Logic and the set theory
 Lecture 14: Proofs in How to Prove It.

S. Choi

Department of Mathematical Science
KAIST, Daejeon, South Korea

Fall semester, 2012

About this lecture

- Proof strategies

About this lecture

- Proof strategies
- Proofs involving negations and conditionals.

About this lecture

- Proof strategies
- Proofs involving negations and conditionals.
- Proofs involving quantifiers

About this lecture

- Proof strategies
- Proofs involving negations and conditionals.
- Proofs involving quantifiers
- Proofs involving conjunctions and biconditionals

About this lecture

- Proof strategies
- Proofs involving negations and conditionals.
- Proofs involving quantifiers
- Proofs involving conjunctions and biconditionals
- Proofs involving disjunctions

About this lecture

- Proof strategies
- Proofs involving negations and conditionals.
- Proofs involving quantifiers
- Proofs involving conjunctions and biconditionals
- Proofs involving disjunctions
- Existence and uniqueness proof

About this lecture

- Proof strategies
- Proofs involving negations and conditionals.
- Proofs involving quantifiers
- Proofs involving conjunctions and biconditionals
- Proofs involving disjunctions
- Existence and uniqueness proof
- More examples of proofs..

About this lecture

- Proof strategies
- Proofs involving negations and conditionals.
- Proofs involving quantifiers
- Proofs involving conjunctions and biconditionals
- Proofs involving disjunctions
- Existence and uniqueness proof
- More examples of proofs..
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr

About this lecture

- Proof strategies
- Proofs involving negations and conditionals.
- Proofs involving quantifiers
- Proofs involving conjunctions and biconditionals
- Proofs involving disjunctions
- Existence and uniqueness proof
- More examples of proofs..
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- A mathematical introduction to logic, H. Enderton, Academic Press.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- A mathematical introduction to logic, H. Enderton, Academic Press.
- http://plato.stanford.edu/contents.html has much resource.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- A mathematical introduction to logic, H. Enderton, Academic Press.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters 3,4,5.
- A mathematical introduction to logic, H. Enderton, Academic Press.
- http://plato.stanford.edu/contents.html has much resource.
- Introduction to set theory, Hrbacek and Jech, CRC Press.
- Thinking about Mathematics: The Philosophy of Mathematics, S. Shapiro, Oxford. 2000.

Some helpful references

- http://en.wikipedia.org/wiki/Truth_table,

Some helpful references

- http://en.wikipedia.org/wiki/Truth_table,
- http://logik.phl.univie.ac.at/~chris/gateway/ formular-uk-zentral.html, complete (i.e. has all the steps)

Some helpful references

- http://en.wikipedia.org/wiki/Truth_table,
- http://logik.phl.univie.ac.at/~chris/gateway/ formular-uk-zentral.html, complete (i.e. has all the steps)
- http://svn.oriontransfer.org/TruthTable/index.rhtml, has xor, complete.

Proofs involving disjunctions

- To use a given of form $P \vee Q$.

Proofs involving disjunctions

- To use a given of form $P \vee Q$.
- First method is to divide into cases:

Proofs involving disjunctions

- To use a given of form $P \vee Q$.
- First method is to divide into cases:
- For case 1, assume P and derive something.

Proofs involving disjunctions

- To use a given of form $P \vee Q$.
- First method is to divide into cases:
- For case 1, assume P and derive something.
- For case 2, assume Q and derive something, preferably same as above.

Proofs involving disjunctions

- To use a given of form $P \vee Q$.
- First method is to divide into cases:
- For case 1, assume P and derive something.
- For case 2, assume Q and derive something, preferably same as above.
- This is the same as disjuction elimination $\vee E$ in Nolt.

Proofs involving disjunctions

- To use a given of form $P \vee Q$.
- First method is to divide into cases:
- For case 1, assume P and derive something.
- For case 2, assume Q and derive something, preferably same as above.
- This is the same as disjuction elimination $\vee E$ in Nolt.
- Example in the book $A \subset C, B \subset C, \vdash A \cup B \subset C$.

