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2 Definition

2-orbifolds

e We now wish to concentrate on 2-orbifolds.

Singularities

— We simply have to classify finite groups in O(2): Z, acting as a reflection
group or a rotation group of angle 7/2, a cyclic groups C,, of order > 3
and dihedral groups D,, of order > 4.

— According to this the singularities are of form:

* A silvered point
* A cone-point of order > 2.
* A corner-reflector of order > 2.

2-orbifolds

On the boundary of a surface with a corner, one can take mutually disjoint open
arcs ending at corners. If two arcs meet at a corner-point, then the corner-point
is a distinguished one. If not, the corner-point is ordinary. The choice of arcs
will be called the boundary pattern.

As noted above, given a surface with corner and a collection of discrete points
in its interior and the boundary pattern, it is possible to put an orbifold structure
on it so that the interior points become cone-points and the distinguished corner-
points the corner-reflectors and boundary points in the arcs the silvered points of
any given orders.

The triangulations of 2-orbifolds and classification

One can put a Riemannian metric on a 2-orbifold so that the boundary is a union
of geodesic arcs and each corner-reflector have angles 7/n for its order n and
the cone-points have angles 27 /n.

Proof: First construct such a metric on the boundary by putting such metrics on
the boundary by using a broken geodesic in the euclidean plane and around the
cone points and then using partition of unity.

By removing open balls around cone-points and corner-reflectors, we obtain a
smooth surface with corners.

Find a smooth triangulation of so that the interior of each side is either com-
pletely inside the boundary with the corners removed.

Extend the triangulations by cone-construction to the interiors of the removed
balls.



The triangulations of 2-orbifolds and classification

e Theorem: Any 2-orbifold is obtained from a smooth surface with corner by sil-
vering some arcs and putting cone-points and corner-reflectors.

e A 2-orbifold is classified by the underlying smooth topology of the surface with
corner and the number and orders of cone-points, corner-reflectors, and the bound-
ary pattern of silvered arcs.

e proof: basically, strata-preserving isotopies.

e In general, a smooth orbifold has a smooth topological stratification and a trian-
gulation so that each open cell is contained in a single strata.

e Smooth topological triangulations satisfying certain weak conditions have a tri-
angulation.

e One should show that the stratification of orbifolds by orbit types satisfies this
condition.

Existence of locally finite good covering

e Let X be an orbifold. Give it a Riemannian metric.

e There exists a good covering: each open set is connected and charts have cells as
cover and the intersection of any finite collection again has such properties.

e Each point has an open neighborhood with an orthogonal action.

e Now choose sufficiently small ball centered at the origin so that it has a convexity
property. (That is, any path can be homotoped into a geodesic.)

e Find a locally finite subcollection.

e Then intersection of any finite collection is still convex and hence has cells as
cover.

3 Covering spaces of orbifolds
Covering spaces of orbifold

e Let X’ be an orbifold with a smooth map p : X’ — X so that for each point = of
X, there is a connected model (U, G, ¢) and the inverse image of p(¢(U)) is a
union of open sets with models isomorphic to (U, G', w) where 7 : U — U/G’
is a quotient map and G’ is a subgroup of G. Then p : X’ — X is a covering
and X' is a covering orbifold of X.

e Abstract definition: If X’ is a (X1, Xo)-space and pg : X() — X is a covering
map, then X" is a covering orbifold.



e We can see it as an orbifold bundle over X with discrete fibers. We can choose
the fibers to be acted upon by a discrete group (&, and hence a principal G-bundle.
This gives us a regular (Galois) covering.

Examples (Thurston)

e Y amanifold. Y a regular covering map p with the automorphism group I'. Let
I';, 2 € I be a sequence of subgroups of I'.

— The projection p; : Y xT;\I' — Y induces a covering p; : (Y xI';\T')/T" —
Y /T' =Y where I acts by

’Y(jv Fl’Yz) = (V(i‘)v Firyiry_l)
— This is same as Y’ /T — Y since I acts transitively on both spaces.
— Fiber-products ¥ x [] ser D\l — Y. Define left-action of T by
V&, Tivi)ier) = (V(F), Tivy ™)), v € T.
We obtain the fiber-product

¥V x [[rA\D)/T - ¥/ =Y.

Developable orbifold

e We can let I be a discrete group acting on a manifold Y properly discontinuously
but maybe not freely.

e One can find a collection X; of coverings so that
- I, ={yeTI'n(X;) = X;} is finite and if 7(X;) N X; # 0, then vy isin T;.
— The images of X; cover Y /T

oY =Y /T has an orbifold quotient of Y and Y is said to be developable.

e In the above example, we can let I" be a discrete group acting on a manifold Y
properly discontinuously but maybe not freely. Y/ is then the fiber product of
orbifold maps Y /I'; — Y.

