Compactifications of Margulis space-times

Suhyoung Choi

Department of Mathematical Science KAIST, Daejeon, South Korea mathsci.kaist.ac.kr/~schoi email: schoi@math.kaist.ac.kr

Geometry of Moduli Spaces of Low Dimensional Manifolds, RIMS, Kyoto, December 14–18, 2015 (joint work with William Goldman, later part also Todd Drumm)

• Let $\mathbf{R}^{2,1}$ be a complete flat Lorentzian space of dimension 3, and let Γ be a freely and properly acting Lorentzian isometry group \cong a free group of rank $r \geq 2$.

- Let $\mathbf{R}^{2,1}$ be a complete flat Lorentzian space of dimension 3, and let Γ be a freely and properly acting Lorentzian isometry group \cong a free group of rank $r \geq 2$.
- The quotient space R^{2,1}/Γ is an open 3-manifold, called a *Margulis space-time*, as first constructed by Margulis and Drumm in 1990s.

- Let $\mathbf{R}^{2,1}$ be a complete flat Lorentzian space of dimension 3, and let Γ be a freely and properly acting Lorentzian isometry group \cong a free group of rank $r \geq 2$.
- The quotient space R^{2,1}/Γ is an open 3-manifold, called a *Margulis space-time*, as first constructed by Margulis and Drumm in 1990s.
- The compactification of Margulis space-times by attaching closed RP²-surfaces at infinity (when the groups do not contain parabolics.) The compactified spaces are homeomorphic to solid handlebodies.

- Let $\mathbf{R}^{2,1}$ be a complete flat Lorentzian space of dimension 3, and let Γ be a freely and properly acting Lorentzian isometry group \cong a free group of rank $r \geq 2$.
- The quotient space R^{2,1}/Γ is an open 3-manifold, called a *Margulis space-time*, as first constructed by Margulis and Drumm in 1990s.
- The compactification of Margulis space-times by attaching closed RP²-surfaces at infinity (when the groups do not contain parabolics.) The compactified spaces are homeomorphic to solid handlebodies.
- Finally, we will discuss about the parabolic regions of tame Margulis space-times with parabolic holonomies.
- There is another contemporary approach by Danciger, Gueritaud and Kassel.

Content

- Main results
 - Background
- 2 Part I: Projective boosts
- Part II: the bordifying surface
- 4 Part III. Γ acts properly on $E \cup \tilde{\Sigma}$.
- Part IV: the compactness
- 6 Part V: Margulis spacetime with parabolics

Background

- Flat Lorentz space $E = \mathbb{R}^{2,1}$ is \mathbb{R}^3 with $Q(x,y,z) = x^2 + y^2 z^2$.
- A free group Γ of rank \geq 2 acting properly on E and freely. $\Gamma \cong F_n$.

Background

- Flat Lorentz space $E = \mathbb{R}^{2,1}$ is \mathbb{R}^3 with $Q(x,y,z) = x^2 + y^2 z^2$.
- A free group Γ of rank \geq 2 acting properly on E and freely. $\Gamma\cong F_n$.
- E/Γ is called a *Margulis space-time*.
- L(Γ) ⊂ SO(2, 1). Assume L(Γ) ⊂ SO(2, 1)° and that this is a Fuchsian group. (It
 must be free by G. Mess)
- An element g of Γ is of form $g(x) = L(g)x + b_g$ for $L(g) \in SO(2,1)$ and $b_g \in \mathbb{R}^{2,1}$.

Background

- Flat Lorentz space $E = \mathbb{R}^{2,1}$ is \mathbb{R}^3 with $Q(x,y,z) = x^2 + y^2 z^2$.
- A free group Γ of rank \geq 2 acting properly on E and freely. $\Gamma \cong F_n$.
- E/Γ is called a *Margulis space-time*.
- L(Γ) ⊂ SO(2,1). Assume L(Γ) ⊂ SO(2,1)° and that this is a Fuchsian group. (It
 must be free by G. Mess)
- An element g of Γ is of form $g(x) = L(g)x + b_g$ for $L(g) \in SO(2,1)$ and $b_g \in \mathbb{R}^{2,1}$.
- Γ is classified by $[b] \in H^1(\mathcal{F}_n, \mathbb{R}^{2,1}_{L(\Gamma)})$.
- Γ is called a proper affine deformation of L(Γ), and are classified by Goldman, Labourie, and Margulis [7].
- The topology of E/Γ is in question here.

