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2 Definition
2-orbifolds

• We now wish to concentrate on 2-orbifolds.

• Singularities

– We simply have to classify finite groups in O(2): Z2 acting as a reflection
group or a rotation group of angle π/2, a cyclic groups Cn of order ≥ 3
and dihedral groups Dn of order ≥ 4.

– According to this the singularities are of form:

∗ A silvered point
∗ A cone-point of order ≥ 2.
∗ A corner-reflector of order ≥ 2.

2-orbifolds

• On the boundary of a surface with a corner, one can take mutually disjoint open
arcs ending at corners. If two arcs meet at a corner-point, then the corner-point
is a distinguished one. If not, the corner-point is ordinary. The choice of arcs
will be called the boundary pattern.

• As noted above, given a surface with corner and a collection of discrete points
in its interior and the boundary pattern, it is possible to put an orbifold structure
on it so that the interior points become cone-points and the distinguished corner-
points the corner-reflectors and boundary points in the arcs the silvered points of
any given orders.

The triangulations of 2-orbifolds and classification

• One can put a Riemannian metric on a 2-orbifold so that the boundary is a union
of geodesic arcs and each corner-reflector have angles π/n for its order n and
the cone-points have angles 2π/n.

• Proof: First construct such a metric on the boundary by putting such metrics on
the boundary by using a broken geodesic in the euclidean plane and around the
cone points and then using partition of unity.

• By removing open balls around cone-points and corner-reflectors, we obtain a
smooth surface with corners.

• Find a smooth triangulation of so that the interior of each side is either com-
pletely inside the boundary with the corners removed.

• Extend the triangulations by cone-construction to the interiors of the removed
balls.
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The triangulations of 2-orbifolds and classification

• Theorem: Any 2-orbifold is obtained from a smooth surface with corner by sil-
vering some arcs and putting cone-points and corner-reflectors.

• A 2-orbifold is classified by the underlying smooth topology of the surface with
corner and the number and orders of cone-points, corner-reflectors, and the bound-
ary pattern of silvered arcs.

• proof: basically, strata-preserving isotopies.

• In general, a smooth orbifold has a smooth topological stratification and a trian-
gulation so that each open cell is contained in a single strata.

• Smooth topological triangulations satisfying certain weak conditions have a tri-
angulation.

• One should show that the stratification of orbifolds by orbit types satisfies this
condition.

Existence of locally finite good covering

• Let X be an orbifold. Give it a Riemannian metric.

• There exists a good covering: each open set is connected and charts have cells as
cover and the intersection of any finite collection again has such properties.

• Each point has an open neighborhood with an orthogonal action.

• Now choose sufficiently small ball centered at the origin so that it has a convexity
property. (That is, any path can be homotoped into a geodesic.)

• Find a locally finite subcollection.

• Then intersection of any finite collection is still convex and hence has cells as
cover.

3 Covering spaces of orbifolds
Covering spaces of orbifold

• Let X ′ be an orbifold with a smooth map p : X ′ → X so that for each point x of
X , there is a connected model (U,G, φ) and the inverse image of p(ψ(U)) is a
union of open sets with models isomorphic to (U,G′, π) where π : U → U/G′

is a quotient map and G′ is a subgroup of G. Then p : X ′ → X is a covering
and X ′ is a covering orbifold of X .

• Abstract definition: If X ′ is a (X1, X0)-space and p0 : X ′0 → X0 is a covering
map, then X ′ is a covering orbifold.
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• We can see it as an orbifold bundle over X with discrete fibers. We can choose
the fibers to be acted upon by a discrete groupG, and hence a principalG-bundle.
This gives us a regular (Galois) covering.

Examples (Thurston)

• Y a manifold. Ỹ a regular covering map p̃ with the automorphism group Γ. Let
Γi, i ∈ I be a sequence of subgroups of Γ.

– The projection p̃i : Ỹ×Γi\Γ→ Ỹ induces a covering pi : (Ỹ×Γi\Γ)/Γ→
Ỹ /Γ = Y where Γ acts by

γ(x̃,Γiγi) = (γ(x̃),Γiγiγ
−1)

– This is same as Ỹ /Γi → Y since Γ acts transitively on both spaces.

