1 Introduction

About this lecture

- Argument forms
- Logical operators
- Formalization: well formed formula (wff)
- Truth table
- Course homepages: http://mathsci.kaist.ac.kr/~schoi/logic. html and the moodle page http://moodle.kaist.ac.kr
- Grading and so on in the moodle. Ask questions in moodle.

Some helpful references

- Richard Jeffrey, Formal logic: its scope and limits, Mc Graw Hill
- A mathematical introduction to logic, H. Enderton, Academic Press.
- Whitehead, Russel, Principia Mathematica (our library). (This could be a project idea.)
- http://plato.stanford.edu/contents.html has much resource.
- http://ocw.mit.edu/OcwWeb/Linguistics-and-Philosophy/24-241Fall-2005/ CourseHome/

2 Argument forms

Argument forms

- P, Q, R represent some sentences (not nec. atomic)
- Either today is Monday or Tuesday.
- P or Q.
- If you have bad grades in KAIST, then you pay tuition.
- If P, then Q.
- If P and Q, then R. It is not the case R. It is not the case P and Q.

3 Logical operators

Logical operators

- It is not the case that: \neg or \sim
- And: \wedge or &
- Or: \lor
- If ..., then... : \rightarrow .
- If and only if: \leftrightarrow .
- See http://plato.stanford.edu/entries/pm-notation/.
- See http://en.wikipedia.org/wiki/Logical_connective/.
- \vdash is used to mark the conclusion.

Precedence

- The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.
- As a way of reducing the number of necessary parentheses, one may introduce precedence rules:
- Operator Precedence
 - $\begin{array}{c} \neg \\ \land \\ \lor \\ \rightarrow \\ \leftrightarrow \end{array}$
- So for example, $P \lor Q \land \neg R \to S$ is short for
- $(P \lor (Q \land (\neg R))) \to S.$

Formalizations

- We can formalize any sentence by dividing it into atomic parts.
- It is not both raining and snowing.
- $\neg (R \land S)$
- It is neither raining nor snowing.
- $\bullet \ \neg R \vee \neg S$

4 Well formed formula or wff

Well formed formula or wff

- $((\land P) \lor Q \neg R)$ This is a nonsense
- We define this inductively.
 - Any sentence letter is wff. (atomic one)
 - If ϕ is wff, then so is $\neg \phi$.
 - If ϕ and ψ are wff, so is $(\phi \land \psi), (\phi \lor \psi), (\phi \to \psi)$, and $(\phi \leftrightarrow \psi)$.
- subwff is a wff within a wff.
- As long as atomic sentence letters are well defined, there is no ambiguity in the meaning of wff.

Some exercises

- Either there is no Starbuck's in Daejeon or I do not buy coffee bins.
- $\neg S \lor \neg B$.
- If I buy coffee bins, then there is no Starbuck's in Daejeon.
- $B \rightarrow \neg S$.
- If there were no God, then no movement is possible. But there are movements. Hence, God exists.
- $\neg G \rightarrow \neg M, M, \vdash G.$

Some exercises

- Either it is raining, or it's both snowing and raining.
- $R \lor (R \land S)$.
- Either it is both raining and snowing or it is snowing but not raining.
- $(R \wedge S) \vee (S \wedge \neg R).$

5 Truth table

Semantics of the logical operators

- semantics: the study of meaning.
- Each atomic formula has a truth or false value in a real world (or world A).
- Each wff has truth or false value in a real world (or world A).
- This depends on the truth value of atomic formulas.

Truth tables

- Truth table generator:
 - http://en.wikipedia.org/wiki/Truth_table,
 - http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral. html, complete (i.e. has all the steps)
 - http://svn.oriontransfer.org/TruthTable/index.rhtml, has xor, complete.
 - One has to learn some notations... Sometimes use 0 and 1 instead of F and T.

Truth tables

- Elementary ones:
 - $\neg a$
 - $a \wedge b$
 - $a \lor b$
 - $a \rightarrow b$.
 - $a \leftrightarrow b$ or $(a \rightarrow b) \land (b \rightarrow a)$
 - Every wff can be evaluated from this.
 - In computer science xor.

Examples

- To construct a truth table for a complex wff, we find the truth values for its smallest subwffs and then use the truth tables for the logical operators for larger subwff and so on....
- $\neg S \land \neg B$.
- $(\neg G \to \neg M) \to (M \to G).$
- Also compare $P \to Q$ and $\neg P \lor Q$. Check $(P \to Q) \leftrightarrow (\neg P \lor Q)$).
- This is used to compare.
- You can also use $\neg((P \rightarrow Q) \text{ xor } (\neg P \lor Q))$.

Tautology and a contradiction

- Given some formula, any assignment of T and F yields T in the truth table. Such a formula is said to be a *tautology*.
- $P \lor \neg P$.
- Given some formula, any assignment of T and F yields F in the truth table. Such a formula is said to be a *contradiction*. (*truth-functionally inconsistent*)
- $P \wedge \neg P$.
- The formula which are not one of the above is said to be *truth-functionally contingent*.

Examples

- $(\neg G \rightarrow \neg M) \rightarrow (M \rightarrow G).$
- $(P \to Q) \leftrightarrow (\neg P \lor Q)).$
- $((P \to Q) \to R) \to (P \to R).$

Truth table for argument forms

- Here, we will have a number of premises P₁, P₂, . and a conclusion Q. We need to find the validity of P₁, P₂, ... ⊢ Q
- P_i s are complex.
- To check validity... We check when if every P_i is true, then so is Q.
- Or you can form $(P_1 \land P_2 \land \cdots \land P_n) \rightarrow Q$.

Examples

- $P \to Q, P \to \neg Q \vdash \neg P.$
- $((P \to Q) \land (P \to \neg Q)) \to \neg P.$
- $R \vdash P \leftrightarrow (P \lor (P \land Q)).$
- $R \to (P \leftrightarrow (P \lor (P \land Q))).$