The tameness

• $L(\Gamma)$ is convex cocompact if it has a compact convex hull. That is it does not contain a parabolic.

Theorem 1.1 (Goldman-, Danciger-Gueritaud-Kassel)

Let $\mathbb{R}^{2,1}/\Gamma$ be a Margulis spacetime. Assume Γ has no parabolics. Then $\mathbb{R}^{2,1}/\Gamma$ is homeomorphic to a handlebody of genus n.

The tameness

• $L(\Gamma)$ is convex cocompact if it has a compact convex hull. That is it does not contain a parabolic.

Theorem 1.1 (Goldman-, Danciger-Gueritaud-Kassel)

Let $\mathbb{R}^{2,1}/\Gamma$ be a Margulis spacetime. Assume Γ has no parabolics. Then $\mathbb{R}^{2,1}/\Gamma$ is homeomorphic to a handlebody of genus n.

• This follows from [3]:

Theorem 1.2 (Goldman-___)

Let $\mathbb{R}^{2,1}/\Gamma$ be a Margulis spacetime. Assume Γ has no parabolics. Then $\mathbb{R}^{2,1}/\Gamma$ can be compactified to a compact $\mathbb{R}P^3$ -manifold with totally geodesic boundary. The boundary is a closed $\mathbb{R}P^2$ -surface.

The tameness

 L(Γ) is convex cocompact if it has a compact convex hull. That is it does not contain a parabolic.

Theorem 1.1 (Goldman-___, Danciger-Gueritaud-Kassel)

Let $\mathbb{R}^{2,1}/\Gamma$ be a Margulis spacetime. Assume Γ has no parabolics. Then $\mathbb{R}^{2,1}/\Gamma$ is homeomorphic to a handlebody of genus n.

• This follows from [3]:

Theorem 1.2 (Goldman-___)

Let $\mathbb{R}^{2,1}/\Gamma$ be a Margulis spacetime. Assume Γ has no parabolics. Then $\mathbb{R}^{2,1}/\Gamma$ can be compactified to a compact $\mathbb{R}P^3$ -manifold with totally geodesic boundary. The boundary is a closed $\mathbb{R}P^2$ -surface.

 DGK also proved the crooked plane conjecture. The tameness and the compactification follow from this result also.

The real projective geometry

- $\mathbb{R}P^n = P(\mathbb{R}^{n+1}) = \mathbb{R}^{n+1} \{O\}/\sim \text{ where } v \sim w \text{ if } v = sw \text{ for } s \neq 0.$
- The real projective geometry is given by $\mathbb{R}P^n$ with the standard $PGL(n+1,\mathbb{R})$ -action.

The real projective geometry

- $\mathbb{R}\mathsf{P}^n = P(\mathbb{R}^{n+1}) = \mathbb{R}^{n+1} \{O\}/\sim \text{ where } v \sim w \text{ if } v = sw \text{ for } s \neq 0.$
- The real projective geometry is given by $\mathbb{R}P^n$ with the standard $PGL(n+1,\mathbb{R})$ -action.
- The oriented version $\mathbf{S}^n := S(\mathbb{R}^{n+1}) = \mathbb{R}^{n+1} \{O\}/\sim$ where $v \sim w$ if v = sw for s > 0.
- The group $\operatorname{Aut}(\mathbf{S}^n)$ of projective automorphisms $\cong \operatorname{SL}_{\pm}(n+1,\mathbb{R})$.

The real projective geometry

- $\mathbb{R}\mathsf{P}^n = P(\mathbb{R}^{n+1}) = \mathbb{R}^{n+1} \{O\}/\sim \text{ where } v \sim w \text{ if } v = sw \text{ for } s \neq 0.$
- The real projective geometry is given by $\mathbb{R}P^n$ with the standard $PGL(n+1,\mathbb{R})$ -action.
- The oriented version $\mathbf{S}^n := S(\mathbb{R}^{n+1}) = \mathbb{R}^{n+1} \{O\}/\sim$ where $v \sim w$ if v = sw for s > 0.
- The group $\operatorname{Aut}(S^n)$ of projective automorphisms $\cong \operatorname{SL}_{\pm}(n+1,\mathbb{R})$.
- The projection $(x_1, \dots, x_{n+1}) \rightarrow ((x_1, \dots, x_{n+1}))$, the equivalence class.