– Fiber-products Ỹ ×
∏

i∈I Γi\Γ→ Ỹ . Define left-action of Γ by

γ(x̃, (Γiγi)i∈I) = (γ(x̃), (Γiγiγ
−1)), γ ∈ Γ.

We obtain the fiber-product

(Ỹ ×
∏
i∈I

Γi\Γ)/Γ→ Ỹ /Γ = Y.

Developable orbifold

• We can let Γ be a discrete group acting on a manifold Ỹ properly discontinuously
but maybe not freely.

• One can find a collection Xi of coverings so that

– Γi = {γ ∈ Γ|γ(Xi) = Xi} is finite and if γ(Xi)∩Xi 6= ∅, then γ is in Γi.

– The images of Xi cover Ỹ /Γ.

• Y = Ỹ /Γ has an orbifold quotient of Ỹ and Y is said to be developable.

• In the above example, we can let Γ be a discrete group acting on a manifold Ỹ
properly discontinuously but maybe not freely. Y f is then the fiber product of
orbifold maps Ỹ /Γi → Y .

Doubling an orbifold with mirror points

• A mirror point is a singular point with the stablizer group Z2 acting as a reflection
group.

• One can double an orbifoldM with mirror points so that mirror-points disappear.
(The double covering orbifold is orientable.)

– Let Vi be the neighborhoods of M with charts (Ui, Gi, φi).
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– Define new charts (Ui × {−1, 1}, Gi, φ
∗
i ) where Gi acts by (g(x, l) =

(g(x), s(g)l) where s(g) is 1 if g is orientation-preserving and −1 if not
and φ∗i is the quotient map.

– For each embedding, i : (W,H,ψ) → (Ui, Gi, φi) we define a lift (W ×
{−1, 1}, H, ψ∗)→ (Ui × {−1, 1}, Gi, φ

∗
i . This defines the gluing.

– The result is the doubled orbifold and the local group actions are orientation
preserving.

– The double covers the original orbifold with Galois group Z2.

Doubling an orbifold with mirror points

• In the abstract definition, we simply letX ′0 be the orientation double cover ofX0

where G-acts on X ′ preserving the orientation.

• For example, if we double a corner-reflector, it becomes a cone-point.

Some Examples

• Clearly, manifolds are orbifolds. Manifold coverings provide examples.

• Let Y be a tear-drop orbifold with a cone-point of order n. Then this cannot be
covered by any other type of an orbifold and hence is a universal cover of itself.

• A sphere Y with two cone-points of order p and q which are relatively prime.

• Choose a cyclic action of Y of order m fixing the cone-point. Then Y/Zm is an
orbifold with two cone-points of order pm and qm.

Universal covering by fiber-product

• A universal cover of an orbifold Y is an orbifold Ỹ covering any covering orb-
ifold of Y .

• We will now show that the universal covering orbifold exists by using fiber-
product constructions. For this we need to discuss elementary neighborhoods.
An elementary neighborhood is an open subset with a chart components of whose
inverse image are open subsets with charts.

• We can take the model open set in the chart to be simply connected.

• Then such an open set is elementary.

5



Fiber-product for Dn/Gi

• If V is an orbifold Dn/G for a finite group G.

– Any covering is Dn/G1 for a subgroup G1 of G.

– Given two covering orbifolds Dn/G1 and V/G2, a covering morphism is
induced by g ∈ G so that gG1g

−1 ⊂ G2.

– The covering morphism is in one-to-one correspondence with the double
cosets of form G2gG1 for g such that gG1g

−1 ⊂ G2.

– The covering automorphism group of Dn/G′ is given by N(G1)/G1.

Fiber-product for Dn/Gi

• Given coverings pi : V/Gi → V/G for Gi ⊂ G for V homeomorphic to a cell,
we form a fiber-product.

V f = (V ×
∏
i∈I

Gi\G)/G→ V/G

• If we choose all subgroups Gi of G, then any covering of V/G is covered by V f

induced by projection to Gi-factor (universal property)

The construction of the fiber-product of a sequence of orbifolds

• Let Yi, i ∈ I be a collection of the orbifold-coverings of Y .

