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N
Abstract

@ Let R>' be a complete flat Lorentzian space of dimension 3, and let I' be a freely
and properly acting Lorentzian isometry group = a free group of rank r > 2.
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Abstract

@ Let R>' be a complete flat Lorentzian space of dimension 3, and let I' be a freely
and properly acting Lorentzian isometry group = a free group of rank r > 2.

@ The quotient space R>' /I is an open 3-manifold, called a Margulis space-time, as
first constructed by Margulis and Drumm in 1990s.

@ The compactification of Margulis space-times by attaching closed RP?-surfaces at
infinity (when the groups do not contain parabolics.) The compactified spaces are
homeomorphic to solid handlebodies.

@ Finally, we will discuss about the parabolic regions of tame Margulis space-times
with parabolic holonomies.

@ There is another contemporary approach by Danciger, Gueritaud and Kassel.

/99



Content

e Main results
@ Background

© Part I: Projective boosts

e Part Il: the bordifying surface

e Part Il T acts properly on E U ¥.
e Part IV: the compactness

e Part V: Margulis spacetime with parabolics



Background

@ Flat Lorentz space E = R*' is R® with Q(x, y, z) = x* + y® — Z°.

@ A free group I of rank > 2 acting properly on E and freely. I = F,.
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@ Flat Lorentz space E = R®" is R® with Q(x, y,z) = x® + y? — 7%
@ A free group I of rank > 2 acting properly on E and freely. I = F,.
@ E/I is called a Margulis space-time.

@ L(IN c SO(2,1). Assume L(I') € SO(2,1)° and that this is a Fuchsian group. (It
must be free by G. Mess)

@ Anelement g of I is of form g(x) = L(g)x + by for L(g) € SO(2,1) and by € R*".
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Background

(]

Flat Lorentz space E = R?" is R® with Q(x, y, z) = X% + y? — Z2.

@ A free group I of rank > 2 acting properly on E and freely. I = F,.

E/I is called a Margulis space-time.

L(T) € SO(2,1). Assume L(I') € SO(2,1)° and that this is a Fuchsian group. (It
must be free by G. Mess)
@ Anelement g of I is of form g(x) = L(g)x + by for L(g) € SO(2,1) and by € R*".

I is classified by [b] € H'(Fa, RY[,).

(]

I' is called a proper affine deformation of L(I'), and are classified by Goldman,
Labourie, and Margulis [7].

@ The topology of E/T is in question here.
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The tameness

@ L(I') is convex cocompact if it has a compact convex hull. That is it does not
contain a parabolic.

Theorem 1.1 (Goldman-__, Danciger-Gueritaud-Kassel)

LetR?1/T be a Margulis spacetime. Assume ' has no parabolics. Then R?' /T is homeomorphic
to a handlebody of genus n.
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contain a parabolic.

Theorem 1.1 (Goldman-__, Danciger-Gueritaud-Kassel)

LetR?1/T be a Margulis spacetime. Assume ' has no parabolics. Then R?' /T is homeomorphic
to a handlebody of genus n.

@ This follows from [3]:

Theorem 1.2 (Goldman-__)

LetR?1/T be a Margulis spacetime. Assume I' has no parabolics. ThenR?' /T can be
compactified to a compact RP3-manifold with totally geodesic boundary. The boundary is a closed
RP2-surface.
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The tameness

@ L(I') is convex cocompact if it has a compact convex hull. That is it does not
contain a parabolic.

Theorem 1.1 (Goldman-__, Danciger-Gueritaud-Kassel)

LetR?1/T be a Margulis spacetime. Assume ' has no parabolics. Then R?' /T is homeomorphic
to a handlebody of genus n.

@ This follows from [3]:

Theorem 1.2 (Goldman-__)

LetR?1/T be a Margulis spacetime. Assume I' has no parabolics. ThenR?' /T can be
compactified to a compact RP3-manifold with totally geodesic boundary. The boundary is a closed
RP2-surface.

