$ and $R \subset T$ and T is transitive imply that $S \subset T$.

• • • • • • • • • • • • • •

Let *R* be a relation on *A*. The *transitive closure* of *R* is the smallest set $S \subset A \times A$ such that $R \subset S$ and *S* is transitive. This is equivalent to.

- $R \subset S$.
- S is transtive.
- For any $T \subset A \times A$ and $R \subset T$ and T is transitive imply that $S \subset T$.

• • • • • • • • • • • • • •
Definition

Let *R* be a relation on *A*. The *transitive closure* of *R* is the smallest set $S \subset A \times A$ such that $R \subset S$ and *S* is transitive. This is equivalent to.

- $R \subset S$.
- S is transtive.
- For any $T \subset A \times A$ and $R \subset T$ and T is transitive imply that $S \subset T$.

Example

See Figures 1,2,3 in pages 206-207 in HTP.

(I)

Theorem

Suppose that R is a relation on A. Then R has a symmetric closure.

・ロト ・回 ト ・ ヨト ・ ヨ

Theorem

Suppose that R is a relation on A. Then R has a symmetric closure.

Proof.	
hint: $R \cup R^{-1}$.	

・ロト ・回 ト ・ ヨト ・ ヨ

Theorem

Suppose that R is a relation on A. Then R has a symmetric closure.

Proof.

hint: $R \cup R^{-1}$.

Theorem

Suppose that R is a relation on A. Then R has a transitive closure.

(日)

Theorem

Suppose that R is a relation on A. Then R has a symmetric closure.

Proof.

hint: $R \cup R^{-1}$.

Theorem

Suppose that R is a relation on A. Then R has a transitive closure.

Proof.

hint: Take intersections of all transitive relations containing *R*.

・ロト ・回ト ・ヨト ・ヨト

Definition

Suppose that A is a set and P(A) its power set. $\mathcal{F} \subset P(A)$ is pairwise disjoint if

$$\forall X \in \mathcal{F} \forall Y \in \mathcal{F}(X \neq Y \rightarrow X \cap Y = \emptyset).$$

The family \mathcal{F} is a *partitition* of A if $\bigcup \mathcal{F} = A$, $\forall X \in \mathcal{F}(X \neq \emptyset)$, and \mathcal{F} is pairwise disjoint.

(I) < ((i) <

Definition

Suppose that A is a set and P(A) its power set. $\mathcal{F} \subset P(A)$ is pairwise disjoint if

$$\forall X \in \mathcal{F} \forall Y \in \mathcal{F}(X \neq Y \rightarrow X \cap Y = \emptyset).$$

The family \mathcal{F} is a *partitition* of A if $\bigcup \mathcal{F} = A$, $\forall X \in \mathcal{F}(X \neq \emptyset)$, and \mathcal{F} is pairwise disjoint.

Definition

Suppose that *R* is a relation on *A*. If *R* is a reflexive, symmetric, and transtive, then *R* is an *equivalence relation*.

Definition

Suppose that A is a set and P(A) its power set. $\mathcal{F} \subset P(A)$ is pairwise disjoint if

$$\forall X \in \mathcal{F} \forall Y \in \mathcal{F}(X \neq Y \rightarrow X \cap Y = \emptyset).$$

The family \mathcal{F} is a *partitition* of A if $\bigcup \mathcal{F} = A$, $\forall X \in \mathcal{F}(X \neq \emptyset)$, and \mathcal{F} is pairwise disjoint.

Definition

Suppose that R is a relation on A. If R is a reflexive, symmetric, and transtive, then R is an *equivalence relation*.

Main aim

An equivalence relation \leftrightarrow a partition of a set.

Definition

Suppose that *R* is an equivalence relation on *A*. Then the *equivalence class* of *x* w.r.t. *R* is $[x]_R = \{y \in A | yRx\}$.

(I)

Definition

Suppose that *R* is an equivalence relation on *A*. Then the *equivalence class* of *x* w.r.t. *R* is $[x]_R = \{y \in A | yRx\}$.

The set of all equivalence classes is denoted A/R ($A \mod R$)

$$A/R := \{ [x]_R | x \in A \} = \{ X \subset A | \exists x \in A(X = [x]_R) \}$$

Definition

Suppose that *R* is an equivalence relation on *A*. Then the *equivalence class* of *x* w.r.t. *R* is $[x]_R = \{y \in A | yRx\}$.

The set of all equivalence classes is denoted A/R ($A \mod R$)

$$A/R := \{ [x]_R | x \in A \} = \{ X \subset A | \exists x \in A(X = [x]_R) \}$$

Theorem

(4.6.5) Suppose that R is an equivalence relation on A. Then for

- For all $x \in A$, $x \in [x]_R$.
- For all $x \in A$ and $y \in A$, $y \in [x]_R \leftrightarrow [y]_R = [x]_R$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• 1. $x \in A$. Then xRx by reflexivity. Thus $x \in [x]_R$.