• We cover Y by elementary neighborhoods Vj for j ∈ J forming a good cover.

• We take inverse images p−1
i (Vj) which is a disjoint union of V/Gk for some

finite group Gk.

• Fix j and we form one fiber product by V/Gk by taking one from p−1
i (Vj) for

each i.

• Fix j and we form a fiber-product of p−1
i (Vj), which will essentially be the dis-

joint union of the above fiber products indiced by the product of the component
indices for each i.

• Over regular points of Vj , this is the ordinary fiber-product.

The construction of the fiber-product of a sequence of orbifolds

• Now, we wish to patch these up using imbeddings. Let U → Vj ∩ Vk. We can
assume U = Vj ∩ Vk which has a convex cell as a cover.

– We form the fiber products of p−1
i (U) as before which can be realized in

Vj and Vk.
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– Over the regular points in Vj and Vk, they are isomorphic. Then they are
isomorphic.

– Thus, each component of the fiber-product can be identified.

• By patching, we obtain a covering Y f of Y with the covering map pf .

Thurston’s example of fiber product

• Let I be the unit interval. Make two endpoints into silvered points.

• Then I1 = I is double covered by S1 with the deck transformation group Z2.
Let p1 denote the covering map.

• I2 = I is also covered by I by a map x 7→ 2x for x ∈ [0, 1/2] and x 7→ 2− 2x
for x ∈ [1/2, 1]. Let p2 denote this covering map.

• Then the fiber product of p1 and p2 is what?

• Cover I by A1 = [0, ε), A2 = (ε/2, 1− ε/2), A3 = (ε, 1].

– Over A1, I1 has an open interval and I2 has two half-open intervals. The
fiber-product is a union of two copies of open intervals.

– Over A2, the fiber product is a union of four copies of open intervals.

– Over A3, the fiber product is a union of two copies of open intervals.

• By pasting considerations, we obtain a circle mapping 4-1 almost everywhere to
I .

•

The construction of the universal cover

• The collection of cover of an orbifold is countable upto isomorphisms preserving
base points. (Cover by a countable good cover and for each elementary neigh-
borhood, there is a countable choice.)
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• Take a fiber product of Yi, i = 1, 2, 3, .... The fiber-product Ỹ with a base point
∗. We take a connected component.

• The for any cover Yi, there is a morphism Ỹ → Yi.

• The universal cover is unique up to covering orbifold-isomorphisms by the uni-
versality property.

Properties of the universal cover

• The group of automorphisms of Ỹ is called the fundamental group and is denoted
by π1(Y ).

• π1(Y ) acts transitively on Ỹ on fibers of p̃−1(x) for each x in Y . (To prove this,
we choose one covering of Y from a class of base-point preserving isomorphism
classes of coverings of Y . Then the universal cover with any base-point occurs
will occur in the list and hence a map from Ỹ to it preserving base-points.)

• Ỹ /π1(Y ) = Y .

• Any covering of Y is of form Ỹ /Γ for a subgroup Γ of π1(Y ).

• The isomorphism classes of coverings of Y is the set of conjugacy classes of
subgroups of π1(Y ).

Properties of the universal cover

• The group of automorphism is N(Γ)/Γ.

• A covering is regular if and only if Γ is normal.

• A good orbifold is an orbifold with a cover that is a manifold.

• An very good orbifold is an orbifold with a finite cover that is a manifold.

• A good orbifold has a simply-connected manifold as a universal covering space.

Induced homomorphism of the fundamental group

• Given two orbifolds Y1 and Y2 and an orbifold-diffeomorphism g : Y1 → Y2.
Then the lift to the universal covers Ỹ1 and Ỹ2 is also an orbifold-diffeomorphism.
Furthermore, once the lift value is determined at a point, then the lift is unique.

• Also, homotopies ft : Y1 → Y2 of orbifold-maps lift to homotopies in the uni-
versal covering orbifolds f̃t : Ỹ1 → Ỹ2. Proof: we consider regular parts and
model neighborhoods where the lift clearly exists uniquely.

