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Introduction

About this lecture

Proof strategies

Proofs involving negations and conditionals.
Proofs involving quantifiers
Proofs involving conjunctions and biconditionals (up to here in this
lecture.)
Proofs involving disjunctions
Existence and uniqueness proof
More examples of proofs..
Course homepages:
http://mathsci.kaist.ac.kr/~schoi/logic.html and the
moodle page http://moodle.kaist.ac.kr

Grading and so on in the moodle. Ask questions in moodle.
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Introduction

Some helpful references

Sets, Logic and Categories, Peter J. Cameron, Springer. Read Chapters
3,4,5.

A mathematical introduction to logic, H. Enderton, Academic Press.
http://plato.stanford.edu/contents.html has much resource.
Introduction to set theory, Hrbacek and Jech, CRC Press.
Thinking about Mathematics: The Philosophy of Mathematics, S. Shapiro,
Oxford. 2000.
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Introduction

Some helpful references

http://en.wikipedia.org/wiki/Truth_table,

http://logik.phl.univie.ac.at/~chris/gateway/
formular-uk-zentral.html, complete (i.e. has all the steps)
http://svn.oriontransfer.org/TruthTable/index.rhtml,
has xor, complete.
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Proof strategies

Proof strategies

A mathematician and/or logicians use many methods to obtain results:
These includes guessing, finding examples and counter-examples,
experimenting with computations, analogies, physical experiments, and
thought experiments (like pictures).

Sometimes proofs involve constructions, i.e., the proof of polynomial root
existences by Gauss.
However, the only results that the mathematicians accept are given by
logical deductions from the set theoretical foundations. (This includes
finding counter-examples by guessing)
There are some controversies as to whether the ZFC is the only
foundation.
Other fields such as numerical mathematics, physics, and so on have
different standards.
Because of these differences of standards, it is often very hard to
communicate with other fields.
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Proof strategies

Finding proofs are hard: example: Fermat’s conjecture...

Finding a proof is an art. However, there are hints.
Most proofs that you have to do have no more than 5-6 steps.
In this book, the proof strategies are divided into
for a given of form:
¬P,P ∧Q.P ∨Q.P → Q,P ↔ Q,∀xP(x),∃xP(x),∃!xP(x).
for a goal of form:
¬P,P ∧Q,P ∨Q,P → Q,P ↔ Q,∀xP(x),∀n ∈ NP(n),∃xP(x),∃!xP(x).
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Proof strategies

We use a “structural method” in this book. The method is that of divide
and conquer or "Top down" approach.

This means breaking down the proof into smaller and smaller pieces
which are easier to prove or already proven by someone else.
Never assert anything until you can justify it fully using hypothesis or the
conclusions reached earlier.
The basic assumption we will have in mathematics is the ZFC.
N,Z,Q, and R are the important sets.
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Proofs involving negations and conditionals.

To prove the form P → Q

First method: Assume P and prove Q. Or add P to the list of hypothesis
and prove Q.

Given Goal
−−−− P → Q
−−−−

Change to
Given Goal
−−−− Q
−−−−

P
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Proofs involving negations and conditionals.

Example 0 < a < b → a2 < b2.

Given Goal
−−− 0 < a < b → a2 < b2

−−−−

Change to
Given Goal
−−−− a2 < b2

−−−−
0 < a < b

Given Goal
0 < a < b a2 < b2

0 < a2 < ab
0 < ab < b2
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Proofs involving negations and conditionals.

To prove P → Q

P → Q ↔ ¬Q → ¬P.

Second method: Assume ¬Q and prove ¬P.

Given Goal
−−−− P → Q
−−−−

Change to
Given Goal
−−−− ¬P
−−−−
¬Q
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Proofs involving negations and conditionals.

Example: Let a > b. Then if ac ≤ bc, then c ≤ 0.

Given Goal
a,b, c are real numbers (ac ≤ bc)→ (c ≤ 0)

a > b

Given Goal
a,b, c are real numbers ac > bc

a > b
c > 0
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Proofs involving negations and conditionals.

Write this in English

Theorem: Let a > b. Then if ac ≤ bc, then c ≤ 0.

