
1 Introduction
Outline

• Topological operations on 2-orbifolds: constructions and decompositions

– Classifications of 1-dimensional suborbifolds of 2-orbifolds

– Definition of splitting and sewing of 2-orbifolds

– Regular neighborhoods of 1-orbifolds

– Reinterpretation of splitting and sewing.

– Identification interpretations of splitting and sewing

Outline

•

Some helpful references

• S. Choi and W. Goldman, The deformation spaces of convex RP 2 -structures on
2-orbifolds American Journal of Mathematics 127, 5, 1019–1102 (2005)

• Y. Matsumoto and J. Montesinos-Amilibia, A proof of Thurston’s uniformization
theorem of geometric orbifolds, Tokyo J. Mathematics 14, 181–196 (1991)

2 Main

2.1 Classifications of 1-dimensional suborbifolds of 2-orbifolds
2-orbifolds

• Recall that 2-orbifold have three types of singularities: silvered points in open
arcs, isolated cone-points, and isolated corner-reflector points. The singular
points of a two-dimensional orbifold fall into three types:

(i) The mirror point: R2/Z2 where Z2 acts by reflections on the y-axis.



(ii) The cone-points of order n: R2/Zn where Zn acting by rotations by angles
2πm/n for integers m.

(iii) The corner-reflector of order n: R2/Dn where Dn is the dihedral group
generated by reflections about two lines meeting at an angle π/n.

2-orbifolds

• The actions here are isometries on R2.

•

The triangulations of 2-orbifolds and classification

• Theorem: Any 2-orbifold is obtained from a smooth surface with corner by sil-
vering some arcs and putting cone-points and corner-reflectors.

• A 2-orbifold is classified by the underlying smooth topology of the surface with
corner and the number and orders of cone-points, corner-reflectors, and the bound-
ary pattern of silvered arcs.

• proof: basically, strata-preserving isotopies.

Classifications of 1-dimensional suborbifolds of 2-orbifolds

• A suborbifold Q′ on a subspace XQ′ ⊂ XQ is the subspace so that each point
of XQ′ has a neighborhood in XQ modeled on an open subset U of Rn with a
finite group Γ preserving U ∩ Rd where Rd ⊂ Rn is a proper subspace, so that
(U ∩ Rd,Γ′) is in the orbifold structure of Q′.

• Here Γ′ denotes the restricted group of Γ toU∩Rd, which is in general a quotient
group.
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Classifications of 1-dimensional suborbifolds of 2-orbifolds

• A compact 1-orbifold is either a closed arc, a segment, a segment with one sil-
vered endpoint, or a segment with two silvered end-point.

• Properly and nicely imbedded 1-orbifolds in a 2-orbifold with boundary. (nice
means that only boundary goes to boundary.)

– No silvered-point case: An imbedded closed arc avoiding boundary or a
segment with two endpoints in the boundary

– One silvered-point case: A segment with silvered endpoint at a cone-point
of order two or a silvered arc and the other endpoint in the boundary.

– Two silvered-point case: A segment with silvered endpoints at cone-points
or order two or in silvered arcs.

Orbifold Euler-characteristic for 2-orbifolds due to Satake

• We define the Euler characteristic to be

χ(X) =
∑
ci

(−1)dim(ci)(1/|Γ(ci)|),

where ci ranges over the open cells and |Γ(ci)| is the order of the group Γi

associated with ci.

• If X is finitely covered by another orbifold X ′, then χ(X ′) = rχ(X) where r is
the number of sheets for regular points. This follows since the sum of the order
of local groups in the inverse image of the elementary neighborhood is always r.

• The Euler-characteristic of 1-orbifold: a circle O, a segment 1, a segment with
one silvered-point 1/2, a full 1-orbifold O.

Orbifold Euler-characteristic for 2-orbifolds due to Satake

• For 2-orbifolds Σ1,Σ2 meeting in a compact 1-orbifold Y in the interior forming
a 2-orbifold Σ as a union, we have the following additivity formula:

χ(Σ) = χ(Σ1) + χ(Σ2)− χ(Y ), (1)

• To be verified by counting cells with weights since the orders of singular points
in the boundary orbifold equal the ambient orders.