• Given orbifold-diffeomorphism f : Y → Z which lift to a diffeomorphism
f̃ : Ỹ → Z̃, we obtain f∗ : π1(Y )→ π1(Z).

• If g is homotopic to f , then g∗ = f∗.
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4 Path-approach to the universal covering spaces
Path-approach to the universal covering spaces.

• G-paths. Given an etale groupoid X . A G-path c = (g0, c1, g1, ..., ck, gk) over a
subdivision a = t0 ≤ t1 ≤ ... ≤ tk = b of interval [a, b] consists of

– continuous maps ci : [ti−1, ti]→ X0

– elements gi ∈ X1 so that s(gi) = ci+1(ti) for i = 0, 1, .., k − 1 and
t(gi) = ci(ti) for i = 1, .., k.

• The initial point is t(g0) and the terminal point is s(gk).

• The two operations define an equivalence relation:

– Subdivision. Add new division point t′i in [ti, ti+1] and g′i = 1ci(t′i)
and re-

placing ci with c′i, g
′
i, c
′′
i where c′i, c

′′
i are restrictions to [ti, t′i] and [t′i, ti+1].

– Replacement: replace c with c′ = (g′0, c
′
1, g
′
1, .., c

′
k, g
′
k) as follows. For

each i choose continuous map hi : [ti−1, ti]→ X1 so that s(hi(t)) = ci(t)
and define c′i(t) = t(hi(t)) and g′i = hi(ti)gih

−1
i+1(ti) for i = 1, .., k − 1

and g′0 = g0h
−1
1 (t0) and g′k = hk(tk)gk.

Compositions of G-paths

• All paths are defined on [0, 1] from now on.

• Given two paths c = (g0, c1, .., ck, gk) over 0 = t0 ≤ t1 ≤ ... ≤ tk = 1 and
c′ = (g′0, c

′
1, .., c

′
k′ , g′k′) such that the terminal point of c equals the initial point

of c′, the composition c ∗ c′ is the G-path c′′ = (g′′0 , c
′′
1 , .., g

′′
k+k′) so that

– t′′i = ti/2 for i = 0, .., k and t′′i = 1/2 + t′i−k/2 and

– c′′i (t) = ci(2t) for i = 1, .., k and c′′i (t) = c′i−k(2t − 1) for i = k +
1, ..., k + k′.

– g′′i = gi fori = 1, .., k−1 and g′′k = gkg
′
0, g
′′
i = g′i−k for i = k+1, .., k+k′.

• The inverse c−1 is (g′0, c
′
1, ..., c

′
k, g
′
k) over the subdivision where t′i = 1 − ti so

that g′i = g−1
k−i and c′i(t) = ck−i+1(1− t).

Homotopies of G-paths

• There are two types

– equivalences

– An elementary homotopy is a family of G-paths cs = (gs
0, c

s
1, ..., g

s
k) over

the subdivision 0 = ts0 ≤ ts1 ≤ ... ≤ tsk = 1 so that tsk, g
s
i , c

s
i depends

continously on s.

– A homotopy class of c is denoted [c].
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– [c∗c′] is well-defined in the homotopy classes [c] and [c′]. Hence, we define
[c] ∗ [c′].

– [c ∗ (c′ ∗ c′′)] = [(c ∗ c′) ∗ c′′].
– The constant path ex = (1x, x, 1x). Then [c ∗ c−1] = [ex] if the initial

point of c is x and [c−1 ∗ c] = [ey] if the terminal point of c is y. Thus,
[c]−1 = [c−1].

Fundamental group π1(X,x0)

• The fundamental group π1(X,x0) based at x0 ∈ X0 is the group of loops based
at x0.

• A continuous homomorphism f : X → Y induces a homomorphism f∗ :
π1(X,x0)→ π1(Y, f(x0)).

• This is well-defined up to conjuations.

• An equivalence induces an isomorphism.

