
1 Introduction
About this lecture

• Refutation tree and valid argument

• Refutation Tree Rules

• Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic.
html and the moodle page http://moodle.kaist.ac.kr

• Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

• Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill

• A mathematical introduction to logic, H. Enderton, Academic Press.

• Whitehead, Russel, Principia Mathematica (our library). (This could be a project
idea.)

• http://plato.stanford.edu/contents.html has much resource.

• http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/
CourseHome/ See also "The Search-for-Counterexample Test for Validity"
This a slightly different one.

2 Refutation tree and valid argument
Refutation tree and valid argument

• Recall the valid argument

• To check, we need to show the premises T, T,..,T imply that the conclusion is T
always.

• Or conversely, if the conclusion is F, then there is at least one F in the premises

• That is if the conclusion is negated, then not all premises are T.

• Start by negating the premise. Then show that premises and the negated conclu-
sion cannot be all true at the same time. Then this is a valid argument.

• If the premises and the negated conclusions are all true in some way, then the
argument is invalid.

• Note that I did not supply proof that this works always.

Refutation tree example

• We break the statements down to atomic items and see if there can be all true
instances or not. (invalid case)

• The aim is to obtain paths of atomic statements.

• P ∧Q ` P .

• P ∧Q, ¬P .

• XP ∧Q, P , Q, ¬P .

• The nonchecked atomic items cannot all be true.

• Valid

Refutation tree example

• P ∨Q,¬P ` Q.

• XP ∨Q, ¬P , ¬Q, (i) P or (ii) Q.

• (i) ¬P , ¬Q, P (X)

• (ii) ¬P , ¬Q, Q. (X)

• The nonchecked atomic items cannot all be true.

• Thus valid.

3 Refutation Tree Rules
Refutation Tree Rules

• Negation ¬: If any open path contains both a formula and its negation, place X.
(This path is now closed)

• Negated negation ¬¬; In any open path, check any unchecked ¬¬φ and write φ
at the bottom of every path containing it.

• Conjunction ∧: In any open path, check any unchecked φ∧ψ and write φ and ψ
at the bottom of every path containing it. (same path)

• Disjunction ∨: If an open path contain unchecked φ ∨ ψ, then check it and the
split the bottom of every path containing it into two with one φ added and the
other ψ added.

• Conditional→. Unchecked φ → ψ. Check it and branch every path containing
it into two (i) ¬φ (ii) ψ.

2

• Biconditional↔. Unchecked φ↔ ψ. Check it and branch every path containing
it into two (i) ¬φ,¬ψ and (ii) φ, ψ.

• A path is finished (or closed) if X appears.

• See 3.27 and 3.28.

Refutation Tree Rules

• Negated conjunction ¬∧: Unchecked ¬(φ∧ψ). Check it and split the bottom of
every open path containing it into two (i) add ¬φ (ii) add ¬ψ.

• Negated disjunction ¬∨: unchecked ¬(φ∨ψ) and write ¬φ and ¬ψ at the bottom
of every path containing it.

• Negated conditional ¬ →: In any open path, check any unchecked ¬(φ → ψ)
and write φ and ¬ψ at the bottom of every path containing it. (same path)

• Negated biconditional ¬ ↔: In any open path, check any unchecked ¬(φ↔ ψ)
and branch the bottom of every path containing it into two write φ and ¬ψ at one
(i) and write ¬φ and ψ (ii)

Example

• 1. B → ¬A 2 ¬B → C. Conclusion A→ C.

• 1. B → ¬A 2. ¬B → C, 3. ¬(A→ C).

• 1. B → ¬A 2. ¬B → C, 3. check ¬(A→ C). 4 A, 5 ¬C.

• check 1. B → ¬A, 2. ¬B → C, check 3. ¬(A → C). 4 A, 5 ¬C 6 (i) ¬B (ii)
¬A (X) from 1.

• check 1. B → ¬A, check 2. ¬B → C, check 3. ¬(A → C). 4 A, 5 ¬C 6 (ii)
¬A (X) (i) ¬B from 1 (i)(i) ¬¬B (X) (i)(ii) C (X) from 2.

• Now complete. valid

Open tree case

• If open path arises without X, then invalid.

– 1. A→ B 2. ¬A 3. ` B.

– 1. A→ B 2. ¬A 3. ¬B.

– check 1. A→ B 2. ¬A 3. ¬B. (i) ¬A (ii) B. (X).

– (i) is still alive.

– Invalid case: ¬A,¬B is the counter example.

3

Tautology Rules

• A wff φ is a tautology if and only if ¬φ is truth-functionally inconsistent.

• φ is a tautology if and only if all path in the finished tree are closed.

• Examples: to be filled....

Some helpful remarks

• Do not apply rules to subformulas. (Confusing)

• The order of rules applied does not make any difference. It is more efficient to
apply nonbranching rules first.

• The process eventually terminates. (not go forever). Decidability.

• Soundness of the test: If we can validity from the test, then we can trust it.

• Completeness of the test: If we can invalidity from the test, then we can trust it:
we even get counter-examples.

• We need proof: Omit proof in R. Jeffery, Formal logic page 34.

4