Orbifold Euler-characteristic for 2-orbifolds due to Satake

• Suppose that a 2-orbifold Σ with or without boundary has the underlying space
XΣ and m cone-points of order qi and n corner-reflectors of order rj and nΣ

boundary full 1-orbifolds.
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• Then the following generalized Riemann-Hurwitz formula is very useful:

χ(Σ) = χ(XΣ)−
m∑

i=1

(
1− 1

qi

)
− 1

2

n∑
j=1

(
1− 1

rj

)
− 1

2
nΣ, (2)

which is proved by a doubling argument and cutting and pasting.

2.2 Definition of Splitting and sewing 2-orbifolds
Definition of Splitting and sewing 2-orbifolds

• Let S be a very good orbifold so that its underlying space XS is a pre-compact
open surface with a path-metric admitting a compactification to a surface with
boundary.

• Let Ŝ be a very good cover, that is, a finite regular cover, of S, so that S is
orbifold-diffeomorphic to Ŝ/F where F is a finite group acting on Ŝ.

• Since XŜ = Ŝ is also pre-compact and has a path-metric, complete it to obtain a
compact surface X ′

Ŝ
.

• X ′
Ŝ
/F with the quotient orbifold structure is said to be the orbifold-completion

of S.

• Let S be a 2-orbifold with an embedded circle or a full 1-orbifold l in the interior
of S. The completion S′ of S − l is said to be obtained from splitting S along
l. Since S − l has an embedded copy in S′, we see that there exists a map
S′ → S sending the copy to S − l. Let l′ denote the boundary component of S
corresponding to l under the map.

• Conversely, S is said to be obtained from sewing S′ along l′.

• If the interior of the underlying space of l lies in the interior of the underlying
space of S, then the components of S′ are said to be decomposed components of
S along l, and we also say that S decomposes into S′ along l.

• Of course, if l is a union of disjoint embedded circles or full 1-orbifolds, the
same definition holds.

Silvering and clarifying

• There are two distinguished classes of splitting and sewing operations:

• A simple closed curve boundary component can be made into a set of mirror
points and conversely in a unique manner.

• a boundary point has a neighborhood which is realized as a quotient of an open
ball by a Z2-action generated by a reflection about a line.

4



• A boundary full 1-orbifold can be made into a 1-orbifold of mirror points and two
corner-reflectors of order two and conversely in a unique manner: ( a boundary
point has a neighborhood which is a quotient space of a dihedral group of order
four acting on the open ball generated by two reflections. )

• The forward process is called silvering and the reverse process clarifying.

2.3 Regular neighborhoods of 1-orbifold
The classification of Euler-characteristic zero orbifold

• Let A be a compact annulus with boundary. The quotient orbifold of an annulus
has Euler characteristic zero.

• From Riemann-Hurwitz equation, all of the Euler characteristic zero 2-orbifolds
with nonempty boundary:

(1) an annulus, (2) a Möbius band, (3) an annulus with one boundary compo-
nent silvered (a silvered annulus),

(4) a disk with two cone-points of order two with no mirror points ( a (; 2, 2)-
disk ),

(5) a disk with two boundary 1-orbifolds, two edges (a silvered strip),

(6) a disk with one cone-point and one boundary full 1-orbifold (a bigon with
a cone-point of order two), that is, it has only one edge, and

(7) a disk with two corner-reflectors of order two and one boundary full 1-
orbifold (a half-square). (It has three edges.)

•

(4)

(6)

(5)

(7)

Proof

• To prove this, notice that the underlying space must have a nonnegative Euler
characteristic and Riemann-Hurwitz formula.

• When the Euler characteristic of the space is zero, there are no cone-points,
corner-reflectors, (1)(2)(3).
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• Now the underlying space is a disk.

• No singular points in the boundary. Then (4) as there has to be exactly two
cone-points of order two.