Proofs involving disjunctions

- To use a given of form $P \vee Q$.
- First method is to divide into cases:
- For case 1, assume P and derive something.
- For case 2, assume Q and derive something, preferably same as above.
- This is the same as disjuction elimination $\vee E$ in Nolt.
- Example in the book $A \subset C, B \subset C, \vdash A \cup B \subset C$.
- The second method: Given $\neg P$ or can show P false, then we can assume Q ony.

Given
 Goal

$P \vee Q$ \qquad

- - - -

－－－

Given Goal
Case 1：P－－－－
Case 2：Q

Example

- Example: $A-(B-C) \subset(A-B) \cup C$.

Example

- Example: $A-(B-C) \subset(A-B) \cup C$.
- $\forall x(x \in A-(B-C) \rightarrow x \in(A-B) \cup C)$.

Example

- Example: $A-(B-C) \subset(A-B) \cup C$.
- $\forall x(x \in A-(B-C) \rightarrow x \in(A-B) \cup C)$.

Example

- Example: $A-(B-C) \subset(A-B) \cup C$.
- $\forall x(x \in A-(B-C) \rightarrow x \in(A-B) \cup C)$.

Given
Goal
$----\quad \forall x(x \in A-(B-C) \rightarrow x \in(A-B) \cup C)$.

Example

- Example: $A-(B-C) \subset(A-B) \cup C$.
- $\forall x(x \in A-(B-C) \rightarrow x \in(A-B) \cup C)$.

Given
Goal
$----\quad \forall x(x \in A-(B-C) \rightarrow x \in(A-B) \cup C)$.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
x \text { arbitrary } & x \in(A-B) \cup C) \\
x \in A-(B-C) &
\end{array}
$$

Example

- Example: $A-(B-C) \subset(A-B) \cup C$.
- $\forall x(x \in A-(B-C) \rightarrow x \in(A-B) \cup C)$.

Given
Goal
$----\quad \forall x(x \in A-(B-C) \rightarrow x \in(A-B) \cup C)$.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
x \text { arbitrary } & x \in(A-B) \cup C) \\
x \in A-(B-C) &
\end{array}
$$

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
x \in A \wedge \neg(x \in B \wedge x \notin C) & (x \in A \wedge x \notin B) \vee x \in C
\end{array}
$$

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
x \in A \wedge \neg(x \in B \wedge x \notin C) & (x \in A \wedge x \notin B) \vee x \in C
\end{array}
$$

Given Goal
$x \in A \quad(x \in A \wedge x \notin B) \vee x \in C$
$x \notin B \vee x \in C$

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
x \in A \wedge \neg(x \in B \wedge x \notin C) & (x \in A \wedge x \notin B) \vee x \in C
\end{array}
$$

Given Goal
$x \in A \quad(x \in A \wedge x \notin B) \vee x \in C$
$x \notin B \vee x \in C$
Given
Goal
$x \in A \quad(x \in A \wedge x \notin B) \vee x \in C$
Case1: $x \notin B$ Case2 : $x \in C$

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
x \in A \wedge \neg(x \in B \wedge x \notin C) & (x \in A \wedge x \notin B) \vee x \in C
\end{array}
$$

Given Goal
$x \in A \quad(x \in A \wedge x \notin B) \vee x \in C$
$x \notin B \vee x \in C$
Given Goal
$x \in A \quad(x \in A \wedge x \notin B) \vee x \in C$
Case1: $x \notin B$ Case2 : $x \in C$

- Case 1 gives $x \in A-B$. Case 2 gives $x \in C$.

To prove a goal of form $P \vee Q$.

- First method: break into cases and prove P and prove Q for each cases.

To prove a goal of form $P \vee Q$.

- First method: break into cases and prove P and prove Q for each cases.
- Example above $(A-B)-C \subset(A-B) \cup C$.

To prove a goal of form $P \vee Q$.

- First method: break into cases and prove P and prove Q for each cases.
- Example above $(A-B)-C \subset(A-B) \cup C$.
- Second method: Assume $\neg Q$ and prove P.

To prove a goal of form $P \vee Q$.

- First method: break into cases and prove P and prove Q for each cases.
- Example above $(A-B)-C \subset(A-B) \cup C$.
- Second method: Assume $\neg Q$ and prove P.
-

Given Goal

- - -- $\quad P \vee Q$

To prove a goal of form $P \vee Q$.