Proof: We will prove this by contrapositives. To prove ac ≤ bc → c ≤ 0. It
is sufficient to prove c > 0→ ac > bc. Suppose c > 0. Then ac > bc by
a > b.
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Proofs involving negations and conditionals.

To prove a goal of the form ¬P.

First method: Try to re-express ¬P in some other form. (in a positive
form)

Example: Suppose that A ∩ C ⊂ B and a ∈ C. Prove a /∈ A− B.

Given Goal
A ∩ C ⊂ B a /∈ A− B

a ∈ C

We change a /∈ A− B.
a /∈ A− B ↔ ¬(a ∈ A ∧ b /∈ B). ↔ (a /∈ A ∨ a ∈ B).↔ (a ∈ A→ a ∈ B).

Given Goal
A ∩ C ⊂ B a ∈ A→ a ∈ B

a ∈ C
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Proofs involving negations and conditionals.

Given Goal
A ∩ C ⊂ B a ∈ B

a ∈ C
a ∈ A

Theorem: Suppose that A ∩ C ⊂ B and a ∈ C. Prove a /∈ A− B.
Proof: To show a /∈ A− B, it is equivalent to show a ∈ A→ a ∈ B. (See
above). Assume a ∈ A. Since A ∩ C ⊂ B and a ∈ C, it follows that
a ∈ B.
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Proofs involving negations and conditionals.

To prove a goal of the form ¬P.

Second method: Assume P and find a contradiction:

As above: Show A ∩ C ⊂ B, a ∈ C. Prove a /∈ A− B.

Given Goal
A ∩ C ⊂ B a /∈ A− B

a ∈ C

Given Goal
A ∩ C ⊂ B contradiction

a ∈ C
a ∈ A− B
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Proofs involving negations and conditionals.

To prove a goal of the form ¬P.

Given Goal
A ∩ C ⊂ B contradiction

a ∈ C
a ∈ A− B

a ∈ (A ∩ C)− B
a ∈ ∅
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Proofs involving negations and conditionals.

To use a given of the form ¬P.

First method: If we are doing a proof by contradiction, then use P as the
goal.

Given Goal
¬P contradiction

−−−−

Change to
Given Goal
¬P P

−−−−

Second method: re-express in some other form (positive form)
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Proofs involving negations and conditionals.

To use the given of the form P → Q

Use modus ponens P,P → Q ` Q.

Use modus tollens P → Q,¬Q ` ¬P.
Example: Suppose A ⊂ B,a ∈ A, and a and b are not both elements of B.
Prove b /∈ B.

Given Goal
A ⊂ B b /∈ B
a ∈ A

¬(a ∈ B ∧ b ∈ B)

Given Goal
A ⊂ B b /∈ B
a ∈ A

(a ∈ B → b /∈ B)
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Proofs involving negations and conditionals.

Given Goal
A ⊂ B b /∈ B
a ∈ A

(a ∈ B → b /∈ B)
a ∈ B

Theorem: Suppose A ⊂ B,a ∈ A, and a and b are not both elements of
B. Then b /∈ B.
Proof: Since a and b are not both elements of B, it follows that if a is an
element of B, then b is not an element of B. Since a ∈ A, we have a ∈ B.
Thus b is not an element of B.
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Proofs involving quantifiers

To show a goal of the form ∀xP(x)

We introduce some arbitrary variable x in the assumption and prove P(x).

Given Goal
−−−− ∀xP(x)
−−−−

Given Goal
−−−− P(x)
−−−−

x is an arbitrary variable.
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Proofs involving quantifiers

Examples

A,B,C are sets. A− B ⊂ C. Prove A− C ⊂ B.

Given Goal
A− B ⊂ C A− C ⊂ B

Given Goal
∀x(x ∈ A− B → x ∈ C) ∀x(x ∈ A− C → x ∈ B)

Given Goal
∀x(x ∈ A− B → x ∈ C) x ∈ A− C → x ∈ B

x arbitrary
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Proofs involving quantifiers

Examples

Given Goal
∀x(x ∈ A− B → x ∈ C) x ∈ B

x arbitrary
x ∈ A− C

Given Goal
∀x(x ∈ A− B → x ∈ C) contradiction

x ∈ A
x /∈ C
x /∈ B
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Proofs involving quantifiers

Given Goal
∀x(x ∈ A− B → x ∈ C) x ∈ C

x ∈ A
x /∈ C
x /∈ B

Read the English proof also.
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Proofs involving quantifiers

To prove a goal of form ∃xP(x)

We guess x and show P(x).

