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Introduction

About this lecture

Proof strategies

Proofs involving negations and conditionals.

Proofs involving quantifiers

Proofs involving conjunctions and biconditionals

Proofs involving disjunctions

Existence and uniqueness proof

More examples of proofs..

Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html
and the moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.
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Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

A mathematical introduction to logic, H. Enderton, Academic Press.

http://plato.stanford.edu/contents.html has much resource.

Introduction to set theory, Hrbacek and Jech, CRC Press.

Thinking about Mathematics: The Philosophy of Mathematics, S. Shapiro, Oxford.
2000.
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Introduction

Some helpful references

http://en.wikipedia.org/wiki/Truth_table,

http://logik.phl.univie.ac.at/~chris/gateway/
formular-uk-zentral.html, complete (i.e. has all the steps)

http://svn.oriontransfer.org/TruthTable/index.rhtml, has xor,
complete.
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Proofs involving disjunctions

Proofs involving disjunctions

To use a given of form P ∨Q.

First method is to divide into cases:

For case 1, assume P and derive something.

For case 2, assume Q and derive something, preferably same as above.

This is the same as disjuction elimination ∨E in Nolt.

Example in the book A ⊂ C,B ⊂ C,` A ∪ B ⊂ C.

The second method: Given ¬P or can show P false, then we can assume Q ony.
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Proofs involving disjunctions

Given Goal
P ∨Q −−−−
−−−−

Given Goal
Case 1: P −−−−
−−−−

Case 2: Q −−−−
−−−−
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Proofs involving disjunctions

Example

Example: A− (B − C) ⊂ (A− B) ∪ C.

∀x(x ∈ A− (B − C)→ x ∈ (A− B) ∪ C).

Given Goal
−−−− ∀x(x ∈ A− (B − C)→ x ∈ (A− B) ∪ C).

Given Goal
x arbitrary x ∈ (A− B) ∪ C)

x ∈ A− (B − C)
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Proofs involving disjunctions

Given Goal
x ∈ A ∧ ¬(x ∈ B ∧ x /∈ C) (x ∈ A ∧ x /∈ B) ∨ x ∈ C

Given Goal
x ∈ A (x ∈ A ∧ x /∈ B) ∨ x ∈ C

x /∈ B ∨ x ∈ C

Given Goal
x ∈ A (x ∈ A ∧ x /∈ B) ∨ x ∈ C

Case1 : x /∈ B
Case2 : x ∈ C

Case 1 gives x ∈ A− B. Case 2 gives x ∈ C.
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Proofs involving disjunctions

To prove a goal of form P ∨ Q.

First method: break into cases and prove P and prove Q for each cases.

Example above (A− B)− C ⊂ (A− B) ∪ C.

Second method: Assume ¬Q and prove P.

Given Goal
−−−− P ∨Q
−−−−

Change to
Given Goal
−−−− P
−−−−
¬Q

S. Choi (KAIST) Logic and set theory October 26, 2012 9 / 24



Proofs involving disjunctions

To prove a goal of form P ∨ Q.

First method: break into cases and prove P and prove Q for each cases.

Example above (A− B)− C ⊂ (A− B) ∪ C.

Second method: Assume ¬Q and prove P.

Given Goal
−−−− P ∨Q
−−−−

Change to
Given Goal
−−−− P
−−−−
¬Q

S. Choi (KAIST) Logic and set theory October 26, 2012 9 / 24



Proofs involving disjunctions

To prove a goal of form P ∨ Q.

First method: break into cases and prove P and prove Q for each cases.

Example above (A− B)− C ⊂ (A− B) ∪ C.

Second method: Assume ¬Q and prove P.

Given Goal
−−−− P ∨Q
−−−−

Change to
Given Goal
−−−− P
−−−−
¬Q

S. Choi (KAIST) Logic and set theory October 26, 2012 9 / 24



Proofs involving disjunctions

To prove a goal of form P ∨ Q.

First method: break into cases and prove P and prove Q for each cases.

Example above (A− B)− C ⊂ (A− B) ∪ C.

Second method: Assume ¬Q and prove P.

Given Goal
−−−− P ∨Q
−−−−

Change to
Given Goal
−−−− P
−−−−
¬Q

S. Choi (KAIST) Logic and set theory October 26, 2012 9 / 24



Proofs involving disjunctions

To prove a goal of form P ∨ Q.

First method: break into cases and prove P and prove Q for each cases.

Example above (A− B)− C ⊂ (A− B) ∪ C.

Second method: Assume ¬Q and prove P.

Given Goal
−−−− P ∨Q
−−−−

Change to
Given Goal
−−−− P
−−−−
¬Q

S. Choi (KAIST) Logic and set theory October 26, 2012 9 / 24



Proofs involving disjunctions

Suppose that m and n are integers. If mn is even, then either m is even or n is
even.

Given Goal
mn is even m is even ∨ n is even

Given Goal
mn is even n is even

m is odd

mn = 2k , (2j + 1)n = 2k , 2jn + n = 2k , n = 2k − 2jn = 2(k − jn)

Thus, n is even.
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The existence and uniqueness proof

The existence and uniqueness proof.

∃!xP(x)↔ ∃x(P(x) ∧ ¬(∃y(P(y) ∧ y 6= x))).

Using equivalences we obtain ¬(∃y(P(y) ∧ y 6= x))↔ ∀y(P(y)→ y = x).