@ DGK also proved the crooked plane conjecture. The tameness and the
compactification follow from this result also.
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Part |: Projective boosts

The real projective geometry

@ RP" = P(R™") = R™" — {O}/ ~ where v ~ w if v = sw for s # 0.

@ The real projective geometry is given by RP” with the standard
PGL(n + 1,R)-action.
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Part |: Projective boosts

The real projective geometry

@ RP" = P(R™") = R™" — {O}/ ~ where v ~ w if v = sw for s # 0.

@ The real projective geometry is given by RP” with the standard
PGL(n + 1,R)-action.

@ The oriented version 8" := S(R™') = R™" — {0}/ ~ where v ~ w if v = sw for

s> 0.
@ The group Aut(S") of projective automorphisms =2 SL.(n + 1,R).

@ The projection (x1,- -, Xn+1) —((x1,- - - , Xnt1)), the equivalence class.
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Part |: Projective boosts

Affine geometry as a sub-geometry of projective geometry

@ R" = H° c H c S" where H is a hemisphere.

o Aff(R") = Aut(H)

{(e)

Ac GL(n,R),bcR" X > 0.}
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Part |: Projective boosts

Affine geometry as a sub-geometry of projective geometry

@ R" = H° c H c S" where H is a hemisphere.

o Aff(R") = Aut(H)

{(e)

@ H" =R"US";" for a hemisphere H" of S” with the ideal boundary S75'.

Ac GL(n,R),bcR" X > 0.}

@ A complete affine manifold is of form H™°/T for I ¢ Aut(H") and the group
Aut(H") of projective automorphism of H", equal to Aff(H™°).
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Part |: Projective boosts

Lorentz geometry compactified

@ R?>' = #° the interior of a 3-hemisphere 7 in S°.

@ Isom(R?") = R® x SO(2,1) — Aut(#) < SL+(4,R).
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Part |: Projective boosts

Lorentz geometry compactified

@ R?>' = #° the interior of a 3-hemisphere 7 in S°.
@ Isom(R?") = R® x SO(2,1) — Aut(#) < SL+(4,R).
e 7 =R>' USZ is the compactification of R>' with the ideal boundary S2..

@ A element of Isom(R*") with a semisimple linear part is a Lorentzian boost.

Xq e 0 X1 0
g Xo = 0 1 Xo = b
X3 0 0 e X3 0
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Part |: Projective boosts

Lorentzian boost

@ As an element of SL4 (4, R),

CD\

,a #0.

o O O
- O Qo O

The six fixed points on S2, are:
xT:=((£1:0:0:0)), x2 :=((0:+1:0:0)), xg :=((0:0:+£1:0)).

in homogeneous coordinates on s2..
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Part |: Projective boosts

Lorentzian boost

@ As an element of SL4 (4, R),

CD\

,a #0.

o O O
- O Q2 O

The six fixed points on S2, are:
xT:=((£1:0:0:0)), x2 :=((0:+1:0:0)), xg :=((0:0:+£1:0)).

in homogeneous coordinates on s2..

@ Axis(v) := x°0x°. ~ acts as a translation on Axis(v) towards x? when « > 0 and

towards x° when a < 0.

@ Define the weak stable plane #*“(v) := span(x~(v) U Axis(v)).

9/29



Part |: Projective boosts

Projective boosts

@ A Lorentzian boost is any isometry g conjugate to ~.
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Part |: Projective boosts

Projective boosts

@ A Lorentzian boostis any isometry g conjugate to .
@ A projective boostis a projective extension S® of a Lorentzian boost.

