1 Introduction

About this lecture

- Russell's theory of Description
- Predicate and names
- Quantifiers and variables
- Formation rules
- Models
- Refutation trees of predicate logic
- Identity
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic. html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Sets, Logic and Categories, Peter J. Cameron, Springer
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russell, Principia Mathematica (our library). (This could be a project idea.)
- http://plato.stanford.edu/contents.html has much resource. See "Descriptions".
- http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/ CourseHome / See "Monadic Predicate Calculus".
- http://philosophy.hku.hk/think/pl/. See Module: Predicate Logic.
- http://logic.philosophy.ox.ac.uk/. See "Predicate Calculus" in Tutorial.

Some helpful references

- http://en.wikipedia.org/wiki/Truth_table,
- http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral. html, complete (i.e. has all the steps)
- http://svn.oriontransfer.org/TruthTable/index.rhtml, has xor, complete.

2 Russell's theory of Description

Russell's theory of Description

- Often we use sentences like "Tom is a man". "A person of African descent is the President of America."
- $M(x): x$ is a man, $B(x): x$ is of African descent. $P(x): x$ is the President of America.
- We have $M($ Tom $)$.
- There exists x s.t. $B(x) \rightarrow P(x)$ hold.
- How does one analyze such arguments logically.
- A statement such as a is a KAIST student.
- This is a description $K(a)$.

Russell's theory of Description

- Is the statement "The present king of Korea is of Japanese descent" correct?
- There exists x such that $K(x) \rightarrow J(x)$.
- There exists x such that $K(x) \wedge J(x)$.
- These two are logically different.
- Of course the theory of descriptions has some controversies as well.

3 Quantifiers and variables

Quantifiers

- Universal quantifier $\forall x$.
- Existential quantifier $\exists x$.
- There exists x such that if x is $K(x)$, then x is $J(x)$.
- $\exists x, K(x) \rightarrow J(x)$.
- Every body in KAIST has a course that he takes and which he hates.
- $\forall x(K(x) \rightarrow \exists c(T(x, c) \wedge H(x, c)))$.

Examples

- Nobody wish to get close to some one with H1N1 virus.
- $\forall x(H 1(x) \rightarrow \neg(\exists y C(y, x))$.
- If any one in the dorm has a friend who has the measles, then everyone in the room will be quarantined.
- $(\exists x(D(x) \wedge(\exists y(F(y, x) \wedge M(y))))) \rightarrow(\forall z(D(z) \rightarrow Q(z)))$.

Quantifier negation laws

- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$.
- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$.
- This will be proved later. (See also HTP)
- Every body has a relative he does not like.
- Negate this statement.
- $\forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\neg \forall x(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x \neg(\exists y(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x(\forall y \neg(R(x, y) \wedge \neg L(x, y)))$.
- $\exists x \forall y(\neg R(x, y) \vee L(x, y))$.
- $\exists x \forall y(R(x, y) \rightarrow L(x, y))$.
- There is someone who likes all his relatives.

Interchangible

- $\forall x \forall y$ interchangible to $\forall y \forall x$.
- $\exists x \exists y$ interchangible to $\exists y \exists x$.
- Other types are not interchangible.
- $\exists x \exists y(T(y, x) \wedge P(y, x))$.
- There is some one A who is a teacher of some one B and is younger than B.
- $\exists y \exists x(T(y, x) \wedge P(y, x))$
- There is some one B who is a student of some one A and is older than A .

Some other equivalences

- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\forall y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \forall z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x f \leftrightarrow f$ if x is not a free variable of f.
- $\forall x f \leftrightarrow f$ if x is not a free variable of f.
- But $\exists x(E(x) \wedge T(x))$ is not equivalent to $(\exists x E(x)) \wedge(\exists x T(x))$.
- $\forall x(E(x) \vee T(x))$ is not equivalent to $(\forall x E(x)) \vee(\forall x T(x))$.

4 Predicate and name

Predicate and names

- Jones is a thief. $T(j)$.
- $T(x) x$ is a thief. j Jones.
- Bob loves Cathy.
- $L(b, c), L(c, b)$.
- Cathy gave Fido to Bob.
- $G(c, f, b) . G(x, y, z) . x$ gave y to z.

Predicate and names

- Jones likes everyone.
- $\forall x L(j, x)$.
- Jones likes a nurse.
- $\exists x(N(x) \wedge L(j, x))$.
- Jones likes every nurse.
- $\forall x(N(x) \rightarrow L(j, x))$.
- A nurse likes a mechanic.
- $\exists x \exists y((N(x) \wedge M(y)) \rightarrow L(x, y))$.

