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Abstract

A projectively flat manifold (orbifold) is a manifold (orbifold) with an atlas of charts to the

projective space with transition maps in the projective automorphism group. These objects

are closely related to the representations of groups into the projective groups PGL(n + 1,R).

We will give a partial survey of this area including the classical results and many recent results

by Goldman, Loftin, Labourie, Benoist, Cooper, Long, and so on using many diverse methods

from low-dimensional topology, group representations, and affine differential geometry.
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History in 1960-70s

What are the objectives?

What kind of geometric (projective) structures are on a given manifold (orbifold)?

Determine the topology and geometry of the deformation space

D(M) = {geometric (projective) structures on M}/isotopies

in relation to the objects

Hom(π1(M),PGL(n + 1,R))/ ∼ or Hom(π1(M),SL±(n + 1,R)/ ∼

How do the geometry and topology and algebra interact from the perspective of manifold and

orbifold theory?

After any rigid type geometric structures having been studied much, we should consider

flexible types ones: conformally flat, projectively flat, or affinely flat geometric structures.
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History in 1960-70s

Origins in Geometry

Cartan defined projectively flat structures on manifolds as:
I “geodesically Euclidean but with no metrics”
I torsion-free
I projectively flat (i.e., same geodesics structures as flat metrics)
I affine connection on manifolds.

Chern worked on projective differential geometry.

Ehresmann identifies this structure as having a maximal atlas of charts
I to RPn

I with transition maps in PGL(n + 1,R).

Kuiper on closed convex projective surfaces Ω/Γ of negative Euler characteristic:
I ∂Ω is strictly convex,
I Every closed curve is realized as a closed projective geodesic.
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History in 1960-70s

Most examples of projective manifolds are by taking quotients of a domain Ω in RPn by a

discrete subgroup of PGL(n + 1,R).

The domains are usually convex and we call the quotient convex projective manifold (or

orbifolds). There are of course projective manifolds that are not from domains.

Let Hn be the interior of an ellipsoid. Then Hn is the hyperbolic space and Aut(Hn) is the

isometry group. Hn/Γ has a canonical projective structure.

Benzécri made some extensive study of these from the point of view of convex bodies.

J.L. Koszul showed that the convexity is preserved if one slightly changed the projective

structures.

E. Vinberg studied reflection groups acting on properly convex cones. He classified using the

Cartan matrices. These include hyperbolic reflection groups.

Kac-Vinberg were first to find examples of convex projective surfaces that are not hyperbolic.

The examples are based on Coxeter groups. (This group studies this subject by the linear

actions on convex cones in Rn.)

See Goldman’s lecture notes for an exposition.

6/1



History in 1960-70s

Figure: Orbifolds based on 2-spheres with three cone points. The

files can be found in my homepages.
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History in 1960-70s

Kobayashi on convex projective manifolds

He considers maps

l ⊂ RP1 → M

and take maximal ones. (l proper intervals or a complete real line. This defines a pseudo-metric.

Kobayashi metric is a metric if and only if

I there are no complete affine lines if and only if
I M = Ω/Γ where Ω is a properly convex domain in RPn.

In this case, Kobayashi metric is Finsler and equals a Hilbert

metric

dΩ(p, q) = log(o, s, q, p).

If Ω = Hn, the metric is the standard hyperbolic metric.

p

q

o

s
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Affine differential geometry and projective manifolds

Affine differential geometry and projective manifolds

A projective structure on manifold M induces an affine structure on M × R and conversely:

I Given a convex domain Ω in RPn, we can obtain a convex cone V in Rn+1 by taking only the positive

rays corresponding to Ω.
I Conversely, given a convex cone V in Rn+1, we obtain a convex domain Ω in RPn.

An affine sphere is a complete hypersurface asymptotic to Ω and an affine normal line

passing through the origin.

An affine sphere structure on a closed manifold M means that M̃ imbeds as an affine sphere

asymptotic to the cone V corresponding to the convex domain Ω where the deck

transformation group acts as a discrete linear group.
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Affine differential geometry and projective manifolds

Cheng-Yau theory

John Loftin (simultaneously Labourie near 1994) showed using Calabi, Cheng-Yau’s work on

affine spheres: Let Mn be a closed projectively flat manifold.

Then M is properly convex if and only if M admits an affine sphere structure based in Rn+1.

C.P. Wang showed in 70s that in dimension 2: A conformal structure on an oriented surface S

of genus 2 and a holomorphic section of K 3 determine an affine sphere structure on S.