@ The elements x(g), x1.(g) are all determined by g itself.
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Part I: Projective boosts

Figure: The action of a projective boost § on the 3-hemisphere ./# with the boundary sphere S2, .
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Part |: Projective boosts

Convergence for projective boosts

@ a projective automorphism g, x of form

o O

A>1,k#£0 (1)

- O X O

0
1
0
0

o O O »
o >—

under a homogeneous coordinate system of S is a projective-boost.
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Part |: Projective boosts

Convergence for projective boosts

@ a projective automorphism g, x of form

o O

A>1,k#£0 (1)

- O X O

0
1
0
0

o O O »
o >—

under a homogeneous coordinate system of S is a projective-boost.
@ Assume (\, k) — oo and k/X — 0.
(@) gkl — S2_ attracting fixed points eq, e_.
(b) g k|(SN ) —n_ — e for the stable subspace S.
(¢) K C # —n—, K meets both component of 72 — S. Then gy x(K) — 7.
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The ideal boundary S2. of E

@ The sphere of directions S%, := S(R*") double-covering RP?.

@ The image S of the space of future timelike vectors identifies with the hyperbolic
2-plane H?, (the Beltrami-Klein model of the hyperbolic plane.)
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The ideal boundary S2. of E

@ The sphere of directions S%, := S(R*") double-covering RP?.

@ The image S of the space of future timelike vectors identifies with the hyperbolic
2-plane H?, (the Beltrami-Klein model of the hyperbolic plane.)

@ Let S_ denote the subspace of S corresponding to past timelike vectors.

@ SO(2,1)° acts faithfully on H? = S as the orientation-preserving isometry group
and SO(2, 1) acts so on S| US_ and acts on S% projectively.

o LetSp:=S2% —CI(S,) —CI(S).
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Part II: the bordifying surface

Oriented Lorentzian space E

o R*' xR®' - R, (v,u) — v-u.

o R®' x R x R®' R, (v, u, w) — Det(v, u, w).
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Part II: the bordifying surface

Oriented Lorentzian space E

o R*' xR®' - R, (v,u) — v-u.

o R®' x R x R®' R, (v, u, w) — Det(v, u, w).

@ Null space N := {v|v-v = 0} C R®".

@ Letve N, v#£0, vt —Rv has two choices of components.

@ Define the null half-plane % (v) (or the wing) associated to v as:

W (V) = {w e v’ | Det(v,w,u) > 0} c vt —Rv.

where u is chosen arbitrarily in the same CI(S+) that v is in.
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Part II: the bordifying surface

@ The corresponding set of directions is the open arc

() =7 ()
in Sp joining ((v))to its antipode ((v_)).
@ The corresponding map
((M))— ()

is an SO(2, 1)-equivariant map
oSy — S

where S denotes the set of half-arcs.
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Part II: the bordifying surface

Figure: The tangent geodesics to disks S and Figure: The tangent geodesics to disks S and
S_ in the unit sphere S2_ imbedded in R3. S_ in the stereographically projected S2_ from
(0,0, —1). The inner circle represents the
boundary of S;. The arcs of form ¢(x) for

X € 0S4 are leaves of the foliation F on Sy.
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RP?-surfaces to bordify E/T.

@ ¥ =S, /L(I) is a complete hyperbolic surface without parabolics.

@ We can add finitely many arcs to compactify ¥/, := ¥, Uci U--- U cn.

@ %, =S, U, bi=CI(Sy) — A
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RP?-surfaces to bordify E/T.

@ ¥ =S, /L(I) is a complete hyperbolic surface without parabolics.

@ We can add finitely many arcs to compactify ¥/, := ¥, Uci U--- U cn.

o Zg_ _S+UUIE‘7 ,—CI(S+)7A
@ We define
¥ = SLuJJAuEl
ieJ
= 8% - |Ja(x)). )
XEN

an open domain in S2,.
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RP?-surfaces to bordify E/T.

@ Y, =S, /L(I)is a complete hyperbolic surface without parabolics.
@ We can add finitely many arcs to compactify ¥/, := ¥, Uci U--- U cn.

@ %, =S, U, bi=CI(Sy) — A

@ We define
¥ = SLuJJAuEl
ieJ
= s - [Ja(x). 2
XEN

an open domain in S2,.

Theorem 3.1 (Projective Schottky surface)

L(T) acts properly discontinuously and freely on 3, and ¥ := ¥ /L(I") is a closed RP2-surface.
The same is true for o7 (%).
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Part Ill. T acts properly on E U 5.