- First method: break into cases and prove P and prove Q for each cases.
- Example above $(A-B)-C \subset(A-B) \cup C$.
- Second method: Assume $\neg Q$ and prove P.
-

Given Goal

- - -- $P \vee Q$
- Change to

Given	Goal
----	P

$\neg Q$	

- Suppose that m and n are integers. If $m n$ is even, then either m is even or n is even.
- Suppose that m and n are integers. If $m n$ is even, then either m is even or n is even.

Given
Goal
$m n$ is even $\quad m$ is even $\vee n$ is even

- Suppose that m and n are integers. If $m n$ is even, then either m is even or n is even.

```
Given Goal \(m n\) is even \(\quad m\) is even \(\vee n\) is even
```

Given Goal
$m n$ is even n is even
m is odd

- Suppose that m and n are integers. If $m n$ is even, then either m is even or n is even.
-

Given Goal $m n$ is even $\quad m$ is even $\vee n$ is even

Given	Goal
$m n$ is even	n is even
m is odd	

$$
m n=2 k,(2 j+1) n=2 k, 2 j n+n=2 k, n=2 k-2 j n=2(k-j n)
$$

Thus, n is even.

The existence and uniqueness proof.

- $\exists!x P(x) \leftrightarrow \exists x(P(x) \wedge \neg(\exists y(P(y) \wedge y \neq x)))$.

The existence and uniqueness proof.

- $\exists!x P(x) \leftrightarrow \exists x(P(x) \wedge \neg(\exists y(P(y) \wedge y \neq x)))$.
- Using equivalences we obtain $\neg(\exists y(P(y) \wedge y \neq x)) \leftrightarrow \forall y(P(y) \rightarrow y=x)$.

The existence and uniqueness proof.

- $\exists!x P(x) \leftrightarrow \exists x(P(x) \wedge \neg(\exists y(P(y) \wedge y \neq x)))$.
- Using equivalences we obtain $\neg(\exists y(P(y) \wedge y \neq x)) \leftrightarrow \forall y(P(y) \rightarrow y=x)$.
- $\exists!x P(x) \leftrightarrow \exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x))$.

The existence and uniqueness proof.

- $\exists!x P(x) \leftrightarrow \exists x(P(x) \wedge \neg(\exists y(P(y) \wedge y \neq x)))$.
- Using equivalences we obtain $\neg(\exists y(P(y) \wedge y \neq x)) \leftrightarrow \forall y(P(y) \rightarrow y=x)$.
- $\exists!x P(x) \leftrightarrow \exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x))$.
- The following are equivalent

The existence and uniqueness proof.

- $\exists!x P(x) \leftrightarrow \exists x(P(x) \wedge \neg(\exists y(P(y) \wedge y \neq x)))$.
- Using equivalences we obtain $\neg(\exists y(P(y) \wedge y \neq x)) \leftrightarrow \forall y(P(y) \rightarrow y=x)$.
- $\exists!x P(x) \leftrightarrow \exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x))$.
- The following are equivalent
- $\exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x))$.

The existence and uniqueness proof.

- $\exists!x P(x) \leftrightarrow \exists x(P(x) \wedge \neg(\exists y(P(y) \wedge y \neq x)))$.
- Using equivalences we obtain $\neg(\exists y(P(y) \wedge y \neq x)) \leftrightarrow \forall y(P(y) \rightarrow y=x)$.
- $\exists!x P(x) \leftrightarrow \exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x))$.
- The following are equivalent
- $\exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x))$.
- $\exists x \forall y(P(y) \leftrightarrow y=x)$.

The existence and uniqueness proof.

- $\exists!x P(x) \leftrightarrow \exists x(P(x) \wedge \neg(\exists y(P(y) \wedge y \neq x)))$.
- Using equivalences we obtain $\neg(\exists y(P(y) \wedge y \neq x)) \leftrightarrow \forall y(P(y) \rightarrow y=x)$.
- $\exists!x P(x) \leftrightarrow \exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x))$.
- The following are equivalent
- $\exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x))$.
- $\exists x \forall y(P(y) \leftrightarrow y=x)$.
- $\exists x P(x) \wedge \forall y \forall z((P(y) \wedge P(z) \rightarrow y=z)$.