• Seifert-Van Kampen theorem: X an orifold. X0 = U ∪ V where U and V
are open and U ∩ V = W . Assume that the groupoid restrictions GU , GV ,
GW to U, V,W are connected. And let x0 ∈ W . Then π1(X,x0) is the quo-
tient group of the free product π1(GU , x0) ∗ π1(GV , x0) by the normal sub-
group generated by jU (γ)jW (γ−1) for γ ∈ π1(GW , x0) for jU the induced ho-
momorphism π1(GW , x0) → π1(GU , x0) and jV the induced homomorphism
π1(GW , x0)→ π1(GV , x0) .

Examples

• Let a discrete group Γ act on a connected manifoldX0 properly discontinuously.
Then (Γ, X0) has an orbifold structure. Any loop can be made into a G-path
(1x, c, γ) so that γ(x) = c(1). and c(0) = x. Thus, there is an exact sequence

1→ π1(X0, x0)→ π1((Γ, X0), x0)→ Γ→ 1

• A two-orbifold that is a disk with an arc silvered has the fundamental group
isomorphic to Z2.

• A two-dimensional orbifold with cone-points which is boundariless and with no
silvered point.

• A tear drop: A sphere with one cone-point of order n has the trivial fundamental
group
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Examples

• An annulus with one boundary component silvered has a fundamental group
isomorphic to Z × Z2.

The fundamental group can be computed by removing open-ball neighborhoods
of the cone-points and using Van-Kampen theorem.

• Suppose that a two-dimensional orbifold has boundary and silvered points. Then
remove open-ball neighborhoods of the cone-points and corner-reflector points.
Then the fundamental group of remaining part can be computed by Van-Kampen
theorem by taking open neighborhoods of silvered boundary arcs. Finally, adding
the open-ball neighborhoods, we compute the fundamental group.

• The fundamental group of a three-dimensional orbifold can be computed simi-
larly.

Seifert fibered 3-manifold Examples

• We can obtain a 2-orbifold from a Seifert fibered 3-manifold M .

• X0 will be the union of patches transversal to the fibers.

• X1 will be the arrows obtained by the flow.

• The orbifold X will be a 2-dimensional one with cone-points whose orders are
obtained as the numerators of the fiber-order.

• The fundamental group of X is then the quotient of the ordinary fundamental
group π1(M) by the central cyclic group Z generated by the generic fiber.

Covering spaces and the fundamental group

• One can build the theory of covering spaces using the fundamental group.

• Given a covering X ′ → X:

– For everyG-path c inX , there is a liftG-path inX ′. If we assign the initial
point, the lift is unique.

– If c′ is homotopic to c, then the lift of c′ is also homotopic to the lift of c
provided the initial points are the same.

– π1(X ′, x′0)→ π1(X,x0) is injective.

– A map from a simply connected orbifold to an orbifold lifts to a cover. The
lift is unique if the base-point lift is assigned. Thus, a simply connected
cover of an orbifold covers any cover of the given orbifold.

– From this, we can show that the fiber-product construction is simply-connected
and hence is a universal cover.

– Two simply-connected coverings of an orbifold are isomorphic and if base-
points are given, we can find an isomorphism preserving the base-points.
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Covering spaces and the fundamental group

• A simply-connected covering of an orbifold X is a Galois-covering with the
Galois-group isomorphic to π1(X,x0).

• Proof: Consider p−1(x0). Choose a base-point x̃0 in it. Given a point of
p−1(x0), connected it with x̃0 by a path. The paths map to the fundamental
group. The Galois-group acts transitively on p−1(x). Hence the Galois-group is
isomorphic to the fundamental group.

The existence of the universal cover using path-approach

• The construction follows that of the ordinary covering space theory.

– Let X̂ be the set of homotopy classes [c] of G-paths in X with a fixed
starting point x0.

– We define a topology on X̂ by open set U[c] that is the set of paths ending
at a simply-connected open subset U of X with homotopy class c ∗ d for a
path d in U .

– Define a map X̂ → X sending [c] to its endpoint other than x0.

– Define a map X̂×X1 → X̂ given by ([c], g)→ [c∗g]. This defines a right
G-action on X̂ . This makes X̂ into a bundle.

– Define a left action of π1(X,x0) on X̂ given by [c] ∗ [c′] = [c ∗ c′] for
[c′] ∈ π1(X,x0). This is transitive on fibers.

– We show that X̂ is a simply connected orbifold.
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