The proper action of Ton EU ¥

@ Recall the Margulis invariant:

#(9) = Blgx — x,v(g))
where v(g) is the unit space-like neutral vector of g

_ X(g) xx7(9)
V9 = gy < - (a)

@ If I' acts properly on E, then the Margulis invariants of nonidentity elements are all
positive or all negative.
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Part Ill. T acts properly on E U 5.

The proper action of T on E U ¥

@ Recall the Margulis invariant:

#(9) = Blgx — x,v(g))
where v(g) is the unit space-like neutral vector of g

_ X9 xx(9)
V9 = gy < - (a)

@ If I' acts properly on E, then the Margulis invariants of nonidentity elements are all
positive or all negative.

@ To obtain the converse, the diffused Margulis invariants are introduced by
Goldman, Labourie, and Margulis [7]. We will use their techniques.

@ We know that I acts properly on E and ¥ separately.
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Part Ill. T acts properly on E U 5.

@ Let C(X.) be the space of Borel probability measures on U /T invariant under
the flow. These are supported on the nonwondering part UjecX .

@ A continuous function x : C(X+) — R extends the Margulis invariants.
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Part Ill. I acts properly on E U ¥.

@ Let C(X.) be the space of Borel probability measures on U /T invariant under
the flow. These are supported on the nonwondering part UrecX .

@ A continuous function x : C(X;) — R extends the Margulis invariants.

Theorem 4.1 (Goldman-Labourie-Margulis)

w has the same sign if and only if T acts properly on R%1,

A consequence of the proof:

There exists a continuous section
Urecz+ — Urecz+ X E/r

with the compact image.

19/29



Part Ill. T acts properly on E U 5.

@ Let C(X.) be the space of Borel probability measures on U /T invariant under
the flow. These are supported on the nonwondering part UrecX .

@ A continuous function p : C(X;) — R extends the Margulis invariants.

Theorem 4.1 (Goldman-Labourie-Margulis)

w has the same sign if and only if T acts properly on R%1,

A consequence of the proof:

There exists a continuous section

UrecX+ — UrecX 4 X E/T

with the compact image.

@ Goldman-Labourie found a one to one correspondence

{l|l'is a nonwandering geodesic on X} <+ {/|/ is a nonwandering spacelike geodesic on E/I'}

@ A key fact: Closed geodesics on X corresponds to closed geodesic in E/T. The
set is precompact
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Part Ill. T acts properly on E U 5.

The proof of the properness

@ Let K be a compact subset of EU ¥

@ Consider {g € T'|g(K) N K # 0}.
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The proof of the properness

@ Let K be a compact subset of EU ¥
@ Consider {g € T'|g(K) N K # 0}.
@ Suppose that the set is not finite. We find a sequence g; with A(g;) — oo.

@ Let a; and r; on 0S denote the attracting and the repelling fixed points of g;.
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Part Ill. T acts properly on E U 5.

The proof of the properness

@ Let K be a compact subset of EU ¥

@ Consider {g € T'|g(K) N K # 0}.

@ Suppose that the set is not finite. We find a sequence g; with A(g;) — oo.

@ Let a; and r; on 0S denote the attracting and the repelling fixed points of g;.

@ Since a Fuchsian group is a convergence group: There exists a subsequence g;
so that
ai— abi— b,a,bedSy, \j — .

@ Assume a # b. The other case will be done by “Margulis trick”

20/29



Part IIl. T acts properly on E U 5.

Figure: The actions are very close to this one.
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Part Ill. T acts properly on E U 5.

@ By the boundedness of nonwandering spacelike geodesics in E/I', we find a
bounded set h; € SL.(4,R) so that hjgih; " is in the standard form.

@ We choose a subsequence h; — h. € SL+(4,R) and the stable subspace
&= S

@ Cover K by a finite set of convex ball meeting S.. and ones disjoint from S .
@ gi(B) — a,a_ for disjoint balls.

@ gi(B') — (a) for B' meeting S.
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Part IV: the compactness

Compactness

@ Now we know E N 5/T is a manifold.