Example

- We will prove by proving $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$.

Example

- We will prove by proving $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$.
- $1 \rightarrow 2$.

Example

- We will prove by proving $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$.
- $1 \rightarrow 2$.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x)) & \exists x \forall y(P(y) \leftrightarrow y=x)
\end{array}
$$

Example

- We will prove by proving $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$.
- $1 \rightarrow 2$.
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x)) & \exists x \forall y(P(y) \leftrightarrow y=x)
\end{array}
$$

$$
\begin{gathered}
\text { Given } \\
P\left(x_{0}\right) \\
\forall y\left(P(y) \rightarrow y=x_{0}\right)
\end{gathered}
$$

Example

- We will prove by proving $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$.
- $1 \rightarrow 2$.
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x)) & \exists x \forall y(P(y) \leftrightarrow y=x)
\end{array}
$$

$$
\begin{array}{cr}
\text { Given } & \text { Goal } \\
P\left(x_{0}\right) & \exists x \forall y(P(y) \leftrightarrow \\
\forall y\left(P(y) \rightarrow y=x_{0}\right) &
\end{array}
$$

$$
\begin{gathered}
\text { Given } \\
P\left(x_{0}\right) \\
\forall y\left(P(y) \rightarrow y=x_{0}\right) \\
x=x_{0}
\end{gathered}
$$

Example

- We will prove by proving $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$.
- $1 \rightarrow 2$.
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x)) & \exists x \forall y(P(y) \leftrightarrow y=x)
\end{array}
$$

.

$$
\begin{array}{cr}
\text { Given } & \text { Goal } \\
P\left(x_{0}\right) & \exists x \forall y(P(y) \leftrightarrow \\
\forall y\left(P(y) \rightarrow y=x_{0}\right) &
\end{array}
$$

$$
\begin{gathered}
\text { Given } \\
P\left(x_{0}\right) \\
\forall y\left(P(y) \rightarrow y=x_{0}\right) \\
x=x_{0}
\end{gathered}
$$

- \rightarrow is clear in the Goal side. \leftarrow is clear also.

Example

- $2 \rightarrow 3$.

Example

- $2 \rightarrow 3$.

Given
Goal
$\exists x \forall y(P(y) \leftrightarrow y=x) \quad \exists x P(x) \wedge \forall y \forall z((P(y) \wedge P(z) \rightarrow y=z)$

Example

- $2 \rightarrow 3$.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\exists x \forall y(P(y) \leftrightarrow y=x) & \exists x P(x) \wedge \forall y \forall z((P(y) \wedge P(z) \rightarrow y=z)
\end{array}
$$

- First goal

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall y\left(P(y) \rightarrow y=x_{0}\right) & \exists x P(x) \\
P\left(x_{0}\right) &
\end{array}
$$

Example

- $2 \rightarrow 3$.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\exists x \forall y(P(y) \leftrightarrow y=x) & \exists x P(x) \wedge \forall y \forall z((P(y) \wedge P(z) \rightarrow y=z)
\end{array}
$$

- First goal

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall y\left(P(y) \rightarrow y=x_{0}\right) & \exists x P(x) \\
P\left(x_{0}\right) &
\end{array}
$$

- Second goal

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall y\left(P(y) \rightarrow y=x_{0}\right) & \forall y \forall z(P(y) \wedge P(z) \rightarrow y=z) \\
P\left(x_{0}\right) &
\end{array}
$$

Given
 Goal
 $$
\forall y\left(P(y) \rightarrow y=x_{0}\right) \quad(P(y) \wedge P(z)) \rightarrow y=z
$$
 $$
y \text { arbitrary }
$$
 z arbitrary

Given
 Goal
 $\left.\forall \underset{P\left(x_{0}\right)}{\forall y(y)} \boldsymbol{y}=x_{0}\right) \quad(P(y) \wedge P(z)) \rightarrow y=z$
 y arbitrary
 z arbitrary