1. x ∈ A. Then xRx by reflexivity. Thus x ∈ [x]_R. 2. Given Goal

Given Goal $y \in [x]_R$ $[y]_R = [x]_R$

1. x ∈ A. Then xRx by reflexivity. Thus x ∈ [x]_R.
2. Given Goal

 $y \in [x]_R$ $[y]_R = [x]_R$

• To show:

$$\begin{array}{ll} \text{Given} & \text{Goal} \\ y \in [x]_R & \forall z (z \in [y]_R \leftrightarrow z \in [x]_R) \end{array}$$

1. x ∈ A. Then xRx by reflexivity. Thus x ∈ [x]_R.
2. Given Goal

 $y \in [x]_R$ $[y]_R = [x]_R$

• To show:

$$\begin{array}{ll} \text{Given} & \text{Goal} \\ y \in [x]_R & \forall z (z \in [y]_R \leftrightarrow z \in [x]_R) \end{array}$$

• \rightarrow part:

$$\begin{array}{ll} \text{Given} & \text{Goal} \\ y \in [x]_R & \forall z (z \in [y]_R \rightarrow z \in [x]_R) \end{array}$$

۲

Given	Goal
$y \in [x]_R$	zRx
$z \in [y]_R, yRx, zRy$	

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

۲

 $\begin{array}{ccc} & \text{Given} & \text{Goal} \\ & y \in [x]_R & zRx \\ & z \in [y]_R, yRx, zRy \end{array}$ $\bullet \leftarrow \text{part}: \\ & \text{Given} & \text{Goal} \\ & y \in [x]_R & \forall z(z \in [x]_R \rightarrow z \in [y]_R) \end{array}$

S. Choi (KAIST)

・ロト ・回ト ・ヨト ・ヨト … ヨ

Theorem

Suppose that R is an equivalence relation on a set A. Then A/R is a partition of A.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Theorem

Suppose that R is an equivalence relation on a set A. Then A/R is a partition of A.

Proof.

• To show A/R is a partition of A, we show that $\bigcup A/R = A$, A/R is pairwise disjoint, and no element of A/R is empty.

Theorem

Suppose that R is an equivalence relation on a set A. Then A/R is a partition of A.

Proof.

- To show A/R is a partition of A, we show that $\bigcup A/R = A$, A/R is pairwise disjoint, and no element of A/R is empty.
- For the first item, $\bigcup A/R \subset A$. We show $A \subset \bigcup A/R$. Suppose $x \in A$. Then $x \in [x]_R$. Thus $x \in \bigcup A/R$.

Theorem

Suppose that R is an equivalence relation on a set A. Then A/R is a partition of A.

Proof.

- To show A/R is a partition of A, we show that $\bigcup A/R = A$, A/R is pairwise disjoint, and no element of A/R is empty.
- For the first item, $\bigcup A/R \subset A$. We show $A \subset \bigcup A/R$. Suppose $x \in A$. Then $x \in [x]_R$. Thus $x \in \bigcup A/R$.
- The pairwise disjointness follows from what?

Theorem

Suppose that R is an equivalence relation on a set A. Then A/R is a partition of A.

Proof.

- To show A/R is a partition of A, we show that $\bigcup A/R = A$, A/R is pairwise disjoint, and no element of A/R is empty.
- For the first item, $\bigcup A/R \subset A$. We show $A \subset \bigcup A/R$. Suppose $x \in A$. Then $x \in [x]_R$. Thus $x \in \bigcup A/R$.
- The pairwise disjointness follows from what?
- Suppose $X \in A/R$. Then $X = [x]_R \ni x$ and hence is not empty.

Theorem

(4.6.6) Let A be a set. \mathcal{F} a partition of A. Then there exists an equivalence relation R on a set A such that $\mathcal{F} = A/R$.

We need two lemmas to prove this.

Theorem

(4.6.6) Let A be a set. \mathcal{F} a partition of A. Then there exists an equivalence relation R on a set A such that $\mathcal{F} = A/R$.

We need two lemmas to prove this.

Lemma

(4.6.7) A a set. \mathcal{F} a partition of A. Let $R = \bigcup_{X \in \mathcal{F}} (X \times X)$. Then R is an equivalence relation on A.

(I)

Theorem

(4.6.6) Let A be a set. \mathcal{F} a partition of A. Then there exists an equivalence relation R on a set A such that $\mathcal{F} = A/R$.

We need two lemmas to prove this.

Lemma

(4.6.7) A a set. \mathcal{F} a partition of A. Let $R = \bigcup_{X \in \mathcal{F}} (X \times X)$. Then R is an equivalence relation on A.

• We call R the equivalence relation induced by \mathcal{F} .

Theorem

(4.6.6) Let A be a set. \mathcal{F} a partition of A. Then there exists an equivalence relation R on a set A such that $\mathcal{F} = A/R$.

We need two lemmas to prove this.

Lemma

(4.6.7) A a set. \mathcal{F} a partition of A. Let $R = \bigcup_{X \in \mathcal{F}} (X \times X)$. Then R is an equivalence relation on A.

- We call R the equivalence relation induced by \mathcal{F} .
- 2 The proof: we verify the three properties of equivalence relations.