Affine geometry as a sub-geometry of projective geometry

- $\mathbb{R}^n = H^o \subset H \subset \mathbb{S}^n$ where H is a hemisphere.
- $Aff(\mathbb{R}^n) = Aut(H)$

$$=\left\{\left(\begin{array}{cc}A&b\\0&\lambda\end{array}\right)\left|A\in\mathrm{GL}(n,\mathbb{R}),b\in\mathbb{R}^n,\lambda>0.\right\}$$

Affine geometry as a sub-geometry of projective geometry

- $\mathbb{R}^n = H^o \subset H \subset \mathbb{S}^n$ where H is a hemisphere.
- $Aff(\mathbb{R}^n) = Aut(H)$

$$=\left\{\left(\begin{array}{cc}A&b\\0&\lambda\end{array}\right)\middle|A\in\mathrm{GL}(n,\mathbb{R}),b\in\mathbb{R}^n,\lambda>0.\right\}$$

- $H^n = \mathbb{R}^n \cup \mathbf{S}_{\infty}^{n-1}$ for a hemisphere H^n of \mathbf{S}^n with the ideal boundary $\mathbf{S}_{\infty}^{n-1}$.
- A complete affine manifold is of form $H^{n,o}/\Gamma$ for $\Gamma \subset \operatorname{Aut}(H^n)$ and the group $\operatorname{Aut}(H^n)$ of projective automorphism of H^n , equal to $\operatorname{Aff}(H^{n,o})$.

Lorentz geometry compactified

- $\mathbb{R}^{2,1} = \mathcal{H}^o$ the interior of a 3-hemisphere \mathcal{H} in S^3 .
- $\mathsf{Isom}(\mathbb{R}^{2,1}) = \mathbb{R}^3 \rtimes \mathsf{SO}(2,1) \hookrightarrow \mathsf{Aut}(\mathscr{H}) \hookrightarrow \mathsf{SL}_{\pm}(4,\mathbb{R}).$

Lorentz geometry compactified

- $\mathbb{R}^{2,1} = \mathcal{H}^{\circ}$ the interior of a 3-hemisphere \mathcal{H} in S^3 .
- $\bullet \ \mathsf{Isom}(\mathbb{R}^{2,1}) = \mathbb{R}^3 \rtimes \mathsf{SO}(2,1) \hookrightarrow \mathsf{Aut}(\mathscr{H}) \hookrightarrow \mathsf{SL}_{\pm}(4,\mathbb{R}).$
- $\bullet \ \, \mathscr{H}=\mathbb{R}^{2,1}\cup \textbf{S}_{\infty}^2 \text{ is the compactification of } \mathbb{R}^{2,1} \text{ with the ideal boundary } \textbf{S}_{\infty}^2.$
- A element of $Isom(\mathbb{R}^{2,1})$ with a semisimple linear part is a Lorentzian boost.

$$g\left(\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right]\right) = \left(\begin{array}{ccc} e^l & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-l} \end{array}\right) \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] + \left[\begin{array}{c} 0 \\ b \\ 0 \end{array}\right].$$

Lorentzian boost

• As an element of $SL_{\pm}(4,\mathbb{R})$,

$$\gamma = \left(\begin{array}{cccc} e^{l} & 0 & 0 & 0 \\ 0 & 1 & 0 & \alpha \\ 0 & 0 & e^{-l} & 0 \\ 0 & 0 & 0 & 1 \end{array}\right), \alpha \neq 0.$$

The six fixed points on S^2_{∞} are:

$$x_{\pm}^{+} := ((\pm 1 : 0 : 0 : 0)), \ x_{\pm}^{0} := ((0 : \pm 1 : 0 : 0)), \ x_{\pm}^{-} := ((0 : 0 : \pm 1 : 0)).$$

in homogeneous coordinates on S_{∞}^2 .

Lorentzian boost

• As an element of $SL_{\pm}(4,\mathbb{R})$,

$$\gamma = \left(\begin{array}{cccc} e^{I} & 0 & 0 & 0 \\ 0 & 1 & 0 & \alpha \\ 0 & 0 & e^{-I} & 0 \\ 0 & 0 & 0 & 1 \end{array}\right), \alpha \neq 0.$$

The six fixed points on S^2_{∞} are:

$$x_{\pm}^{+} := ((\pm 1 : 0 : 0 : 0)), \ x_{\pm}^{0} := ((0 : \pm 1 : 0 : 0)), \ x_{\pm}^{-} := ((0 : 0 : \pm 1 : 0)).$$

in homogeneous coordinates on S^2_{∞} .