• If two boundary full 1-orbifolds, then no singular points in the interior and no
corner-reflector can exist; thus, (5)

• Exactly one boundary full 1-orbifold.

• If a cone-point, then it has to be a unique one and of order two. (6) If there are
no cone-points, but corner-reflectors, then exactly two corner-reflectors of order
two and no more. (7)

Regular neighborhoods of 1-orbifold

• A circle or a 1-orbifold l in the interior of a 2-orbifold S, not homotopic to a
point.

• l has a neighborhood of zero Euler characteristic considering its good cover.

• Since the inverse image of l consists of closed curves which represent generators.

– For (1) and (2), l is the closed curve representing the generator of the fun-
damental group;

– For (3), l is the mirror set that is a boundary component;

– For (4), l is the arc connecting the two cone-points unique up to homotopy;

– For (5), l is an arc connecting two interior points of two edges respectively;

– For (6), l is an arc connecting an interior point of an edge and the cone-
point of order two;

– For (7), the edge in the topological boundary connecting the two corner-
reflectors of order two.

Regular neighborhoods of 1-orbifold

• Given a 1-orbifold l and a neighborhood N of it in some ambient 2-orbifold, N
is said to be a regular neighborhood if the pair (N, l) is diffeomorphic to one of
the above.

• A 1-orbifold in a good 2-orbifold has a regular neighborhood which is unique up
to isotopy.

6



Regular neighborhoods of 1-orbifold

• proof:

• The existence is proved above. The uniqueness up to isotopy is proved as fol-
lows:

• Each regular neighborhood fibers over a 1-orbifold with fibers connected 1-
orbifolds in the orbifold sense.

• A regular neighborhood can be isotoped into any other regular neighborhood by
contracting in the fiber directions.

• To see this, we can modify the proof of Theorem 5.3 in Chapter 4 of Hirsch to
be adopted to an annulus with a finite group acting on it and an imbedded circle.

2.4 Splitting and sewing on 2-orbifolds reinterpreted
Splitting and sewing on 2-orbifolds reinterpreted

• Let l be a 1-orbifold embedded in the interior of an orbifold S.

• If one removes l from the interior of a regular neighborhood, we obtain either a
union of one or two open annuli, or a union of one or two open silvered strip.

• In (2)-(4), an open annulus results. For (1), a union of two open annuli results.
For (6)-(7), an open silvered strip results. For (5), we obtain a union of two open
silvered strips.

Splitting and sewing on 2-orbifolds reinterpreted

• These can be easily completed to be a union of one or two compact annuli or a
union of one or two silvered strips respectively.

• We can complete S − l in this manner: We take a closed regular neighborhood
N of l in S.

• We remove N − l to obtain the above types and complete it and re-identify with
S− l to obtain a compactified orbifold. This process is the splitting of S along l.

Splitting and sewing on 2-orbifolds reinterpreted

• Conversely, we can describe sewing: Take an open annular 2-orbifold N which
is a regular neighborhood of a 1-orbifold l.

• Suppose that l is a circle. We obtain U = N − l which is a union of one or two
annuli.

• Take an orbifold S′ with a union l′ of one (resp. two) boundary components
which are circles.
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• Take an open regular neighborhood of l′ and remove l′ to obtain V .

• U and V are the same orbifold. We identify S′ − l′ and N − l along U and V .

• This gives us an orbifold S, and it is easy to see that S is obtained from S′ by
sewing along l′.

Splitting and sewing on 2-orbifolds reinterpreted

• l corresponds to a 1-orbifold l′′ in S in a one-to-one manner. We can obtain
(1),(2),(3)-type neighborhoods of l′′ in this way.

• The operation in case (1) is said to be pasting, in case (2) cross-capping, and in
case (3) silvering along simple closed curves.

Splitting and sewing on 2-orbifolds reinterpreted

• Suppose that l is a full 1-orbifold. U = N − l is either an open annulus or a
union of one (resp. two) silvered strips.

• The former happens if N is of type (4) and the latter if N is of type (5)-(7).