In particular, this shows that the deformation space D(Σ) of convex projective structures on Σ

admits a complex structure, which is preserved under the moduli group actions.

Loftin also worked out Mumford type compactifications of the moduli space M(Σ) of convex

projective structures.

He has found new metrics on D(Σ) based on harmonic maps. (There is a Weil-Peterson type

pressure metric developed by M. Bridgeman and D. Canary recently. Also, Goldman’s one

using Vinberg functions. )
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Gauge theory and projective structures

Gauge theory and projective structures

Atiyah and Hitchin studied self-dual connections on surfaces (70s)

Corlette showed that flat connections for manifolds (80s) can be realized as harmonic maps

to certain symmetric space bundles.

A Teichmüller space

T (Σ) = {hyperbolic structures on Σ}/isotopies

is a component of

Hom+(π1(Σ),PSL(2,R))/PSL(2,R)

of fathful discrete Fuchian representations.

Hitchin-Teichmüller component:

Γ
Fuchsian→ PSL(2,R)

irreducible→ G. (1)

gives a component of

Hom+(π1(Σ),G)/G.
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Gauge theory and projective structures

Hitchin-Teichmüller components

Gauge theory for flat bundles
Hitchin used Higgs field on principal G-bundles over surfaces to obtain parametrizations of flat

G-connections over surfaces. (G is a real split form of a reductive group.) (90s)

A Higgs bundle is a pair (V ,Φ) where V is a holomorphic vector bundle over Σ and Φ is a

holomorphic section of EndV ⊗ K .

To find a flat connection given a Higgs bundle, we solve for A

FA + [Φ,Φ∗] = 0.

The Hitchin-Teichmüler component is homeomorphic to a cell of dimension (2g − 2) dim Gr .

For n > 2,

Hom+(π1(Σ),PGL(n,R))/PGL(n,R)

has three connected components if n is odd and six components if n is even.
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Topologist’s approach

Topologist’s approach

Topologist’s approach is to study more general structures with developing maps that are

immersions.

Benzecri (and Milnor) showed that an affinely flat 2-manifold has Euler characteristic = 0

(Chern conjecture).

Benzecri studied convex domains Ω that arise for convex projective manifolds Ω/Γ. The

boundary of Ω is C1 or Ω is an ellipsoid. (1960)

Nagano and Yagi classified affine structures on tori. (1976)
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Topologist’s approach

Goldman classified projective structures on tori. (His senior thesis)

Grafting: One can insert this type of annuli into a convex projective surfaces to obtain

non-convex projective surfaces.

Theorem 1 (Convex decomposition (1994))
Given a closed orientable real projective surface Σ of negative Euler characteristic, Σ has a

disjoint collection of simple closed curves decomposing it to a union of properly convex projective

surface and annuli.
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Topologist’s approach

Goldman’s classification of convex projective structures on closed surfaces
(1990): Determining the deformation space D(Σ), χ(Σ) < 0:

first cut up the surface into pairs of pants.

Each pair of pants is a union of two open triangles.

We realize the triangles as geodesic ones.

We investigate the projective invariants of union of four

triangles in RP2.

The needed key is that

D(P)→ D(∂P)

for a pair of pants P is a principle fibration for a pair of

pants P.

There is also R2 ways to glue a pair of s.c. geodeiscs.

Hence, D(Σ) is homeomorphic to R−8χ(Σ).
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Topologist’s approach

The deformation space continued

We can generalize this to 2-orbifolds.

Theorem 2 (Choi-Goldman)
Let Σ be a closed orbifold of orbifold Euler characteristic < 0. Then the deformation space D(Σ) of

convex real projective structures on Σ is homeomorphic to a cell of dimension

−8χ(XΣ) + (6kc − 2bc) + (3kr − br )

where

I XΣ is the underlying space,

I kc the number of cone-points, bc the number of cone-points of order 2

I kr the number of corner reflectors, and br the number of corner-reflectors of order 2.
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Topologist’s approach

Hitchin’s conjecture and the generalizations

A convex projective surface is of form Ω/Γ. Hence, there is a representation π1(Σ)→ Γ

determined only up to conjugation by PGL(3,R). This gives us a map

hol : D(Σ)→ Hom(π1(Σ),PGL(3,R))/ ∼ .