- $\mathsf{Axis}(\gamma) := \overline{x^0 O x_-^0}$. γ acts as a translation on $\mathsf{Axis}(\gamma)$ towards x_+^0 when $\alpha > 0$ and towards x_-^0 when $\alpha < 0$.
- Define the weak stable plane $\mathscr{W}^{wu}(\gamma) := \operatorname{span}(x^-(\gamma) \cup \operatorname{Axis}(\gamma))$.

Projective boosts

• A *Lorentzian boost* is any isometry g conjugate to γ .

Projective boosts

- A *Lorentzian boost* is any isometry g conjugate to γ .
- A *projective boost* is a projective extension **S**³ of a Lorentzian boost.
- The elements $x_{\pm}^{\pm}(g), x_{\pm}^{0}(g)$ are all determined by g itself.

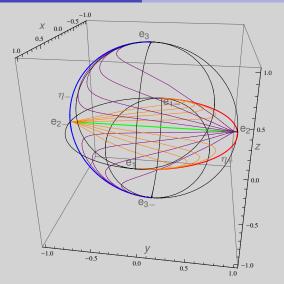


Figure: The action of a projective boost \hat{g} on the 3-hemisphere \mathscr{H} with the boundary sphere \mathbf{S}_{∞}^2 .

Convergence for projective boosts

• a projective automorphism $g_{\lambda,k}$ of form

$$\begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & 1 & 0 & k \\ 0 & 0 & \frac{1}{\lambda} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \lambda > 1, k \neq 0$$
 (1)

under a homogeneous coordinate system of **S**³ is a projective-boost.

Convergence for projective boosts

• a projective automorphism $g_{\lambda,k}$ of form

$$\begin{bmatrix} \lambda & 0 & 0 & 0 \\ 0 & 1 & 0 & k \\ 0 & 0 & \frac{1}{\lambda} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \lambda > 1, k \neq 0$$
 (1)

under a homogeneous coordinate system of **S**³ is a projective-boost.

- Assume $(\lambda, k) \to \infty$ and $k/\lambda \to 0$.
 - (a) $g_{\lambda,k}|\mathcal{H} \mathbf{S}_{\infty}^2$ attracting fixed points $\mathbf{e}_1, \mathbf{e}_{1-}$.
 - (b) $g_{\lambda,k}|(S\cap \mathcal{H})-\eta_-\to e_2$ for the stable subspace S.
 - (c) $K \subset \mathcal{H} \eta_-$, K meets both component of $\mathcal{H} S$. Then $g_{\lambda,k}(K) \to \eta_+$.

The ideal boundary S_{∞}^2 of E

- The sphere of directions $\mathbf{S}^2_{\infty} := \mathbb{S}(\mathbb{R}^{2,1})$ double-covering $\mathbb{R}\mathsf{P}^2$.
- The image \mathbb{S}_+ of the space of future timelike vectors identifies with the hyperbolic 2-plane \mathbb{H}^2 , (the Beltrami-Klein model of the hyperbolic plane.)

The ideal boundary S_{∞}^2 of E

- The sphere of directions $\mathbf{S}^2_{\infty} := \mathbb{S}(\mathbb{R}^{2,1})$ double-covering $\mathbb{R}P^2$.
- The image S₊ of the space of future timelike vectors identifies with the hyperbolic 2-plane ℍ², (the Beltrami-Klein model of the hyperbolic plane.)
- Let S_− denote the subspace of S corresponding to past timelike vectors.
- $SO(2,1)^o$ acts faithfully on $\mathbb{H}^2=\mathbb{S}_+$ as the orientation-preserving isometry group and SO(2,1) acts so on $\mathbb{S}_+\cup\mathbb{S}_-$ and acts on \mathbf{S}_∞^2 projectively.
- Let $\mathbb{S}_0 := \mathbf{S}_{\infty}^2 \operatorname{Cl}(\mathbb{S}_+) \operatorname{Cl}(\mathbb{S}_-)$.

Oriented Lorentzian space E

- $\bullet \ \mathbb{R}^{2,1} \times \mathbb{R}^{2,1} \to \mathbb{R}, (v,u) \mapsto v \cdot u.$
- $\mathbb{R}^{2,1} \times \mathbb{R}^{2,1} \times \mathbb{R}^{2,1} \to \mathbb{R}$, $(v, u, w) \mapsto Det(v, u, w)$.