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall y\left(P(y) \rightarrow y=x_{0}\right) & y=z \\
P\left(x_{0}\right) & \\
P(y) & \\
P(z) &
\end{array}
$$

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall y\left(P(y) \rightarrow y=x_{0}\right) & (P(y) \wedge P(z)) \rightarrow y=z \\
P\left(x_{0}\right) & \\
y \text { arbitrary } & \\
z \text { arbitrary } &
\end{array}
$$

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\forall y\left(P(y) \rightarrow y=x_{0}\right) & y=z \\
P\left(x_{0}\right) & \\
P(y) & \\
P(z) &
\end{array}
$$

- Then $y=x_{0}$ and $z=x_{0}$. Hence the conclusion.

Example

- Finally $3 \rightarrow 1$.

Example

- Finally $3 \rightarrow 1$. -

Given
Goal

$$
\exists x P(x) \wedge \forall y \forall z((P(y) \wedge P(z)) \rightarrow y=z) \quad \exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x))
$$

Example

- Finally $3 \rightarrow 1$.

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\exists x P(x) \wedge \forall y \forall z((P(y) \wedge P(z)) \rightarrow y=z) & \exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x))
\end{array}
$$

Given
$P\left(x_{0}\right)$
Goal
$P\left(x_{0}\right) \wedge \forall y\left(P(y) \rightarrow y=x_{0}\right)$
$\forall y \forall z((P(y) \wedge P(z)) \rightarrow y=z)$

Example

- Finally $3 \rightarrow 1$.
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\exists x P(x) \wedge \forall y \forall z((P(y) \wedge P(z)) \rightarrow y=z) & \exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x))
\end{array}
$$

Given	Goal
$P\left(x_{0}\right)$	$P\left(x_{0}\right) \wedge \forall y\left(P(y) \rightarrow y=x_{0}\right)$
$\forall y \forall z((P(y) \wedge P(z)) \rightarrow y=z)$	

Given	Goal
$P\left(x_{0}\right)$	$y=x_{0}$
$\forall y \forall z((P(y) \wedge P(z)) \rightarrow y=z)$	
$P(y)$	

Example

- Finally $3 \rightarrow 1$.
-

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\exists x P(x) \wedge \forall y \forall z((P(y) \wedge P(z)) \rightarrow y=z) & \exists x(P(x) \wedge \forall y(P(y) \rightarrow y=x))
\end{array}
$$

Given	Goal
$P\left(x_{0}\right)$	$P\left(x_{0}\right) \wedge \forall y\left(P(y) \rightarrow y=x_{0}\right)$
$\forall y \forall z((P(y) \wedge P(z)) \rightarrow y=z)$	

Given	Goal
$P\left(x_{0}\right)$	$y=x_{0}$
$\forall y \forall z((P(y) \wedge P(z)) \rightarrow y=z)$	
$P(y)$	

- Since $P\left(x_{0}\right), P(y)$, we have $x_{0}=y$. Done.
- To prove a goal of form $\exists!x P(x)$
- To prove a goal of form $\exists!x P(x)$
- Prove $\exists x P(x)$ (existence) and $\forall y \forall z(P(y) \wedge P(z) \rightarrow y=z)$. (uniqueness)
- To prove a goal of form $\exists!x P(x)$
- Prove $\exists x P(x)$ (existence) and $\forall y \forall z(P(y) \wedge P(z) \rightarrow y=z$). (uniqueness)
- To use a given of form $\exists!x P(x)$.
- To prove a goal of form $\exists!x P(x)$
- Prove $\exists x P(x)$ (existence) and $\forall y \forall z(P(y) \wedge P(z) \rightarrow y=z$). (uniqueness)
- To use a given of form $\exists!x P(x)$.
- Treat as two assumptions $\exists x P(x)$ (existence) and $\forall y \forall z(P(y) \wedge P(z) \rightarrow y=z)$. (uniqueness)

Example

- A, B, C are sets. $A \cap B \neq \emptyset, A \cap C \neq \emptyset$. A has a unique element. Then prove $B \cap C \neq \emptyset$.