Doubling an orbifold with mirror points

e A mirror point is a singular point with the stablizer group Zs acting as a reflection
group.

e One can double an orbifold M with mirror points so that mirror-points disappear.
(The double covering orbifold is orientable.)

— Let V; be the neighborhoods of M with charts (U;, G;, ¢;).



- Define new charts (U; x {—1,1}, G;, ¢F) where G; acts by (g(z,l) =
(g9(x), s(g)l) where s(g) is 1 if g is orientation-preserving and —1 if not
and ¢ is the quotient map.

— For each embedding, i : (W, H,v) — (U;, G;, ¢;) we define a lift (W x
{-1,1}, H,¢*) — (U; x {—1,1}, Gy, ¢F. This defines the gluing.

— The result is the doubled orbifold and the local group actions are orientation
preserving.

— The double covers the original orbifold with Galois group Zs.
Doubling an orbifold with mirror points

o In the abstract definition, we simply let X, be the orientation double cover of X
where G-acts on X’ preserving the orientation.

e For example, if we double a corner-reflector, it becomes a cone-point.

Some Examples

Clearly, manifolds are orbifolds. Manifold coverings provide examples.

Let Y be a tear-drop orbifold with a cone-point of order n. Then this cannot be
covered by any other type of an orbifold and hence is a universal cover of itself.

A sphere Y with two cone-points of order p and ¢ which are relatively prime.

Choose a cyclic action of Y of order m fixing the cone-point. Then Y/Z,, is an
orbifold with two cone-points of order pm and gm.

Universal covering by fiber-product

e A universal cover of an orbifold Y is an orbifold Y covering any covering orb-
ifold of Y.

e We will now show that the universal covering orbifold exists by using fiber-
product constructions. For this we need to discuss elementary neighborhoods.
An elementary neighborhood is an open subset with a chart components of whose
inverse image are open subsets with charts.

e We can take the model open set in the chart to be simply connected.

e Then such an open set is elementary.



Fiber-product for D" /G;

e If V is an orbifold D™ /G for a finite group G.

— Any covering is D™ /G for a subgroup G; of G.

- Given two covering orbifolds D" /G; and V/G3, a covering morphism is
induced by g € G so that gG1g~ ' C Go.

The covering morphism is in one-to-one correspondence with the double
cosets of form GgG, for g such that gG1g~' C Go.

The covering automorphism group of D™ /G’ is given by N(G1)/G1.

Fiber-product for D" /G;

e Given coverings p; : V/G; — V/G for G; C G for V homeomorphic to a cell,
we form a fiber-product.

vi= v x]][G\G)/G—V/G

i€l

e If we choose all subgroups G; of G, then any covering of V/G is covered by V/
induced by projection to G;-factor (universal property)

The construction of the fiber-product of a sequence of orbifolds

e LetY;,i € I be a collection of the orbifold-coverings of Y.
e We cover Y by elementary neighborhoods V; for j € J forming a good cover.

e We take inverse images p; (V) which is a disjoint union of V/G} for some
finite group Gk.

e Fix j and we form one fiber product by V/G, by taking one from p; ' (V;) for
each 1.

e Fix j and we form a fiber-product of p{l (V;), which will essentially be the dis-
joint union of the above fiber products indiced by the product of the component
indices for each i.

e Over regular points of Vj, this is the ordinary fiber-product.

The construction of the fiber-product of a sequence of orbifolds

e Now, we wish to patch these up using imbeddings. Let U — V; N V.. We can
assume U = V; NV}, which has a convex cell as a cover.

— We form the fiber products of p; L(U) as before which can be realized in
V; and V.



— Over the regular points in V;; and V4, they are isomorphic. Then they are
isomorphic.

— Thus, each component of the fiber-product can be identified.

e By patching, we obtain a covering Y/ of Y with the covering map p/.

Thurston’s example of fiber product

e Let I be the unit interval. Make two endpoints into silvered points.

e Then I; = I is double covered by S* with the deck transformation group Z.
Let p; denote the covering map.

e [, = I is also covered by I by amap x — 2z forz € [0,1/2] and z — 2 — 2z
for x € [1/2,1]. Let p denote this covering map.

e Then the fiber product of p; and ps is what?
e Cover I by A1 = [0,€), A2 = (¢/2,1 — €/2), A3 = (e, 1].

— Over A;, I; has an open interval and /5 has two half-open intervals. The
fiber-product is a union of two copies of open intervals.

— Over Aa, the fiber product is a union of four copies of open intervals.

— Over Ag, the fiber product is a union of two copies of open intervals.

e By pasting considerations, we obtain a circle mapping 4-1 almost everywhere to
1.