Oriented Lorentzian space E

- $\bullet \ \mathbb{R}^{2,1} \times \mathbb{R}^{2,1} \to \mathbb{R}, (v,u) \mapsto v \cdot u.$
- $\mathbb{R}^{2,1} \times \mathbb{R}^{2,1} \times \mathbb{R}^{2,1} \to \mathbb{R}$, $(v, u, w) \mapsto Det(v, u, w)$.
- Null space $\mathcal{N} := \{ v | v \cdot v = 0 \} \subset \mathbb{R}^{2,1}$.
- Let $v \in \mathcal{N}$, $v \neq 0$, $v^{\perp} \mathbb{R}v$ has two choices of components.
- Define the *null half-plane* $\mathcal{W}(v)$ (or the *wing*) associated to v as:

$$\mathscr{W}(v) := \left\{ w \in v^{\perp} \mid \mathsf{Det}(v, w, u) > 0
ight\} \subset v^{\perp} - \mathbb{R}v.$$

where u is chosen arbitrarily in the same $Cl(\mathbb{S}_{\pm})$ that v is in.

• $\mathcal{W}(\mathsf{v}) = \mathcal{W}(-\mathsf{v}).$

• The corresponding set of directions is the open arc

$$\varepsilon(((v))) := ((\mathscr{W}(v)))$$

in \mathbb{S}_0 joining ((v)) to its antipode ((v_)).

• The corresponding map

$$((v)) \mapsto \varepsilon((v))$$

is an SO(2, 1)-equivariant map

$$\partial \mathbb{S}_+ \to \mathcal{S}$$

where \mathcal{S} denotes the set of half-arcs.

Figure: The tangent geodesics to disks \mathbb{S}_+ and \mathbb{S}_- in the unit sphere \mathbf{S}^2_{∞} imbedded in \mathbb{R}^3 .

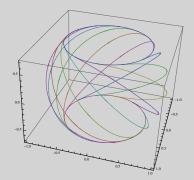
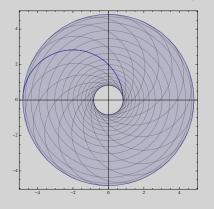


Figure: The tangent geodesics to disks \mathbb{S}_+ and \mathbb{S}_- in the stereographically projected \mathbf{S}_∞^2 from (0,0,-1). The inner circle represents the boundary of \mathbb{S}_+ . The arcs of form $\varepsilon(x)$ for $x\in\partial\mathbb{S}_+$ are leaves of the foliation \mathcal{F} on \mathbb{S}_0 .



$\mathbb{R}P^2$ -surfaces to bordify E/Γ .

- $\Sigma_+ := \mathbb{S}_+/L(\Gamma)$ is a complete hyperbolic surface without parabolics.
- We can add finitely many arcs to compactify $\Sigma'_+ := \Sigma_+ \cup c_1 \cup \cdots \cup c_n$.
- $\tilde{\Sigma}'_+ = \mathbb{S}_+ \cup \bigcup_{i \in \mathcal{J}} \mathbf{b}_i = \mathrm{Cl}(\mathbb{S}_+) \Lambda$.

$\mathbb{R}P^2$ -surfaces to bordify E/Γ .

- $\Sigma_+ := \mathbb{S}_+/L(\Gamma)$ is a complete hyperbolic surface without parabolics.
- We can add finitely many arcs to compactify $\Sigma'_+ := \Sigma_+ \cup c_1 \cup \cdots \cup c_n$.
- $\tilde{\Sigma}'_+ = \mathbb{S}_+ \cup \bigcup_{i \in \mathcal{J}} \mathbf{b}_i = \mathrm{Cl}(\mathbb{S}_+) \Lambda$.
- We define

$$\tilde{\Sigma} = \tilde{\Sigma}'_{+} \cup \coprod_{i \in \mathcal{J}} \mathcal{A}_{i} \cup \tilde{\Sigma}'_{-}$$

$$= \mathbf{S}^{2}_{\infty} - \bigcup_{\mathbf{x} \in \Lambda} \mathrm{Cl}(\varepsilon(\mathbf{x})).$$
(2)

an open domain in S^2_{∞} .

$\mathbb{R}P^2$ -surfaces to bordify E/Γ .