Example

- A, B, C are sets. $A \cap B \neq \emptyset, A \cap C \neq \emptyset$. A has a unique element. Then prove $B \cap C \neq \emptyset$.

Given
$A \cap B \neq \emptyset$
$B \cap C \neq \emptyset$
$A \cap C \neq \emptyset$
$\exists!x(x \in A)$

Example

- A, B, C are sets. $A \cap B \neq \emptyset, A \cap C \neq \emptyset$. A has a unique element. Then prove $B \cap C \neq \emptyset$.

Given	Goal
$A \cap B \neq \emptyset$	$B \cap C \neq \emptyset$
$A \cap C \neq \emptyset$	
$\exists!x(x \in A)$	

Given
$\exists x(x \in A \wedge x \in B) \quad \exists x(x \in B \wedge x \in C)$ $\exists x(x \in A \wedge x \in C)$
$\exists x(x \in A)$
$\forall y \forall z(y \in A \wedge z \in A \rightarrow y=z)$

$$
\begin{gathered}
\text { Given } \\
b \in A \wedge b \in B \\
c \in A \wedge c \in C \\
a \in A \\
\forall y \forall z((y \in A \wedge z \in A) \rightarrow y=z)
\end{gathered}
$$

$$
\begin{gathered}
\text { Given } \\
b \in A \wedge b \in B \\
c \in A \wedge c \in C \\
a \in A \\
\forall y \forall z((y \in A \wedge z \in A) \rightarrow y=z)
\end{gathered}
$$

- $b=a$ and $c=a$. Thus $a \in B \wedge a \in C$.
- This illustrates the existence proof:
- This illustrates the existence proof:
- $\lim _{x \rightarrow 2} x^{2}+2=6$.
- This illustrates the existence proof:
- $\lim _{x \rightarrow 2} x^{2}+2=6$.
- Cauchy's defintion: $\forall \epsilon>0\left(\exists \delta>0\left(\forall x\left(|x-2|<\delta \rightarrow\left|x^{2}+2-6\right|<\epsilon\right)\right)\right)$.
- This illustrates the existence proof:
- $\lim _{x \rightarrow 2} x^{2}+2=6$.
- Cauchy's defintion: $\forall \epsilon>0\left(\exists \delta>0\left(\forall x\left(|x-2|<\delta \rightarrow\left|x^{2}+2-6\right|<\epsilon\right)\right)\right)$.

Given Goal
$\epsilon>0$ arbitrary $\left.\quad \exists \delta>0\left(\forall x\left(|x-2|<\delta \rightarrow\left|x^{2}+2-6\right|<\epsilon\right)\right)\right)$

- This illustrates the existence proof:
- $\lim _{x \rightarrow 2} x^{2}+2=6$.
- Cauchy's defintion: $\forall \epsilon>0\left(\exists \delta>0\left(\forall x\left(|x-2|<\delta \rightarrow\left|x^{2}+2-6\right|<\epsilon\right)\right)\right)$.
-

Given Goal
$\epsilon>0$ arbitrary $\left.\quad \exists \delta>0\left(\forall x\left(|x-2|<\delta \rightarrow\left|x^{2}+2-6\right|<\epsilon\right)\right)\right)$

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\epsilon>0 \text { arbitrary } & \left|x^{2}+2-6\right|<\epsilon \\
\delta=\delta_{0} \text { must find } & \\
|x-2|<\delta &
\end{array}
$$