Given Goal
−−−− ∃xP(x)
−−−−

Given Goal
−−−− P(x)
−−−−

x the value you decided
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Proofs involving quantifiers

∃x , |x2 − 1| < 1/2.

Given Goal
x ∈ R ∃x , |x2 − 1| < 1/2

Given Goal
x ∈ R ∃x , |x2 − 1| < 1/2

x = 1.1 (x2 = 1.21, |x2 − 1| = 0.21 < 1/2)
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Proofs involving quantifiers

To use a given of form ∃xP(x) or ∀xP(x)

∃xP(x): Introduce new variable x0. P(x0) is true (existential instantiation)

∀xP(x): wait until a particular value a for x to pop-up and use P(a).
Example: F ,G families of sets. Suppose that F ∩G 6= ∅. Then

⋂
F ⊂

⋃
G.

Given Goal
F ∩ G 6= ∅ ∀x(x ∈

⋂
F → x ∈

⋃
G)
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Proofs involving quantifiers

Given Goal
F ∩ G 6= ∅ x ∈

⋃
G

x ∈
⋂
F

Given Goal
∃A(A ∈ F ∩ G) ∃A ∈ G(x ∈ A)
∀A ∈ F(x ∈ A)

Given Goal
A0 ∈ F ∃A ∈ G(x ∈ A)
A0 ∈ G

∀A ∈ F(x ∈ A)
x ∈ A0
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Proofs involving quantifiers

Given Goal
A0 ∈ F ∃A ∈ G(x ∈ A)
A0 ∈ G

∀A ∈ F(x ∈ A)
x ∈ A0 ( Use A = A0)

Theorem: Suppose F and G are families of sets. F ∩ G = ∅. Then⋂
F ⊂

⋃
G.

Proof: Suppose x ∈
⋂
F . Since F ∩ G 6= ∅. Let A0 be the common

element. Then A0 ∈ F . Thus, x ∈ A0 as A0 ∈ F . Since A0 ∈ G, then
x ∈

⋃
G.
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Proofs involving quantifiers

Proofs involving conjunctions and biconditionals

To prove a goal of the form P ∧Q: Prove P and Q separately.

To use P ∧Q: Regard as P and Q.
To prove a goal P ↔ Q: Prove P → Q and Q → P.
To use P ↔ Q: Treat as two givens P → Q and Q → P.
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Proofs involving quantifiers

Example

Prove ∀x¬P(x)↔ ¬∃xP(x).

Prove→: ∀x¬P(x)→ ¬∃xP(x)

Given Goal
∀x¬P(x) contradiction
∃xP(x)

Given Goal
∀x¬P(x) contradiction

P(x0)

Given Goal
∀¬P(x) contradiction
P(x0)
¬P(x0)

S. Choi (KAIST) Logic and set theory October 5, 2011 30 / 32



Proofs involving quantifiers

Example

Prove ∀x¬P(x)↔ ¬∃xP(x).
Prove→: ∀x¬P(x)→ ¬∃xP(x)

Given Goal
∀x¬P(x) contradiction
∃xP(x)

Given Goal
∀x¬P(x) contradiction

P(x0)

Given Goal
∀¬P(x) contradiction
P(x0)
¬P(x0)

S. Choi (KAIST) Logic and set theory October 5, 2011 30 / 32



Proofs involving quantifiers

Example

Prove ∀x¬P(x)↔ ¬∃xP(x).
Prove→: ∀x¬P(x)→ ¬∃xP(x)

Given Goal
∀x¬P(x) contradiction
∃xP(x)

Given Goal
∀x¬P(x) contradiction

P(x0)

Given Goal
∀¬P(x) contradiction
P(x0)
¬P(x0)