This map is known to be a local-homeomorphism (Ehresmann, Thurston) and is injective

(Goldman)

The map is in fact a homeomorphism onto the Hitchin-Teichmüller component (—,Goldman)

The main idea for proof is to show that the image of the map is closed. (For n = 2, this is a

classical theorem due to Weil.)
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Topologist’s approach

Labourie generalized this to n ≥ 2,3 (2006,2007)

A Hitchin representation in PSL(n,R): a representation deformable to a Fuchsian

representation. i.e., those in the Hitchin-Teichmüller component.

Theorem 3
If ρ is a Hitchin representation, then there exists a (unique) ρ-equivariant hyperconvex curve ζ, the

limit curve, from ∂∞Γ→ RPn−1.

A continuous curve η : S1 → RPn−1 is hyperconvex if for any distinct points (x1, . . . , xn) in

S1,

η(x1) + · · ·+ η(xn)

is a direct sum.

The proof uses Anosov type dynamical geometrical structures and stability argument.

Corollary 4 (Discrete and faithful component)
Every Hitchin representation is a discrete faithful and “purely loxodromic”. The mapping class

group acts properly on H(n).
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Topologist’s approach

Group theory and representations: Results of Benoist (2003-2006)

As stated earlier, Kac-Vinberg, Koszul started to study the deformations of representations

Γ→ PGL(n + 1,R) dividing a properly convex domain in RPn. We wish to know the space of

characters.

There is a well-known deformation called “bending” for projective and conformally flat

structures.

Johnson and Millson found that for certain hyperbolic manifold has a deformation space of

projective structures that is singular. (They also worked out this for conformally flat structures.)
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Topologist’s approach

Benoist completed this theory in a sense (papers “Convex divisibles
I-IV”):

Theorem 5
Γ an irreducible torsion-free subgroup of PGL(m,R). Then Γ acts on a strictly convex domain Ω if

and only if Γ is positive proximal. If Γ acts divisibly on strictly convex Ω, and Ω is not the interior of

an ellipsoid, then Γ is Zariski dense in PGL(m,R).

Theorem 6
Let Γ be a discrete torsion-free subgroup of PGL(m,R) dividing an open strictly convex domain in

RPm−1. Let C be the corresponding cone on Rm. Then one of the following holds.

C is a product, i.e., reducible.

C is homogeneous, or

Γ is Zariski dense in PGL(m,R).
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Topologist’s approach

If the virtual center of Γ0 is trivial, then

EΓ0 = {ρ ∈ HΓ0 | The image of ρ

divides a convex open domain in RPn−1.}

is closed in

HΓ0 := Hom(Γ0,PGL(m,R))

.

Openness was obtained by Koszul.

Let Γ be as above. Then the following conditions are equivalent:
I Ω is strictly convex.
I ∂Ω is C1.
I Γ is Gromov-hyperbolic.
I Geodesic flow on Ω/Γ is Anosov.
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Search for deformations Cooper-Long-Thistlethwaite

Search for deformations in higher-dimensional real projective manifolds
or orbifolds

Hyperbolic orbifolds:
The hyperbolic 3-manifold (orbifold) determines a discrete faithful representation of its

fundamental group into PSL(2,C), or equivalently into SO+(3, 1). This representation is unique

up to conjugation by the Mostow rigidity.

(Cooper, Long, Thistlethwaite 2006, 2007)

If we consider G := SO+(3, 1) as a subgroup of a larger group Ĝ, we can search for deformations

of the G-representation into the group Ĝ.

Out of the first 5000 closed hyperbolic 3-manifolds in the Hodgson-Weeks census, a handful

(5% ) admit non-trivial deformations of their SO+(3, 1)-representations into SL(4,R);

each resulting representation variety then gives rise to a family of convex projective structures

on the manifold.
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Search for deformations Cooper-Long-Thistlethwaite

Dehn surgery results
Heusener-Porti (2011) showed the projective rigidity of infinitely many 3-manifolds obtained by

Dehn-surgeries from an infinitesimally projectively rigid cusped hyperbolic manifolds.

In particular applies to the hyperbolic complements of tunnel number one knots. Some recent extension by

Ballas.

Question: Calculate the dimension of real projective structures on knot complements and

relate the result with the results of CLT.
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Search for deformations Coxeter orbifolds and the deformation spaces

Deformation spaces of Coxeter orbifolds

A Coxeter n-orbifold P̂ is an n-dimensional orbifold based on a polytope P with silvered

boundary facets.