- $\Sigma_+ := \mathbb{S}_+/L(\Gamma)$ is a complete hyperbolic surface without parabolics.
- We can add finitely many arcs to compactify $\Sigma'_+ := \Sigma_+ \cup c_1 \cup \cdots \cup c_n$.
- $\tilde{\Sigma}'_+ = \mathbb{S}_+ \cup \bigcup_{i \in \mathcal{J}} \mathbf{b}_i = \mathrm{Cl}(\mathbb{S}_+) \Lambda$.
- We define

$$\tilde{\Sigma} = \tilde{\Sigma}'_{+} \cup \coprod_{i \in \mathcal{J}} \mathcal{A}_{i} \cup \tilde{\Sigma}'_{-}$$

$$= \mathbf{S}^{2}_{\infty} - \bigcup_{x \in \Lambda} \operatorname{Cl}(\varepsilon(x)). \tag{2}$$

an open domain in \mathbf{S}_{∞}^2 .

Theorem 3.1 (Projective Schottky surface)

 $L(\Gamma)$ acts properly discontinuously and freely on $\tilde{\Sigma}$, and $\Sigma := \tilde{\Sigma}/L(\Gamma)$ is a closed $\mathbb{R}P^2$ -surface. The same is true for $\mathscr{A}(\tilde{\Sigma})$.

The proper action of Γ on $E \cup \tilde{\Sigma}$

Recall the Margulis invariant:

$$\mu(g) = B(gx - x, v(g))$$

where v(g) is the unit space-like neutral vector of g

$$v(g) := \frac{x^+(g) \times x^-(g)}{||x^+(g) \times x^-(g)||}.$$

If Γ acts properly on E, then the Margulis invariants of nonidentity elements are all
positive or all negative.

The proper action of Γ on $E \cup \tilde{\Sigma}$

Recall the Margulis invariant:

$$\mu(g) = B(gx - x, v(g))$$

where v(g) is the unit space-like neutral vector of g

$$v(g) := \frac{x^+(g) \times x^-(g)}{||x^+(g) \times x^-(g)||}.$$

- If Γ acts properly on E, then the Margulis invariants of nonidentity elements are all
 positive or all negative.
- To obtain the converse, the diffused Margulis invariants are introduced by Goldman, Labourie, and Margulis [7]. We will use their techniques.

The proper action of Γ on $E \cup \tilde{\Sigma}$

Recall the Margulis invariant:

$$\mu(g) = B(gx - x, v(g))$$

where v(g) is the unit space-like neutral vector of g

$$v(g) := \frac{x^+(g) \times x^-(g)}{||x^+(g) \times x^-(g)||}.$$

- If Γ acts properly on E, then the Margulis invariants of nonidentity elements are all
 positive or all negative.
- To obtain the converse, the diffused Margulis invariants are introduced by Goldman, Labourie, and Margulis [7]. We will use their techniques.
- We know that Γ acts properly on E and $\tilde{\Sigma}$ separately.

- Let $C(\Sigma_+)$ be the space of Borel probability measures on $\mathbb{U}\Sigma_+/\Gamma$ invariant under the flow. These are supported on the nonwondering part $\mathbb{U}_{rec}\Sigma_+$.
- A continuous function $\mu: C(\Sigma_+) \to \mathbb{R}$ extends the Margulis invariants.

- Let $C(\Sigma_+)$ be the space of Borel probability measures on $\mathbb{U}\Sigma_+/\Gamma$ invariant under the flow. These are supported on the nonwondering part $\mathbb{U}_{rec}\Sigma_+$.
- A continuous function $\mu: C(\Sigma_+) \to \mathbb{R}$ extends the Margulis invariants.

Theorem 4.1 (Goldman-Labourie-Margulis)

 μ has the same sign if and only if Γ acts properly on $\mathbb{R}^{2,1}$.

A consequence of the proof:

There exists a continuous section

$$\mathbb{U}_{rec}\Sigma_+ \to \mathbb{U}_{rec}\Sigma_+ \times \mathsf{E}/\Gamma$$

with the compact image.

- Let $C(\Sigma_+)$ be the space of Borel probability measures on $\mathbb{U}\Sigma_+/\Gamma$ invariant under the flow. These are supported on the nonwondering part $\mathbb{U}_{rec}\Sigma_+$.
- A continuous function $\mu: C(\Sigma_+) \to \mathbb{R}$ extends the Margulis invariants.

Theorem 4.1 (Goldman-Labourie-Margulis)

 μ has the same sign if and only if Γ acts properly on $\mathbb{R}^{2,1}$.

A consequence of the proof:

There exists a continuous section

$$\mathbb{U}_{rec}\Sigma_+ \to \mathbb{U}_{rec}\Sigma_+ \times \mathsf{E}/\Gamma$$

with the compact image.

