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2 Definition
Definition of the deformation space of (X,G)-structures on orbifolds

• Consider the setM(M) of all (X,G)-structures on an orbifold M .

• We introduce an equivalence relation ∼: two (X,G)-structures µ1 and µ2 are
equivalent if there is an isotopy φ : M →M so that φ∗(µ1) = µ2.

• The deformation space of (X,G)-structures on M isM/ ∼.

• We reinterpret the space as

– The set of diffeomorphisms f : M → M ′ for M an orbifold and M ′ an
(X,G)-orbifold.

– The equivalence relation f : M → M ′ and g : M → M” if exists an
(X,G)-diffeomorphism h : M ′ →M” so that h ◦ f is isotopic to g.

– The quotient space is same as above.



Another interpretations

• Identify π1(M) with π1(M × I).

• Consider the set of diffeomorphisms f : M̃ → M̃ ′ equivariant with respect to
isomorphism f∗ : π(M)→ π1(M ′) for an (X,G)-orbifold M ′.

• We introduce an equivalence relation: Given f : M̃ → M̃ ′ and g : M̃ → M̃”,
we say that they are equivalent if there exists an (X,G)-map φ : M̃ ′ → M̃” so
that φ ◦ f is isotopic to g by an isotopy M̃ × I → M̃ ′′ equivariant with respect
to both φ∗ ◦ f∗ and g∗ which are equal.

• Denote this set by DI(M).

• This set is again one-to-one relation with the above space since we can always
lift diffeomorphisms and isotopies.

Isotopy-equivalence space.

• S(M) is defined as follows.

• Consider the set of (D, f̃ : M̃ → M̃ ′) where f : M →M ′ is a diffeomorphism
for orbifolds M and M ′ and D : M̃ ′ → X is a diffeomorphism equivariant with
respect to a homomorphism h : π1(M ′)→ G.

• Two (D, f̃) and (D′, f̃ ′ : M̃ → M̃”) are equivalent if there is a diffeomorphism
φ : M ′ →M ′′ so thatD′ ◦ φ̃ = D and an isotopyH : M×I →M ′′ equivariant
with respect to f̃ ′∗ : π1(M)→ π1(M ′′) so that φ ◦ f = H0 and f ′ = H1.

• We can finally give topology on this space by C1 topology using D ◦ f̃ .

The topology of the deformation space

• There is a natural action of G on S(M) given by g(D, f̃) = (g ◦D, f̃), g ∈ G.

• The quotient space D(M) is the deformation space.

• Proof:

– We show DI(M) is one-to-one equivalent to S(M)/G.

– Given an element f̃ : M̃ → M̃ ′, there is a developing map D : M̃ ′ → X
equivariant with respect to h : π1(M ′)→ G

– If f̃ : M̃ → M̃ ′ and f̃ ′ : M̃ → M̃” are equivalent, then there is an (X,G)-
diffeomorphism M ′ → M” and hence two global charts D′ and D” differ
only by an element of G.

– Conversely, given (D, f̃), we obviously obtain an (X,G)-structure on M ′.

– If (D, f̃) and (D′, f̃ ′) are equivalent, then there is a diffeomorphism φ :
M ′ → M ′′ so that D′ ◦ φ̃ = g ◦ D. This means φ′ : M ′ → M ′′ is an
(X,G)-diffeomorphism.
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2.1 The local homeomorphism theorem
The representation space

• Suppose that π is finitely-presented. In particular if M is a compact n-orbifold,
this is true.

• Denote by g1, ..., gn the set of generators and R1, ..., Rm be the set of relations.

• The set of homomorphisms π1(M) → G can be identified with a subset of Gn

by sending a homomorphism h to (h(g1), ..., h(gn)). This clearly injective map.

• This image can be described as an algebraic subset defined by relationsR1, ..., Rm.

• This follows since if the relation is satisfied, then we can obtain the representa-
tion conversely.

• Denote the space by Hom(π,G).

• There is an action ofG onHom(π,G) given by the action (g?h)(·) = gh(·)g−1

• We denote by Rep(π,G) the quotient space Hom(π,G)/G.

The map hol

• We can define PH : S(M)→ Hom(π,G). The main purpose of this section is
to show that PH is a local homeomorphism.

• We send (D, f̃) to the associated homomorphism h : π → G.

• PH is continuous: If D′ ◦ f̃ ′ is sufficiently close to D ◦ f in a sufficiently large
compact subset of M̃ , then the holonomy h′(gi) of generators gi is as close to
the original h(gi) as possible.

• The local homeomorphism result was very important for the study of deforma-
tions of (X,G)-structures on manifolds, as first observed by Weil. The same can
be said for orbifolds.

• For manifolds, Thurston gave a proof. Later J. Morgan gave a lecture of it, which
is written up by in his Ph.D. thesis. Also, Canary and Epsten gave a proof of it
also.

The stable representations

• There is a dense open subset, called the stable subset, of Hom(π,G) where G
acts properly. Denote this space byHoms(π,G) and its quotient byReps(π,G).

• If we denote by Ds(M) the subset of D whose holonomies are in the stable
region. Then there is a local homeomorphism hol : Ds(M) → Reps(π,G)
since the right action on developing map gives a conjugation action on holonomy
homomorphisms.
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2.2 The proof of the local homeomorphism
The isotopy lemma

• Each point of Hom(Gx, G) has a neighborhood S which is a cone over a semi-
algebraic set. Here Gx is a stabilizer group or any other finitely presented group.

• Let F be a compact subset of an open ball B. Let GB be a finite group acting on
F and B. Let S be a cone-neighborhood of an element of Hom(GB , G).

– Let H : F × [0, ε] × S → X be a map such that H(h) : F × [0, ε′] → X
is a GB equivariant isotopy for each h′ ∈ S.

– Then there exists an extention H ′ : B × [0, ε′′] → X which is a GB

equivariant isotopy.

The outline of the proof

• Step I: we realize the orbifold M as a union of model open sets. We choose cov-
ers {U1, ..., Uk}, {W1, ...,Wk}, {V1, ..., Vk} such that Cl(Ui) ⊂Wi, Cl(Wi) ⊂
Vi: One can choose nice covering which are model neighborhoods.

• Step II: We define a section s : O ⊂ Hom(π1(M0), G) → S(M0) so that
PH ◦ s is the identity. This is accomplished by deforming model neighborhoods
and patching conjugating diffeomorphisms.

• Step III: We show that PH is locally injective. From this it follows that PH is a
local homeomorphism.

Step II

• We choose O as a cone-neighborhood of a point in the representation space.

• We identify Vi with open subsets ofX and find the conjugating diffeomorphisms.

• We identified the deformed Vi by V ′i . If we choose Vis well and take sufficiently
small deformations, then the result is an orbifold, call it M ′.

• We will show that M ′ is diffeomorphic to M .

– We can use Uis to obtain M ′ as well.

– Now defined maps from the highest intersection set of Ui. The number will
be n+ 1 if M has dimension n.

– Define inductively from n+ 1-intersections and n-intersections and so on.

•
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The step III

• In this step, we show PH is locally injective.

– We control the size of O so that for sufficiently small O, s(O) is contained
in any given small open neighborhood of original (X,G)-isotopy class.

– Next, if the image under PH is the same two points for a small open neigh-
borhood of S(M), then we can find an orbifold-diffeomorphism between
the two that is very close to identity in the C1-sense.

– Now use the exponential map on M̃ to obtain an isotopy of this map to
identity.

– This proves the injectivity.

• The local homeomorphism property of PH follows by seeing that the section s
can be defined on open subsets which maps into a given neighborhood. Thus, an
image of an open set is open.
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