- Guess work: Find conditions on δ. Assume $|x-2|<\delta, \delta<1$. Then we obtain $|x-2|<1,3<|x+2|<5,|x+2|<5$. Thus $\left|x^{2}-4\right|=|x-2||x+2|<5 \delta$. Thus, choose $\delta=\min \{1 / 2, \epsilon / 5\}$. Then
- Guess work: Find conditions on δ. Assume $|x-2|<\delta, \delta<1$. Then we obtain $|x-2|<1,3<|x+2|<5,|x+2|<5$. Thus $\left|x^{2}-4\right|=|x-2||x+2|<5 \delta$. Thus, choose $\delta=\min \{1 / 2, \epsilon / 5\}$. Then
- $\epsilon / 5 \leq 1 / 2$ case: $|x-2|<\epsilon / 5 \rightarrow|(x-2)(x+2)|<\epsilon$.
- Guess work: Find conditions on δ. Assume $|x-2|<\delta, \delta<1$. Then we obtain $|x-2|<1,3<|x+2|<5,|x+2|<5$. Thus $\left|x^{2}-4\right|=|x-2||x+2|<5 \delta$. Thus, choose $\delta=\min \{1 / 2, \epsilon / 5\}$. Then
- $\epsilon / 5 \leq 1 / 2$ case: $|x-2|<\epsilon / 5 \rightarrow|(x-2)(x+2)|<\epsilon$.
- $1 / 2 \leq \epsilon / 5$ case: $|x-2|<1 / 2 \rightarrow|(x-2)(x+2)|<5(1 / 2) \leq 5 \epsilon / 5=\epsilon$.
- Theorem $\lim _{x \rightarrow 2} x^{2}+2=6$.
- Theorem $\lim _{x \rightarrow 2} x^{2}+2=6$.
- Proof: Suppose that $\epsilon>0$. Let $\delta=\min \{1 / 2, \epsilon / 5\}$.
- Theorem $\lim _{x \rightarrow 2} x^{2}+2=6$.
- Proof: Suppose that $\epsilon>0$. Let $\delta=\min \{1 / 2, \epsilon / 5\}$.
- Then $|x-2|<1 / 2$ and $|x-2|<\epsilon / 5$.
- Theorem $\lim _{x \rightarrow 2} x^{2}+2=6$.
- Proof: Suppose that $\epsilon>0$. Let $\delta=\min \{1 / 2, \epsilon / 5\}$.
- Then $|x-2|<1 / 2$ and $|x-2|<\epsilon / 5$.
- $|x+2|<5$ by above and $|(x-2)(x+2)|<\epsilon / 5 \cdot 5=\epsilon$.
- Theorem $\lim _{x \rightarrow 2} x^{2}+2=6$.
- Proof: Suppose that $\epsilon>0$. Let $\delta=\min \{1 / 2, \epsilon / 5\}$.
- Then $|x-2|<1 / 2$ and $|x-2|<\epsilon / 5$.
- $|x+2|<5$ by above and $|(x-2)(x+2)|<\epsilon / 5 \cdot 5=\epsilon$.
- Thus, $\left|x^{2}+2-6\right|<\epsilon$.
- Theorem $\lim _{x \rightarrow 2} x^{2}+2=6$.
- Proof: Suppose that $\epsilon>0$. Let $\delta=\min \{1 / 2, \epsilon / 5\}$.
- Then $|x-2|<1 / 2$ and $|x-2|<\epsilon / 5$.
- $|x+2|<5$ by above and $|(x-2)(x+2)|<\epsilon / 5 \cdot 5=\epsilon$.
- Thus, $\left|x^{2}+2-6\right|<\epsilon$.
- $\forall \epsilon>0$, if $\delta=\min \{1 / 2, \epsilon / 5\}$, then $\forall x\left(|x-2|<\delta \rightarrow\left|x^{2}+2-6\right|<\epsilon\right)$.
- $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c},(x>0, c>0)$.
- $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c},(x>0, c>0)$.
- $\forall c>0(\forall \epsilon>0 \exists \delta>0(\forall x>0(|x-c|<\delta \rightarrow|\sqrt{x}-\sqrt{c}|<\epsilon)))$.
- $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c},(x>0, c>0)$.
- $\forall c>0(\forall \epsilon>0 \exists \delta>0(\forall x>0(|x-c|<\delta \rightarrow|\sqrt{x}-\sqrt{c}|<\epsilon)))$.