- Goldman-Labourie found a one to one correspondence
 - $\{\textit{I}|\textit{I} \text{ is a nonwandering geodesic on } \Sigma_+\} \leftrightarrow \{\textit{I}|\textit{I} \text{ is a nonwandering spacelike geodesic on } E/\Gamma\}$
- A key fact: Closed geodesics on Σ_+ corresponds to closed geodesic in E/ Γ . The set is precompact

The proof of the properness

- Let K be a compact subset of $E \cup \tilde{\Sigma}$.
- Consider $\{g \in \Gamma | g(K) \cap K \neq \emptyset\}$.

The proof of the properness

- Let K be a compact subset of $E \cup \tilde{\Sigma}$.
- Consider $\{g \in \Gamma | g(K) \cap K \neq \emptyset\}$.
- Suppose that the set is not finite. We find a sequence g_i with $\lambda(g_i) \to \infty$.
- Let a_i and r_i on $\partial \mathbb{S}_+$ denote the attracting and the repelling fixed points of g_i .

The proof of the properness

- Let K be a compact subset of $E \cup \tilde{\Sigma}$.
- Consider $\{g \in \Gamma | g(K) \cap K \neq \emptyset\}$.
- Suppose that the set is not finite. We find a sequence g_i with $\lambda(g_i) \to \infty$.
- Let a_i and r_i on $\partial \mathbb{S}_+$ denote the attracting and the repelling fixed points of g_i .
- Since a Fuchsian group is a convergence group: There exists a subsequence g_i so that

$$a_i \to a, b_i \to b, a, b \in \partial \mathbb{S}_+, \ \lambda_i \to \infty.$$

• Assume $a \neq b$. The other case will be done by "Margulis trick"

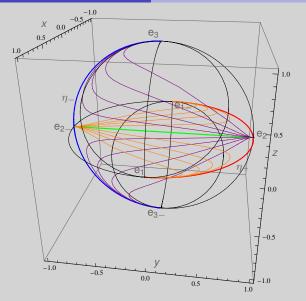


Figure: The actions are very close to this one.

- By the boundedness of nonwandering spacelike geodesics in E/Γ , we find a bounded set $h_i \in SL_{\pm}(4, \mathbb{R})$ so that $h_i g_i h_i^{-1}$ is in the standard form.
- We choose a subsequence $h_i \to h_\infty \in \mathrm{SL}_\pm(4,\mathbb{R})$ and the stable subspace $S_i \to S_\infty$.
- Cover K by a finite set of convex ball meeting S_{∞} and ones disjoint from S_{∞} .
- $g_i(B) \rightarrow a, a_-$ for disjoint balls.
- $g_i(B') \to \varepsilon(a)$ for B' meeting S_{∞} .

Compactness

- Now we know $E \cap \tilde{\Sigma}/\Gamma$ is a manifold.
- We know Σ is a closed surface. $\pi_1(\Sigma) \to \pi_1(M)$ surjective.

Margulis spacetime with parabolics

- In analogy with the thick and thin decomposition of hyperbolic 3-manifolds.
- Let $g \in \text{Isom}(\mathbb{R}^{2,1})$ with L(g) parabolic. Suppose that g acts properly on E.
- Charette-Drumm invariant generalizes the Margulis invariants. (See [2])

Margulis spacetime with parabolics

- In analogy with the thick and thin decomposition of hyperbolic 3-manifolds.
- Let $g \in \text{Isom}(\mathbb{R}^{2,1})$ with L(g) parabolic. Suppose that g acts properly on E.
- Charette-Drumm invariant generalizes the Margulis invariants. (See [2])

Theorem 6.1 (Charette-Drumm)

If Γ acts properly on E , $\{\mu^{\mathrm{gen}}(g)|g\in\Gamma\}$ have the same signs.

• The converse is being proved by Goldman, Labourie, Margulis, Minsky [8].

Understanding the parabolic transformation

- We restrict to the cyclic $\langle g \rangle$ for parabolic g.
- $U = \exp(N) = I + N + \frac{1}{2}N^2$ where N is skew-adjoint nilpotent.
- $N = \log(U) = (U I) + \frac{1}{2}(U I)^2$.

Understanding the parabolic transformation

- We restrict to the cyclic $\langle g \rangle$ for parabolic g.
- $U = \exp(N) = I + N + \frac{1}{2}N^2$ where N is skew-adjoint nilpotent.
- $N = \log(U) = (U I) + \frac{1}{2}(U I)^2$.