S. Choi (KAIST) Logic and set theory October 5, 2011 30 / 32



Proofs involving quantifiers

Example

Prove ∀x¬P(x)↔ ¬∃xP(x).
Prove→: ∀x¬P(x)→ ¬∃xP(x)

Given Goal
∀x¬P(x) contradiction
∃xP(x)

Given Goal
∀x¬P(x) contradiction

P(x0)

Given Goal
∀¬P(x) contradiction
P(x0)
¬P(x0)

S. Choi (KAIST) Logic and set theory October 5, 2011 30 / 32



Proofs involving quantifiers

Example

Prove ∀x¬P(x)↔ ¬∃xP(x).
Prove→: ∀x¬P(x)→ ¬∃xP(x)

Given Goal
∀x¬P(x) contradiction
∃xP(x)

Given Goal
∀x¬P(x) contradiction

P(x0)

Given Goal
∀¬P(x) contradiction
P(x0)
¬P(x0)

S. Choi (KAIST) Logic and set theory October 5, 2011 30 / 32



Proofs involving quantifiers

Example

Prove ∀x¬P(x)↔ ¬∃xP(x).

Prove←: ¬∃xP(x)→ ∀x¬P(x)

Given Goal
¬∃xP(x) ∀x¬P(x)

Given Goal
¬∃xP(x) ¬P(x)

x arbitrary

Given Goal
¬∃xP(x) contradiction

x arbitrary
P(x)

S. Choi (KAIST) Logic and set theory October 5, 2011 31 / 32



Proofs involving quantifiers

Example

Prove ∀x¬P(x)↔ ¬∃xP(x).
Prove←: ¬∃xP(x)→ ∀x¬P(x)

Given Goal
¬∃xP(x) ∀x¬P(x)

Given Goal
¬∃xP(x) ¬P(x)

x arbitrary

Given Goal
¬∃xP(x) contradiction

x arbitrary
P(x)

S. Choi (KAIST) Logic and set theory October 5, 2011 31 / 32



Proofs involving quantifiers

Example

Prove ∀x¬P(x)↔ ¬∃xP(x).
Prove←: ¬∃xP(x)→ ∀x¬P(x)

Given Goal
¬∃xP(x) ∀x¬P(x)

Given Goal
¬∃xP(x) ¬P(x)

x arbitrary

Given Goal
¬∃xP(x) contradiction

x arbitrary
P(x)

S. Choi (KAIST) Logic and set theory October 5, 2011 31 / 32



Proofs involving quantifiers

Example

Prove ∀x¬P(x)↔ ¬∃xP(x).
Prove←: ¬∃xP(x)→ ∀x¬P(x)

Given Goal
¬∃xP(x) ∀x¬P(x)

Given Goal
¬∃xP(x) ¬P(x)

x arbitrary

Given Goal
¬∃xP(x) contradiction

x arbitrary
P(x)

S. Choi (KAIST) Logic and set theory October 5, 2011 31 / 32



Proofs involving quantifiers

Example

Prove ∀x¬P(x)↔ ¬∃xP(x).
Prove←: ¬∃xP(x)→ ∀x¬P(x)

Given Goal
¬∃xP(x) ∀x¬P(x)

Given Goal
¬∃xP(x) ¬P(x)

x arbitrary

Given Goal
¬∃xP(x) contradiction

x arbitrary
P(x)

S. Choi (KAIST) Logic and set theory October 5, 2011 31 / 32



Proofs involving quantifiers

Given Goal
¬∃xP(x) ∃xP(x)

x arbitrary
P(x)

Theorem: ∀x¬P(x)↔ ¬∃xP(x).
Proof: (→) Suppose ∀x¬P(x) and suppose ∃xP(x). We choose x0 such
that P(x0) is true. Since ∀x¬P(x), we know ¬P(x0). This is a
contradiction. Thus, ∀x¬P(x)→ ¬∃xP(x).
Proof: (←) Suppose ¬∃xP(x). Let x be arbitrary. Suppose that P(x).
Then ∃xP(x). This is a contradiction. Thus ¬P(x) is true. Since x was
arbitrary, we have ∀x¬P(x).
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