> | Given | Goal |
| :---: | :---: |
| $\epsilon>0$ arbitrary | $\exists \delta>0(\forall x>0(\|x-c\|<\delta \rightarrow\|\sqrt{x}-\sqrt{c}\|<\epsilon))$ |

- $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c},(x>0, c>0)$.
- $\forall c>0(\forall \epsilon>0 \exists \delta>0(\forall x>0(|x-c|<\delta \rightarrow|\sqrt{x}-\sqrt{c}|<\epsilon)))$.
-

Given
Goal
$\epsilon>0$ arbitrary $\quad \exists \delta>0(\forall x>0(|x-c|<\delta \rightarrow|\sqrt{x}-\sqrt{c}|<\epsilon))$

$$
\begin{array}{cc}
\text { Given } & \text { Goal } \\
\epsilon>0 \text { arbitrary } & |\sqrt{x}-\sqrt{c}|<\epsilon \\
\delta=\delta_{0} &
\end{array}
$$

- Guess work:
- Guess work:
- $|\sqrt{x}-\sqrt{c}|=|x-c| /(\sqrt{x}+\sqrt{c}) \leq|x-c| / \sqrt{c}$.
- Guess work:
- $|\sqrt{x}-\sqrt{c}|=|x-c| /(\sqrt{x}+\sqrt{c}) \leq|x-c| / \sqrt{c}$.
- Let $\delta=\sqrt{C} \epsilon$.
- Guess work:
- $|\sqrt{x}-\sqrt{c}|=|x-c| /(\sqrt{x}+\sqrt{c}) \leq|x-c| / \sqrt{c}$.
- Let $\delta=\sqrt{ } \bar{C} \epsilon$.
- Then $|x-c|<\sqrt{c} \epsilon \rightarrow|\sqrt{x}-\sqrt{c}|<\epsilon$.
- Guess work:
- $|\sqrt{x}-\sqrt{c}|=|x-c| /(\sqrt{x}+\sqrt{c}) \leq|x-c| / \sqrt{c}$.
- Let $\delta=\sqrt{ } \bar{C} \epsilon$.
- Then $|x-c|<\sqrt{c} \epsilon \rightarrow|\sqrt{x}-\sqrt{c}|<\epsilon$.

Given
Goal

$$
\begin{aligned}
& \epsilon>0 \text { arbitrary } \quad|\sqrt{x}-\sqrt{c}|<\epsilon \\
& \delta=\sqrt{c} \epsilon \\
& |x-c|<\delta, x>0
\end{aligned}
$$

- Theorem: $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c}$. Assume $x, c>0$.
- Theorem: $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c}$. Assume $x, c>0$.
- Proof: Let $\epsilon>0$ be arbitrary. Let $\delta=\sqrt{c} \epsilon$. Then $|x-c|<\sqrt{c} \epsilon$.
- Theorem: $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c}$. Assume $x, c>0$.
- Proof: Let $\epsilon>0$ be arbitrary. Let $\delta=\sqrt{c} \epsilon$. Then $|x-c|<\sqrt{c} \epsilon$.
- $|\sqrt{x}-\sqrt{c}|=|x-c| /(\sqrt{x}+\sqrt{c}) \leq|x-c| / \sqrt{c}<\epsilon$.
- Theorem: $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c}$. Assume $x, c>0$.
- Proof: Let $\epsilon>0$ be arbitrary. Let $\delta=\sqrt{c} \epsilon$. Then $|x-c|<\sqrt{c} \epsilon$.
- $|\sqrt{x}-\sqrt{c}|=|x-c| /(\sqrt{x}+\sqrt{c}) \leq|x-c| / \sqrt{c}<\epsilon$.
- $\forall x, x>0,|x-c|<\sqrt{c} \epsilon \rightarrow|\sqrt{x}-\sqrt{c}|<\epsilon$.
- Theorem: $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c}$. Assume $x, c>0$.
- Proof: Let $\epsilon>0$ be arbitrary. Let $\delta=\sqrt{c} \epsilon$. Then $|x-c|<\sqrt{c} \epsilon$.
- $|\sqrt{x}-\sqrt{c}|=|x-c| /(\sqrt{x}+\sqrt{c}) \leq|x-c| / \sqrt{c}<\epsilon$.
- $\forall x, x>0,|x-c|<\sqrt{c} \epsilon \rightarrow|\sqrt{x}-\sqrt{c}|<\epsilon$.
- $\forall c>0(\forall \epsilon>0 \exists \delta>0(\forall x>0(|x-c|<\delta \rightarrow|\sqrt{x}-\sqrt{c}|<\epsilon)))$.