Lemma 6.2 (Skew-Nilpotent)

There exists $c \in \text{KerN}$ such that c is causal, $c = N(b), b \in \mathbb{R}^{2,1}$ is space-like and b.b = 1.

• Using basis $\{a, b, c\}$ with b = N(a), c = N(b), we obtain a one-parameter family containing U

$$\Phi(t): \mathsf{E} \to \mathsf{E} = \left(\begin{array}{cccc} 1 & t & t^2/2 & \mu t^3/6 \\ 0 & 1 & t & \mu t^2/2 \\ 0 & 0 & 1 & \mu t \\ 0 & 0 & 0 & 1 \end{array} \right).$$

- $\phi = y\partial_x + z\partial_y + \mu\partial_z$ is the vector field generating it.
- $F_2(x, y, z) = z^2 2\mu y$ and $F_3(x, y, z) := z^3 3\mu yz + 3\mu^2 z$ are invariants.

- $\phi = y\partial_x + z\partial_y + \mu\partial_z$ is the vector field generating it.
- $F_2(x, y, z) = z^2 2\mu y$ and $F_3(x, y, z) := z^3 3\mu yz + 3\mu^2 z$ are invariants.
- For $F(x, y, z) := (F_3(x, y, z), F_2(x, y, z), z)$, $F \circ \Phi_t \circ F^{-1}$ is a translation by $(0, 0, \mu t)$.

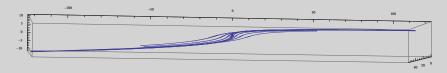


Figure: A number of orbits drawn horizontally.

Lorentzian analog of parabolic neighborhoods

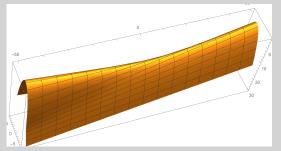
- We use timelike ruled surface invariant under Φ_t .
- $F_2 = T$ is a parabolic cylinder P_T .

Lorentzian analog of parabolic neighborhoods

- We use timelike ruled surface invariant under Φ_t .
- $F_2 = T$ is a parabolic cylinder P_T .
- Take a line I with direction (a, 0, c), a, c > 0 in the timelike direction 2ac > 0.
- $\Psi(t,s) = \Phi_t(I(s))$ for $I(s) = (0,y_0,0) + s(a,0,c)$ for $(0,y_0,0) \in P_T$ where $T = -2\mu y_0$.

Lorentzian analog of parabolic neighborhoods

- We use timelike ruled surface invariant under Φ_t .
- $F_2 = T$ is a parabolic cylinder P_T .
- Take a line I with direction (a, 0, c), a, c > 0 in the timelike direction 2ac > 0.
- $\Psi(t,s) = \Phi_t(I(s))$ for $I(s) = (0,y_0,0) + s(a,0,c)$ for $(0,y_0,0) \in P_T$ where $T = -2\mu y_0$.
- For $y_0 < \mu \frac{a}{c}$, $\Psi(t, s)$ is a proper imbedding to Φ_t invariant ruled surface.



References I

M. Berger, M. Cole, Geometry I, II, Springer Verlag.

V. Charette and T. Drumm.

Strong marked isospectrality of affine Lorentzian groups,

J. Differential Geom. 66 (2004), 437-452.

S. Choi and W. Goldman,

Topological tameness of Margulis spacetimes,

arXiv:1204.5308

D. Fried and W. Goldman,

Three-dimensional affine crystallographic groups,

Adv. in Math. 47 (1983), no. 1, 1-49.

D. Fried, W. Goldman, and M. Hirsch,

Affine manifolds with nilpotent holonomy,

Comment. Math. Helv. 56 (1981), 487-523.

W. Goldman and F. Labourie,

Geodesics in Margulis spacetimes,

Ergod. Theory Dynam. Systems 32 (2012), 643-651.

W. Goldman, F. Labourie, and G. Margulis,

Proper affine actions and geodesic flows of hyperbolic surfaces,

Ann. of Math. (2) 170 (2009), 1051-1083.

References II

W. Goldman, F. Labourie, G. Margulis, and Y. Minsky,

Complete flat Lorentz 3-manifolds and laminations on hyperbolic surfaces, preprint, May 29, 2012

T. Tucker,

Non-compact 3-manifolds and the missing-boundary problem,

Topology 13 (1974), 267-273.