• In case (4), take an orbifold S′ with a boundary component l′ a circle. Then we
can identify U with a regular neighborhood of l′ removed with l′ to obtain an
orbifold S. Then l corresponds a full 1-orbifold l′′ in S in a one-to-one manner.
l′′ has a type-(4) regular neighborhood. The operation is said to be folding along
a simple closed curve.

Splitting and sewing on 2-orbifolds reinterpreted

• In the remaining cases, take an orbifold S′ with a union l′ of one (resp. two)
boundary full 1-orbifolds. Take a regular neighborhood N of l′ and remove
them to obtain V . Identify U with V for S′ − l′ and N − l to obtain S. Then S
is obtained from S′ by sewing along l′. Again l corresponds to a full 1-orbifold
l′′ in S in a one-to-one manner.

• We obtain (5),(6), and (7)-type neighborhoods of l′′ in this way, where the oper-
ations are said to be pasting, folding, and silvering along full 1-orbifolds respec-
tively.

• In other words, silvering is the operation of removing a regular neighborhood
and replacing by a silvered annulus or a half square. Clarifying is an operation
of removing the regular neighborhood and replacing an annulus or a silvered
strip.
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Splitting and sewing on 2-orbifolds reinterpreted

• The Euler characteristic of an orbifold before and after splitting or sewing re-
mains unchanged.

• proof: Form regular neighborhoods of the involved boundary components of the
split orbifold and those of the original orbifold. They have zero Euler character-
istic. Since their boundary 1-orbifolds have zero Euler characteristic, the lemma
follows by the additivity formula (1).

2.5 Identification interpretations of splitting and sewing
Identification interpretations of splitting and sewing

• In the following we describe the topological identification process of the under-
lying space involved in these six types of sewings. The orbifold structure on the
sewed orbifold should be clear.

• Let an orbifold Σ have a boundary component b. (Σ is not necessarily con-
nected.) b is either a simple closed curve or a full 1-orbifold. We find a 2-orbifold
Σ′′ constructed from Σ by sewing along b or another component of Σ.

• (A) Suppose that b is diffeomorphic to a circle; that is, b is a closed curve. Let
Σ′ be a component of the 2-orbifold Σ with boundary component b′. Suppose
that there is a diffeomorphism f : b → b′. Then we obtain a bigger orbifold Σ′′

glued along b and b′ topologically.

(I) The construction so that Σ′′ does not create any more singular point results
in an orbifold Σ′′ so that

Σ′′ − (Σ− b ∪ b′)

is a circle with neighborhood either diffeomorphic to an annulus or a Möbius
band.

(1) In the first case, b 6= b′ (pasting).
(2) In the second case, b = b′ and 〈f〉 is of order two without fixed points

(cross-capping).

(II) When b = b′, the construction so that Σ′′ does introduce more singular points to
occur in an orbifold Σ′′ so that

Σ′′ − (Σ− b)

is a circle of mirror points or is a full 1-orbifold with endpoints in cone-points of
order two depending on whether f : b→ b
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(1) is the identity map (silvering), or

(2) is of order two and has exactly two fixed points (folding).

• (B) Consider when b is a full 1-orbifold with endpoints mirror points.

(I) Let Σ′ be a component orbifold (possibly the same as one containing b)
with boundary full 1-orbifold b′ with endpoints mirror points where b 6= b′.
We obtain a bigger orbifold Σ′′ by gluing b and b′ by a diffeomorphism
f : b→ b′. This does not create new singular points (pasting).

(II) Suppose that b = b′. Let f : b→ b be the attaching map. Then

(1) if f is the identity, then b is silvered and the end points are changed
into corner-reflectors of order two (silvering).

(2) If f is of order two, then Σ′′ has a new cone-point of order two and
has one-boundary component orbifold removed away. b corresponds
to a mixed type 1-orbifold in Σ′ (folding).

– It is obvious how to put the orbifold structure on Σ′′ using the previous
descriptions using regular neighborhoods above.
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