Theorem

(4.6.6) Let A be a set. \mathcal{F} a partition of A. Then there exists an equivalence relation R on a set A such that $\mathcal{F} = A/R$.

We need two lemmas to prove this.

Lemma

(4.6.7) A a set. \mathcal{F} a partition of A. Let $R = \bigcup_{X \in \mathcal{F}} (X \times X)$. Then R is an equivalence relation on A.

- We call R the equivalence relation induced by \mathcal{F} .
- 2 The proof: we verify the three properties of equivalence relations.
- **(a)** We prove the transitivity: xRy, yRz. $(x, y) \in X \times X$ and $(y, z) \in Y \times Y$. Then $X \cap Y \ni y$. Thus, X = Y. Thus, $(x, z) \in X \times X$ and xRz.

(4.6.8) Let A be a set. \mathcal{F} a partition of A. Let R be the equivalence relation determined by \mathcal{F} . Suppose $X \in \mathcal{F}$ and $x \in X$. Then $[x]_R = X$.

(4.6.8) Let A be a set. \mathcal{F} a partition of A. Let R be the equivalence relation determined by \mathcal{F} . Suppose $X \in \mathcal{F}$ and $x \in X$. Then $[x]_R = X$.

 $\begin{array}{ll} \text{Given} & \text{Goal} \\ X \in \mathcal{F}, x \in X \quad [x]_R \subset X, X \subset [x]_R \end{array}$

(4.6.8) Let A be a set. \mathcal{F} a partition of A. Let R be the equivalence relation determined by \mathcal{F} . Suppose $X \in \mathcal{F}$ and $x \in X$. Then $[x]_R = X$.

 $\begin{array}{ll} \text{Given} & \text{Goal} \\ X \in \mathcal{F}, x \in X \quad [x]_R \subset X, X \subset [x]_R \end{array}$

• part 1:

 $\begin{array}{ll} \text{Given} & \text{Goal} \\ X \in \mathcal{F}, x \in X & y \in X \\ y \in [x]_R \end{array}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

(4.6.8) Let A be a set. \mathcal{F} a partition of A. Let R be the equivalence relation determined by \mathcal{F} . Suppose $X \in \mathcal{F}$ and $x \in X$. Then $[x]_R = X$.

Given Goal $X \in \mathcal{F}, x \in X$ $[x]_R \subset X, X \subset [x]_R$ • part 1: Given Goal $X \in \mathcal{F}, x \in X$ $y \in X$ $y \in [x]_R$ • Given Goal $X \in \mathcal{F}, x \in X$ $y \in X$ $y \in X$

・ロト ・日本 ・ヨト ・ヨト

(4.6.8) Let A be a set. \mathcal{F} a partition of A. Let R be the equivalence relation determined by \mathcal{F} . Suppose $X \in \mathcal{F}$ and $x \in X$. Then $[x]_R = X$.

Given Goal $X \in \mathcal{F}, x \in X$ $[x]_R \subset X, X \subset [x]_R$ • part 1: Given Goal $X \in \mathcal{F}, x \in X$ $y \in X$ $y \in [x]_R$ • Given Goal $X \in \mathcal{F}, x \in X$ $y \in X$ $y \in X$ $y Rx \text{ or } (y, x) \in Y \times Y, \text{ Thus, } Y = X$

part 2: omit

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Proof of Theorem 4.6.6

• Let
$$R = \bigcup_{X \in \mathcal{F}} X \times X$$
.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Proof of Theorem 4.6.6

- Let $R = \bigcup_{X \in \mathcal{F}} X \times X$.
- We show that $A/R = \mathcal{F}$. That is, $X \in A/R \leftrightarrow X \in \mathcal{F}$.

Proof of Theorem 4.6.6

- Let $R = \bigcup_{X \in \mathcal{F}} X \times X$.
- We show that $A/R = \mathcal{F}$. That is, $X \in A/R \leftrightarrow X \in \mathcal{F}$.
- part 1: \rightarrow .

Given Goal $X \in A/R$ $X \in \mathcal{F}$
Proof of Theorem 4.6.6

• Let
$$R = \bigcup_{X \in \mathcal{F}} X \times X$$
.

• We show that $A/R = \mathcal{F}$. That is, $X \in A/R \leftrightarrow X \in \mathcal{F}$.

• part 1: \rightarrow .

Given Goal $X \in A/R$ $X \in \mathcal{F}$

۲

$$\begin{array}{ll} \text{Given} & \text{Goal} \\ X = [x]_R, x \in A & X \in \mathcal{F} \\ x \in Y \text{ for some } Y \in \mathcal{F} \\ Y = [x]_R \text{ by 4.6.8} \\ Y = X \end{array}$$

イロト イヨト イヨト イヨト

Proof of Theorem 4.6.6

• part 2: \leftarrow .

$$\begin{array}{ccc} {\rm Given} & {\rm Goal} \\ X \in \mathcal{F} & X \in A/R \\ X \neq \emptyset, x \in X \\ X = [x]_R \in A/R \text{ by 4.6.8} \end{array}$$

・ロト ・回ト ・ヨト ・ヨト