The construction of the universal cover

e The collection of cover of an orbifold is countable upto isomorphisms preserving
base points. (Cover by a countable good cover and for each elementary neigh-
borhood, there is a countable choice.)



e Take a fiber product of Y;, ¢ = 1,2, 3, .... The fiber-product Y with a base point
*. We take a connected component.

e The for any cover Y}, there is a morphism Y — Y;.
e The universal cover is unique up to covering orbifold-isomorphisms by the uni-
versality property.

Properties of the universal cover

e The group of automorphisms of Y is called the fundamental group and is denoted
by 1 (Y) .

e (V) acts transitively on Y on fibers of 5~ (z) for each z in Y. (To prove this,
we choose one covering of Y from a class of base-point preserving isomorphism
classes of coverings of Y. Then the universal cover with any base-point occurs
will occur in the list and hence a map from Y to it preserving base-points.)

e Y/m(Y)=Y.
e Any covering of Y is of form Y /T for a subgroup I of 7y (V).
e The isomorphism classes of coverings of Y is the set of conjugacy classes of
subgroups of m1 (V).
Properties of the universal cover
e The group of automorphism is N (I")/T".

e A covering is regular if and only if I" is normal.

A good orbifold is an orbifold with a cover that is a manifold.

e An very good orbifold is an orbifold with a finite cover that is a manifold.

A good orbifold has a simply-connected manifold as a universal covering space.

Induced homomorphism of the fundamental group

e Given two orbifolds Y; and Y, and an ortiifold-diffeomorphism g:Y — Ys.
Then the lift to the universal covers Y; and Y5 is also an orbifold-diffeomorphism.
Furthermore, once the lift value is determined at a point, then the lift is unique.

e Also, homotopies f; : Y1 — Y3 of orbifold-maps lift to homotopies in the uni-
versal covering orbifolds f; : Y7 — Y5. Proof: we consider regular parts and
model neighborhoods where the lift clearly exists uniquely.

e Given orbifold-diffeomorphism f : Y — Z which lift to a diffeomorphism
f:Y — Z weobtain f, : m(Y) — 71 (Z).

e If g is homotopic to f, then g, = f..



4 Path-approach to the universal covering spaces
Path-approach to the universal covering spaces.

e G-paths. Given an etale groupoid X. A G-path ¢ = (go, ¢1, g1, -+, Ck, gk ) OVEr a
subdivision a =ty < t; < ... <t = b of interval [a, b] consists of
— continuous maps ¢; : [t;—1,t;] — Xo
- elements g; € X; so that s(g;) = ¢j+1(¢;) fori = 0,1,..,k — 1 and
t(g;) = ci(t;) fori =1,.. k.

e The initial point is ¢(gg) and the terminal point is s(gx)-

o The two operations define an equivalence relation:

— Subdivision. Add new division point ¢} in [t;, ;11] and g; = 1.,(;/) and re-
placing ¢; with ¢, ¢}, ¢ where ¢}, ¢/ are restrictions to [t;, t;] and [t}, ¢;11].

- Replacement: replace ¢ with ¢ = (gg,¢}, 91, .., ¢}, g,) as follows. For
each i choose continuous map h; : [t;—1,t;] — X7 so that s(h;(t)) = ¢;(¢)
and define ¢(t) = t(h;(t)) and g, = hi(ti)gih;rll(ti) fori =1,.,k—1
and g = goh; *(to) and g, = hy(tx)gx.

Compositions of G-paths
o All paths are defined on [0, 1] from now on.

e Given two paths ¢ = (go, ¢1, .., Ck,gx) over 0 = tg < t; < ... <t = 1 and
" = (g5,¢4, -, Chr» Gj) such that the terminal point of ¢ equals the initial point
of ¢/, the composition ¢ * ¢’ is the G-path ¢ = (gg, ¢, .., gj.;,/) so that

-t/ =t;/2fori=0,..,kandt] =1/2+1¢t, ,/2and
- c/(t) = ¢(2t) fori = 1,..,k and ¢/(t) = ¢,_, (2t — 1) fori = k +

3

1,. k+ K.
- g/ =g fori=1,..,k—1land g} = grg}, 9/ = g,_, fori = k+1, .. k+k'.

e The inverse ¢! is (g(, ¢}, ..., ¢k, g}.) over the subdivision where t; = 1 — ¢; so
that g/ = g;. ', and ¢i(t) = cp—i11(1 — t).

Homotopies of G-paths

e There are two types

— equivalences

— An elementary homotopy is a family of G-paths ¢® = (g§, i, ..., g;) over
the subdivision 0 = t§ < ¢] < ... < ¢7 = 1 so that t{, g7, c; depends
continously on s.

— A homotopy class of ¢ is denoted [c].



- [exc'] is well-defined in the homotopy classes [c] and [¢/]. Hence, we define
[

c| x ['].