5 Formation rules

Formation rules

- Logical symbols:
- Logical operators $\neg, \wedge, \vee, \rightarrow, \leftarrow$.
- Quantifiers \forall, \exists.
- Variables; letter u, v, z, \ldots
- Nonlogical symbols:
- Names: a, b, \ldots, t.
- Predicate: A, B, C, \ldots

Well formed formula

- Any atomic formula is a wff. $P, K(a), J(a, b)$, so on.
- If ϕ is a wff, then so is $\neg \phi$.
- If ϕ and ψ are wffs, then so are $\phi \wedge \psi, \phi \vee \psi, \phi \rightarrow \psi$, and $\phi \leftrightarrow \psi$.
- If ϕ is a wff containing a name letter α, then any formula of form $\forall \beta \phi^{\beta / \alpha}$ and $\exists \beta \phi^{\beta / \alpha}$ for a variable β are wff.
- Here, $\phi^{\beta / \alpha}$ means that we replace every or some occurance of α in ϕ with β.

Examples

- $F(a) \wedge G(a, b) . a$ is fast and a is greater than b.
- $\forall x(F(x) \wedge G(x, b))$.
- $\exists y \forall x(F(x) \wedge G(x, y))$.
- There exists someone who is less than all the fast people.
- $\forall x L(x, z)$
- not wff.
- $\exists x \exists x(F(x) \wedge(\neg G(x)))$. This violates rules.

6 Models

Models

- Semantics or actual interpretations of symbols... i.e., universe $\mathrm{A}, \mathrm{B}, \ldots$ today's universe.... These could even be finitely many.
- These could form sets, but not necessarily so.
- Symbols: Model interpretations
- name letter: indiviual objects
- zero-place predicate letter: truth value T or F.
- one-place predicate letter: A class of objects.
- n-place predicate letter: a relation between n objects.
- Given a model M, it is possible that different simbols represent the same objects or relations.
- We try to avoid giving same letters to different objects or relations in models.

Truth value assignment

- A single letter. The truth value is the one directly supplied by the model.
- Predicate $P . P(a)$ is true if a belongs to the class of object denoted by P.
- $R(a, b, \ldots, g)$ is true if the relation hold between $a, b, . ., g$ and is false if not.

Examples

- Universe: the class of all people.
- o Obama, h Hillary Clinton, c Bill Clinton, g George W. Bush: P the class of the 21st century U.S. Presidents. b people who own black dogs.
- $\forall x(P x \rightarrow B x)$.
- $x=o . T . x=g . T$.
- $x=h$ or anyother person. T.
- Thus $\forall x(P x \rightarrow B x)$ is true.
- Let P^{\prime} be the class of 20th century president.
- Check $\forall x\left(P^{\prime} x \rightarrow B x\right)$.
α-variant of a model M
- M a model, and α a name letter (an external object)
- The α-variant of M is a model with the same universe as M and freely interpreting α as any object in M.
- A universal quantification $\forall \beta \phi$ is true in M if the wff $\phi^{\alpha / \beta}$ is true for every α-variant of M.
- An existential quantification $\exists \beta \phi$ is true in M if the wff $\phi^{\alpha / \beta}$ is true for some α-variant of M.
- If the wff $\phi^{\alpha / \beta}$ is true for no α-variant of M, then $\exists \beta \phi$ is false.
- Universe: all living creatures. B the class of blue things. W the class of winged horses.
- $\forall x(W x \rightarrow B x)$. Is this true?
- We can let α be any living creature. Then $W x$ is always false.

Examples

- Universe: the class of all positive integers
- E : the class of even integers, B relation bigger than
- $\forall x(E x \rightarrow \forall y B x y)$.
- α-variant of M.,
- α odd. Then true.
- α even $\forall y B a y$. False.
- Thus false.
- Example: $\forall y \exists x B x y$.
- True.

7 Refutation trees of predicate logic

Validity of predicate logic

- We would write some statements is valid if it is true for all models of the theory.
- We write $P, Q, \models R$ if $(P \wedge Q) \rightarrow R$ is true on every model of the theory.
- Example: $\exists x \forall y G(x, y) \models \forall y \exists x G(x, y)$ is valid.
- Example: $\forall y \exists x G(x, y) \vDash \exists x \forall y G(x, y)$ is invalid. (See 6.20, 6.21, 6.22)
- Note here the role of the models.
- In this book, we confuse \models with \vdash.

Refutation trees of predicate logic

- One can use the refutation tree method for propositional logic for predicate logic also.
- This works by using negation rules for universal quantifiers and existential quantifiers. See Example 6.24.
- We will give rules for refutation trees for predicate logic.
- The rules can show the validity (i.e. the soundness of the rule.)
- However, rule may not detect invalidity (i.e. incompleteness of the rule). That is, sometimes, it won't give us counter-example.