The deformation space D(P̂) of projective structures on an orbifold P̂ is the space of all projective

structures on P̂ quotient by isotopy group actions of P̂.

We follow Vinberg’s analysis in 70s. Benoist also made further investigations.

A point p of D(P̂) always determines a fundamental polyhedron P up to projective

automorphisms. We wish to understand the space where the fundamental polyhedron is

always projectively equivalent to P.

This is the restricted deformation space of P̂ and we denote it by DP(P̂).
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Search for deformations Coxeter orbifolds and the deformation spaces

Orderable Coxeter 3-orbifolds

Definition 5.1

Let P̂ be the orbifold obtained from P by silvering sides and removing vertices as above. P̂ is

orderable if we can order the sides of P so that each side has no more than three edges which are

either of order 2 or included in a side of higher index.

Theorem 5.2 (2006)

Let P be a convex polyhedron and P̂ be given a normal-type Coxeter orbifold structure. Let

k(P) = dim Aut(P). Suppose that P̂ is orderable. Then DP(P̂) is a smooth manifold of dimension

3f − e − e2 − k(P) if it is not empty. (e the number of edge, e2 the number of edges of order 2.)
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Search for deformations Coxeter orbifolds and the deformation spaces

Proof.
The basic idea is to control the reflection points in order. Basically, this is the "underdetermined

case" in terms of algebraic equations. (Others are usually "overdetermined cases".)

The total deformation space fibers over the open subspace of polytopes combinatorially equivalent

to P.
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Search for deformations Truncation tetrahedron (ecimaedre combinatoire)

Iterated-truncation tetrahedron (ecimaedre combinatoire)

We start with a tetrahedron and cut off a vertex. We iterate this. This gives us a convex

polytope with trivalent vertices, i.e., truncation polytope.

Theorem of L. Marquis (2010)

D(P̂) of a compact hyperbolic Coxeter 3-orbifold P̂ based on a truncation polytope is diffeomorphic

to Re−e2−3.

The proof is basically very combinatorial and algebraic over R. (generalizations?)

(Choudhury, Lee, Choi) Orderable compact hyperbolic Coxeter orbifolds are only five types:

tetrahedron, prism, and three other. There are infinitely many orderable noncompact Coxeter

3-orbifolds admitting hyperbolic structures.

The orderbility is more general then truncation orbifold conditions; however, for compact ones,

they are the same.
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Search for deformations Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

Theorem 7 (Lee, Hodgson, Choi)

For ideal or hyperideal hyperbolic Coxeter 3-orbifold P̂ with all edge orders ≥ 3, DP(P̂) is locally a

smooth cell of dimension 6 at the hyperbolic point, and D(P̂) has dimension e − 3 and smooth at

the hyperbolic point.

Proof.
The proof involves the Weil-Prasad infinitesimal rigidity:
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Search for deformations Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

Numerical experiments on cubes and dodecahedrons

Following up on the Cooper-Long-Thistlethwaite approach,

Theorem 8 (Choi, Hodgson, Lee (2012))

Consider the compact hyperbolic cubes such that each dihedral angle is π/2 or π/3. Up to

symmetries, there exist 34 cubes satisfying this condition. For the corresponding hyperbolic

Coxeter orbifolds,

10 are projectively deformable relative to the mirrors

and the remaining 24 are projectively rigid relative to the mirrors.

The deformations of 3 orbifolds are not projective bendings.

Some of these with many 2s are shown to be rigid by "a linear test". We use computations

packages and some of these need Gröbner basis techniques.
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Search for deformations Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

Projective deformations of weakly orderable hyperbolic Coxeter
orbifolds (with Gye-Seon Lee, 2012)

A compact Coxeter orbifold Q is weakly orderable if we can order the faces of Q so that each

face contains at most 3 edges of order 2 in faces of higher indices, or Q is based on a

truncation polytope.

Many more compact hyperbolic Coxeter orbifolds satisfy this condition. (Given a polytope

satisfying certain conditions, with probabilities limit to 1.)

Theorem 9
Let Q be a compact weakly orderable Coxeter orbifold with a hyperbolic structure. Then D(Q) is a

smooth manifold of dimension e − e2 − n at the hyperbolic point if n = 3 and Q is weakly

orderable or Q is based on a truncation polytope.
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Search for deformations Hyperbolic ideal (or hyperideal) Coxeter 3-orbifolds

More pictures (due to Yves Benoist)
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