∃!xP(x)↔ ∃x(P(x) ∧ ∀y(P(y)→ y = x)).
The following are equivalent

I ∃x(P(x) ∧ ∀y(P(y) → y = x)).
I ∃x∀y(P(y) ↔ y = x).
I ∃xP(x) ∧ ∀y∀z((P(y) ∧ P(z) → y = z).
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∃!xP(x)↔ ∃x(P(x) ∧ ∀y(P(y)→ y = x)).
The following are equivalent

I ∃x(P(x) ∧ ∀y(P(y) → y = x)).
I ∃x∀y(P(y) ↔ y = x).
I ∃xP(x) ∧ ∀y∀z((P(y) ∧ P(z) → y = z).
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The existence and uniqueness proof

Example

We will prove by proving 1→ 2→ 3→ 1.

1→ 2.

Given Goal
∃x(P(x) ∧ ∀y(P(y)→ y = x)) ∃x∀y(P(y)↔ y = x)

Given Goal
P(x0) ∃x∀y(P(y)↔ y = x)

∀y(P(y)→ y = x0)

Given Goal
P(x0) ∀y(P(y)↔ y = x)

∀y(P(y)→ y = x0)
x = x0

→ is clear in the Goal side. ← is clear also.
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The existence and uniqueness proof

Example

2→ 3.

Given Goal
∃x∀y(P(y)↔y=x) ∃xP(x)∧∀y∀z((P(y)∧P(z)→y=z)

First goal
Given Goal

∀y(P(y)→ y = x0) ∃xP(x)
P(x0)

Second goal

Given Goal
∀y(P(y)→ y = x0) ∀y∀z(P(y) ∧ P(z)→ y = z)

P(x0)
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The existence and uniqueness proof

Given Goal
∀y(P(y)→ y = x0) (P(y) ∧ P(z))→ y = z

P(x0)
y arbitrary
z arbitrary

Given Goal
∀y(P(y)→ y = x0) y = z

P(x0)
P(y)
P(z)

Then y = x0 and z = x0. Hence the conclusion.
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The existence and uniqueness proof

Example

Finally 3→ 1.

Given Goal
∃xP(x)∧∀y∀z((P(y)∧P(z))→y=z) ∃x(P(x)∧∀y(P(y)→y=x))

Given Goal
P(x0) P(x0)∧∀y(P(y)→y=x0)

∀y∀z((P(y) ∧ P(z))→ y = z)

Given Goal
P(x0) y = x0

∀y∀z((P(y) ∧ P(z))→ y = z)
P(y)

Since P(x0),P(y), we have x0 = y . Done.
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The existence and uniqueness proof

To prove a goal of form ∃!xP(x)

Prove ∃xP(x) (existence) and ∀y∀z(P(y) ∧ P(z)→ y = z). (uniqueness)

To use a given of form ∃!xP(x).

Treat as two assumptions ∃xP(x) (existence) and ∀y∀z(P(y) ∧ P(z)→ y = z).
(uniqueness)
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The existence and uniqueness proof

Example

A,B,C are sets. A ∩ B 6= ∅,A ∩ C 6= ∅. A has a unique element. Then prove
B ∩ C 6= ∅.

Given Goal
A ∩ B 6= ∅ B ∩ C 6= ∅
A ∩ C 6= ∅
∃!x(x ∈ A)

Given Goal
∃x(x ∈ A ∧ x ∈ B) ∃x(x ∈ B ∧ x ∈ C)
∃x(x ∈ A ∧ x ∈ C)
∃x(x ∈ A)

∀y∀z(y ∈ A ∧ z ∈ A→ y = z)
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The existence and uniqueness proof

Given Goal
b ∈ A ∧ b ∈ B ∃x(x ∈ B ∧ x ∈ C)
c ∈ A ∧ c ∈ C

a ∈ A
∀y∀z((y ∈ A ∧ z ∈ A)→ y = z)

b = a and c = a. Thus a ∈ B ∧ a ∈ C.
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More examples of proofs

.

This illustrates the existence proof:

limx→2 x2 + 2 = 6.

Cauchy’s defintion: ∀ε > 0(∃δ > 0(∀x(|x − 2| < δ → |x2 + 2− 6| < ε))).

Given Goal
ε > 0 arbitrary ∃δ > 0(∀x(|x − 2| < δ → |x2 + 2− 6| < ε)))

Given Goal
ε > 0 arbitrary |x2 + 2− 6| < ε
δ = δ0 must find
|x − 2| < δ
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More examples of proofs

Guess work: Find conditions on δ. Assume |x − 2| < δ, δ < 1. Then we obtain
|x − 2| < 1, 3 < |x + 2| < 5, |x + 2| < 5. Thus |x2 − 4| = |x − 2||x + 2| < 5δ.
Thus, choose δ = min{1/2, ε/5}. Then

ε/5 ≤ 1/2 case: |x − 2| < ε/5→ |(x − 2)(x + 2)| < ε.

1/2 ≤ ε/5 case: |x − 2| < 1/2→ |(x − 2)(x + 2)| < 5(1/2) ≤ 5ε/5 = ε.
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More examples of proofs

Theorem limx→2 x2 + 2 = 6.

Proof: Suppose that ε > 0. Let δ = min{1/2, ε/5}.
Then |x − 2| < 1/2 and |x − 2| < ε/5.

|x + 2| < 5 by above and |(x − 2)(x + 2)| < ε/5 · 5 = ε.

Thus, |x2 + 2− 6| < ε.

∀ε > 0, if δ = min{1/2, ε/5}, then ∀x(|x − 2| < δ → |x2 + 2− 6| < ε).
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x =
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