= [ex (' *x)]=[(ecxc) "]

— The constant path e, = (1,,2,1;). Then [c x ¢™!] = [e,] if the initial
point of ¢ is z and [c™! x ¢] = [e,] if the terminal point of ¢ is y. Thus,
[ ™ =[],

Fundamental group 7 (X, z¢)

e The fundamental group 71 (X, o) based at zy € X is the group of loops based
at xg.

e A continuous homomorphism f : X — Y induces a homomorphism f, :
T (X, o) — m (Y, f(20)).

This is well-defined up to conjuations.

An equivalence induces an isomorphism.

Seifert-Van Kampen theorem: X an orifold. X¢o = U UV where U and V
are open and U NV = W. Assume that the groupoid restrictions Gy, Gy,
Gw to U,V,W are connected. And let xo € W. Then 71(X,zg) is the quo-
tient group of the free product 71 (Gy, zo) * m1(Gyv,xo) by the normal sub-
group generated by jir (7)jw (v~ 1) for v € 71 (G, x¢) for jr the induced ho-
momorphism 71 (Gw,zg) — 71 (Gy, o) and jy the induced homomorphism
ﬂl(Gw,Z‘o) — 7T1(Gv,l‘0) .

Examples

e Letadiscrete group I act on a connected manifold X properly discontinuously.
Then (T', X) has an orbifold structure. Any loop can be made into a G-path
(14,¢,7) so that y(x) = ¢(1). and ¢(0) = =. Thus, there is an exact sequence

1— 7T1(X0,CC0) - Wl((F,Xo),l‘o) —-I—-1

e A two-orbifold that is a disk with an arc silvered has the fundamental group
isomorphic to Zs.

e A two-dimensional orbifold with cone-points which is boundariless and with no
silvered point.

e A tear drop: A sphere with one cone-point of order n has the trivial fundamental
group
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Examples

e An annulus with one boundary component silvered has a fundamental group
isomorphic to Z X Zs.

The fundamental group can be computed by removing open-ball neighborhoods
of the cone-points and using Van-Kampen theorem.

e Suppose that a two-dimensional orbifold has boundary and silvered points. Then
remove open-ball neighborhoods of the cone-points and corner-reflector points.
Then the fundamental group of remaining part can be computed by Van-Kampen
theorem by taking open neighborhoods of silvered boundary arcs. Finally, adding
the open-ball neighborhoods, we compute the fundamental group.

e The fundamental group of a three-dimensional orbifold can be computed simi-
larly.
Seifert fibered 3-manifold Examples
e We can obtain a 2-orbifold from a Seifert fibered 3-manifold M.
e X will be the union of patches transversal to the fibers.
e X, will be the arrows obtained by the flow.

e The orbifold X will be a 2-dimensional one with cone-points whose orders are
obtained as the numerators of the fiber-order.

e The fundamental group of X is then the quotient of the ordinary fundamental
group 71 (M) by the central cyclic group Z generated by the generic fiber.
Covering spaces and the fundamental group
e One can build the theory of covering spaces using the fundamental group.
e Given a covering X' — X:

— For every G-path cin X, there is a lift G-path in X'. If we assign the initial
point, the lift is unique.

— If ¢ is homotopic to c, then the lift of ¢’ is also homotopic to the lift of ¢
provided the initial points are the same.

m1 (X', ) — 71 (X, o) is injective.

A map from a simply connected orbifold to an orbifold lifts to a cover. The
lift is unique if the base-point lift is assigned. Thus, a simply connected
cover of an orbifold covers any cover of the given orbifold.

From this, we can show that the fiber-product construction is simply-connected
and hence is a universal cover.

Two simply-connected coverings of an orbifold are isomorphic and if base-
points are given, we can find an isomorphism preserving the base-points.
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Covering spaces and the fundamental group

e A simply-connected covering of an orbifold X is a Galois-covering with the
Galois-group isomorphic to 71 (X, o).

e Proof: Consider p~!(zo). Choose a base-point &, in it. Given a point of
p~1(xp), connected it with & by a path. The paths map to the fundamental
group. The Galois-group acts transitively on p~! (). Hence the Galois-group is
isomorphic to the fundamental group.

The existence of the universal cover using path-approach

e The construction follows that of the ordinary covering space theory.

- Let X be the set of homotopy classes [c] of G-paths in X with a fixed
starting point x.

We define a topology on X by open set U| that is the set of paths ending
at a simply-connected open subset U of X with homotopy class ¢ * d for a
pathdin U.

Define a map X — X sending [¢] to its endpoint other than .

Define a map X xX; — X given by ([c], g) — [c*g]. This defines a right
G-action on X. This makes X into a bundle.

— Define a left action of 71 (X, z0) on X given by [c] * [¢/] = [c * ¢/] for
[¢'] € m1(X, xo). This is transitive on fibers.

— We show that X is a simply connected orbifold.
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