Refutation trees of predicate logic example

- Prove $\forall x F(x) \rightarrow \forall x G(x), \neg \forall x G(x) \vdash \neg \forall x F(x)$.
- 1. $\forall x F(x) \rightarrow \forall x G(x)$. 2. $\neg \forall x G(x)$ 3. $\neg \neg \forall x F(x)$
- \checkmark 1. $\forall x F(x) \rightarrow \forall x G(x)$. 2. $\neg \forall x G(x)$ 3. $\neg \neg \forall x F(x)$, 4(i) $\neg \forall x F(x)$ 4(ii) $\forall x G(x) . \rightarrow E .1$
- 2. $\neg \forall x G(x)$ 3. $\neg \neg \forall x F(x), 4(\mathrm{i}) \neg \forall x F(x)$ 5. (X) 4(ii) $\forall x G(x) . \rightarrow E .1$ 5. (X).

Universal quantifier rule \forall.

- We have $\forall \beta \phi$ and a name letter α is on an open path containing it, write $\phi^{\alpha / \beta}$ at the bottom of that path.
- If no name letter appears on the open path, then choose some name letter α and write $\phi^{\alpha / \beta}$ at the bottom of that path.
- But do not check $\forall \beta \phi$. (Since we will use it many times.)

Example

- All university students are weak.
- Everyone is a university student.
- Alf is a university student.
- Thus, Alf is weak.
- $\forall x(U x \rightarrow W x), \forall x U x \vdash W a$.
- 1. $\forall x(U x \rightarrow W x)$, 2. $\forall x U x$ 3. $\neg W a$.
- 1. $\forall x(U x \rightarrow W x), 2 . \forall x U x$ 3. $\neg W a$. 4. $U a \rightarrow W a(1 \forall$.)
- 1. $\forall x(U x \rightarrow W x)$, 2. $\forall x U x$ 3. $\neg W a$. 4. $U a \rightarrow W a(1 \forall$.) 5. $U a(2 \forall)$
- 1. $\forall x(U x \rightarrow W x)$, 2. $\forall x U x$ 3. $\neg W a$. 4. $\checkmark U a \rightarrow W a(1 \forall$.) 5. $U a(2 \forall)$ 6. (i) $\neg U a(4 . \rightarrow) 6$. (ii) $W a(4 \rightarrow)$.
- 1. $\forall x(U x \rightarrow W x)$, 2. $\forall x U x$ 3. $\neg W a .5 . U a(2 \forall) 6$. (i) $\neg U a(4 . \rightarrow) 7$. (X) 6 . (ii) $W a(4 \rightarrow) .7(\mathrm{X})$

More rules.

- Existential quantification $\exists: \exists \beta \phi$ check it and choose α not anywhere and write $\phi^{\alpha / \beta}$.
- Negated existential quantification $\neg \exists: \neg \exists \phi$ check it and write $\forall \neg \phi$.
- Negated universal quantification $\neg \forall: \neg \forall \phi$ check it and write $\exists \neg \phi$.
- These two are equivalences.

Example

- Holmes, if any one can trap Moriarty, he can. Holmes can't. No-one can.
- $\forall x T x m \rightarrow T h m, \neg T h m, \vdash \neg \exists x T x m$.
- 1. $\forall x T x m \rightarrow T h m, 2 . \neg T h m, 3 . \neg \neg \exists x T x m$.
- 1. $\forall x T x m \rightarrow T h m, 2 . \neg T h m$, 3. $\checkmark \neg \neg \exists x T x m .4$. $\exists x T x m$.
- 1. $\forall x T x m \rightarrow$ Thm, 2. $\neg T h m, 4$. $\exists x T x m$. $5 \mathrm{Tmm} \rightarrow \operatorname{Thm}(1 \forall)$.
- 1. $\forall x T x m \rightarrow T h m, 2 . \neg T h m, 4$. $\exists x T x m$. $5 \checkmark T m m \rightarrow T h m(1 \forall)$. 6. (i) $\neg \operatorname{Tmm}(5 \rightarrow)$ 6.(ii) Thm. $(5 \rightarrow)$. $(\mathrm{X} 2,6)$
- 1. $\forall x T x m \rightarrow T h m, 2 . \neg T h m, 4 . \exists x T x m$. $5 \operatorname{Tmm} \rightarrow \operatorname{Thm}(1 \forall)$. 6.(ii) Thm. $(5 \rightarrow) .(\mathrm{X} 2,6) 6 .(i) \neg \operatorname{Tmm}(5 \rightarrow) 7 . \operatorname{Tcm}(4 \exists) .8 . T c m \rightarrow T h m(1$ $\forall) 9$ (i) $\neg T c m(X, 4)$ (ii) $T h m(X 2) .(8 \rightarrow)$.