@ We know X is a closed surface. 71(X) — m1(M) surjective.
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Part V: Margulis spacetime with parabolics

Margulis spacetime with parabolics

@ In analogy with the thick and thin decomposition of hyperbolic 3-manifolds.
@ Let g € Isom(R?") with L(g) parabolic. Suppose that g acts properly on E.

@ Charette-Drumm invariant generalizes the Margulis invariants. (See [2])

24/29



Part V: Margulis spacetime with parabolics

Margulis spacetime with parabolics

@ In analogy with the thick and thin decomposition of hyperbolic 3-manifolds.
@ Let g € Isom(R?") with L(g) parabolic. Suppose that g acts properly on E.
@ Charette-Drumm invariant generalizes the Margulis invariants. (See [2])

Theorem 6.1 (Charette-Drumm)

IfT acts properly on E, {u£"(g)|g € '} have the same signs.

@ The converse is being proved by Goldman, Labourie, Margulis, Minsky [8].

24/29



Part V: Margulis spacetime with parabolics

Understanding the parabolic transformation

@ We restrict to the cyclic (g) for parabolic g.
@ U=exp(N) =1+ N+ %Nz where N is skew-adjoint nilpotent.
@ N=log(U)=(U-1)+ 3(U-1>
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Part V: Margulis spacetime with parabolics

Understanding the parabolic transformation

@ We restrict to the cyclic (g) for parabolic g.
@ U=exp(N) =1+ N+ %NZ where N is skew-adjoint nilpotent.
@ N=log(U)=(U-1)+ 3(U-1>

Lemma 6.2 (Skew-Nilpotent)

There exists ¢ € KerN such that c is causal, c = N(b), b € R is space-like and b.b = 1.

@ Using basis {a, b, c} with b = N(a), c = N(b), we obtain a one-parameter family

containing U
1t /2 ut/6
0 1 t /2
®(f):EE= n/
00 1 ut
00 O 1

25/9G



Part V: Margulis spacetime with parabolics

@ ¢ = yOx + 20y + 10z is the vector field generating it.

@ Fu(x,y,z) = 2% —2uy and F3(x, y, 2) := 2% — 3uyz + 3;°z are invariants.
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Part V: Margulis spacetime with parabolics

@ ¢ = yOx + 20y + 10z is the vector field generating it.

@ Fo(x,y,z) =22 — 2uy and F3(x, y, z) := z° — 3uyz + 32z are invariants.

@ For F(x,y,z) := (Fs(x,y, 2), Fa(X, Y, 2), 2), F o ®; 0 F~ ' is a translation by
(0,0, ut).

Figure: A number of orbits drawn horizontally.
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Part V: Margulis spacetime with parabolics

Lorentzian analog of parabolic neighborhoods

@ We use timelike ruled surface invariant under ®;.

@ f> = T is a parabolic cylinder Pr.
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Part V: Margulis spacetime with parabolics

Lorentzian analog of parabolic neighborhoods
@ We use timelike ruled surface invariant under ;.
@ [ = T is a parabolic cylinder Pr.
@ Take a line / with direction (&, 0, ¢), a, ¢ > 0 in the timelike direction 2ac > 0.
@ W(t,s) = d4(I(s)) for I(s) = (0, yo,0) + s(a, 0, c) for (0, yo,0) € Pr where
T =—=2pyo.
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Part V: Margulis spacetime with parabolics

Lorentzian analog of parabolic neighborhoods

@ We use timelike ruled surface invariant under ;.
@ f> = T is a parabolic cylinder Pr.
@ Take a line / with direction (&, 0, ¢), a, ¢ > 0 in the timelike direction 2ac > 0.
@ W(t,s) = d4(I(s)) for I(s) = (0, yo,0) + s(a, 0, c) for (0, yo,0) € Pr where
T =—=2pyo.
@ For yo < p2, W(t, s) is a proper imbedding to ®; invariant ruled surface.

Figure: The ruled surface
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