Example

－There is some one who loves someone．Then there exists someone who loves himself．
－$\exists x \exists y L x y \vdash \exists x L x x$ ．
－ $1 \exists x \exists y L x y$ ．2．$\neg \exists x L x x$ ．
－ $1 \checkmark \exists x \exists y L x y$ ．2．$\neg \exists x L x x$ ．3．$\exists y \operatorname{Lay}(1 \exists)$ ．
－ $1 \checkmark \exists x \exists y L x y .2$ ．$\neg \exists x L x x$ ．3．$\checkmark \exists y L a y(1 \exists)$ ．4．Lab．（4 ヨ．）
－2．$\checkmark \neg \exists x L x x$ ．4．Lab．（4 ヨ．）5．$\forall x \neg L x x$ ．
－4．Lab．（4 ヨ．）5．$\forall x \neg L x x$ ．6．$\neg L a a(5 \forall)$ ．
－4．Lab．5．$\forall x \neg L x x$ ．6．$\neg L a a(5 \forall)$ ．7．$\neg L b b(5 \forall) \ldots$
－Invalid．

8 Identity

Identity

－We can introduce the identity symbols $=$ to predicate logic．
－＝indicates two objects are the＂same＂．
－Symbols c Samuel Clemens，h Huckleberry Finn the Novel，t Mark Twain．
－Mark Twain is not Samuel Clemens．$\neg(t=c)$ or $t \neq c$ ．
－Only Mark Twain wrote Huckelberry Finn．$\forall x(W x h \rightarrow x=t)$ ．
－Mark Twain is the best American writer $\operatorname{At} \wedge(\forall x(A x \wedge \neg x=t) \rightarrow B t x)$ ．

Refutation tree rules for Identity

－Identity（＝）rule：$\alpha=\beta$ occurs．Then we can replace from ϕ any number of α with β and vice versa at the bottom of the path．
－Negated Identity Rule $(\neg=): \neg \alpha=\alpha$ occurs．Then we can close the path containing it．

Example

- $\vdash \forall x \forall y(x=y \rightarrow y=x)$.
- 1. $\neg \forall x \forall y(x=y \rightarrow y=x)$.
- 1. $\checkmark \neg \forall x \forall y(x=y \rightarrow y=x)$. 2. $\exists x \neg \forall y(x=y \rightarrow y=x)$.
- 1. $\checkmark \neg \forall x \forall y(x=y \rightarrow y=x)$. 2. $\checkmark \exists x \neg \forall y(x=y \rightarrow y=x)$. 3. $\neg \forall y(a=y \rightarrow$ $y=a$). (2 \exists.)
- 3. $\checkmark \neg \forall y(a=y \rightarrow y=a)$. (2 ヨ.) 4 . $\exists y \neg(a=y \rightarrow y=a)$. $(3 \neg \forall)$.
- 4. $\checkmark \exists y \neg(a=y \rightarrow y=a)$. 5. $\neg(a=b \rightarrow b=a)$.
- 5. $\checkmark \neg(a=b \rightarrow b=a)$. 6. $a=b(5 \neg \rightarrow) 7$. $\neg b=a(5 \neg \rightarrow)$.
- 6. $a=b(5 \neg \rightarrow) 7$. $\neg b=a(5 \neg \rightarrow)$. 8. $\neg a=a .6,7=$. X .
- valid.

Some other equivalences (Repeated)

- $\exists x(f \vee g) \leftrightarrow \exists x f \vee \exists x g$.
- $\forall x(f \wedge g) \leftrightarrow \forall x f \wedge \forall y g$.
- $\exists x(f \wedge g) \leftrightarrow(\exists x f) \wedge g$ if x does not occur as a free variable of g. And also $\exists x(f \vee g) \leftrightarrow(\exists x f) \vee g$
- $\forall x(f \vee g) \leftrightarrow(\forall x f) \vee g$ if x does not occur as a free variable of g. And also $\forall x(f \wedge g) \leftrightarrow(\forall x f) \wedge g$
- $\exists y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \exists z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\forall y f\left(x_{1}, \ldots, x_{n}, y\right) \leftrightarrow \forall z f\left(x_{1}, . ., x_{n}, z\right)$ if neither y, z are part of x_{1}, \ldots, x_{n}.
- $\exists x f \leftrightarrow f$ if x is not a free variable of f.
- $\forall x f \leftrightarrow f$ if x is not a free variable of f.
- But $\exists x(E(x) \wedge T(x))$ is not equivalent to $(\exists x E(x)) \wedge(\exists x T(x))$.
- $\forall x(E(x) \vee T(x))$ is not equivalent to $(\forall x E(x)) \vee(\forall x T(x))$.

