1 Introduction

Outline

- Section 3: Topology of 2-orbifolds
 - Topology of orbifolds
 - Smooth 2-orbifolds and triangulations
- Covering spaces
 - Fiber-product approach
 - Path-approach by Haefliger
- Topological operations on 2-orbifolds: constructions and decompositions

Some helpful references

- W. Thuston, Orbifolds and Seifert space, Chapter 5, notes
- A. Adem, J. Leida, and Y. Ruan, Orbifolds and stringy topology, Cambridge, 2007.
- J. Ratcliffe, Chapter 13 in Foundations of hyperbolic manifolds, Springer]
- M. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grad. Texts in Math. 319, Springer-Verlag, New York, 1999.
- A. Haefliger, Orbi-espaces, In: Progr. Math. 83, Birkhauser, Boston, MA, 1990, pp. 203–212.

Some helpful references

- Y. Matsumoto and J. Montesinos-Amilibia, A proof of Thurston's uniformization theorem of geometric orbifolds, Tokyo J. Mathematics 14, 181–196 (1991)
- I. Moerdijk, Orbifolds as groupoids: an introduction. math.DG./0203100v1
- S. Choi, Geometric Structures on Orbifolds and Holonomy Representations, Geometriae Dedicata 104: 161–199, 2004.
- A. Verona, Stratified mappings—structure and triangulability. Lecture Notes in Mathematics, 1102. Springer-Verlag, 1984. ix+160 pp.
- S. Weinberger, The topological classification of stratified spaces. Chicago Lectures in Mathematics. University of Chicago Press, 1994. xiv+283 pp.

2 Definition

2-orbifolds

- We now wish to concentrate on 2-orbifolds.
- Singularities
 - We simply have to classify finite groups in O(2): \mathbb{Z}_2 acting as a reflection group or a rotation group of angle $\pi/2$, a cyclic groups C_n of order ≥ 3 and dihedral groups D_n of order ≥ 4 .
 - According to this the singularities are of form:
 - * A silvered point
 - * A cone-point of order ≥ 2 .
 - * A corner-reflector of order ≥ 2 .

2-orbifolds

- On the boundary of a surface with a corner, one can take mutually disjoint open arcs ending at corners. If two arcs meet at a corner-point, then the corner-point is a *distinguished one*. If not, the corner-point is *ordinary*. The choice of arcs will be called the *boundary pattern*.
- As noted above, given a surface with corner and a collection of discrete points in its interior and the boundary pattern, it is possible to put an orbifold structure on it so that the interior points become cone-points and the distinguished cornerpoints the corner-reflectors and boundary points in the arcs the silvered points of any given orders.

The triangulations of 2-orbifolds and classification

- One can put a Riemannian metric on a 2-orbifold so that the boundary is a union of geodesic arcs and each corner-reflector have angles π/n for its order n and the cone-points have angles $2\pi/n$.
- Proof: First construct such a metric on the boundary by putting such metrics on the boundary by using a broken geodesic in the euclidean plane and around the cone points and then using partition of unity.
- By removing open balls around cone-points and corner-reflectors, we obtain a smooth surface with corners.
- Find a smooth triangulation of so that the interior of each side is either completely inside the boundary with the corners removed.
- Extend the triangulations by cone-construction to the interiors of the removed balls.

The triangulations of 2-orbifolds and classification

- Theorem: Any 2-orbifold is obtained from a smooth surface with corner by silvering some arcs and putting cone-points and corner-reflectors.
- A 2-orbifold is classified by the underlying smooth topology of the surface with corner and the number and orders of cone-points, corner-reflectors, and the boundary pattern of silvered arcs.
- proof: basically, strata-preserving isotopies.
- In general, a smooth orbifold has a smooth topological stratification and a triangulation so that each open cell is contained in a single strata.
- Smooth topological triangulations satisfying certain weak conditions have a triangulation.
- One should show that the stratification of orbifolds by orbit types satisfies this condition.

Existence of locally finite good covering

- Let X be an orbifold. Give it a Riemannian metric.
- There exists a good covering: each open set is connected and charts have cells as cover and the intersection of any finite collection again has such properties.
- Each point has an open neighborhood with an orthogonal action.
- Now choose sufficiently small ball centered at the origin so that it has a convexity property. (That is, any path can be homotoped into a geodesic.)
- Find a locally finite subcollection.
- Then intersection of any finite collection is still convex and hence has cells as cover.

3 Covering spaces of orbifolds

Covering spaces of orbifold

- Let X' be an orbifold with a smooth map p : X' → X so that for each point x of X, there is a connected model (U, G, φ) and the inverse image of p(ψ(U)) is a union of open sets with models isomorphic to (U, G', π) where π : U → U/G' is a quotient map and G' is a subgroup of G. Then p : X' → X is a covering and X' is a covering orbifold of X.
- Abstract definition: If X' is a (X₁, X₀)-space and p₀ : X'₀ → X₀ is a covering map, then X' is a *covering orbifold*.

• We can see it as an orbifold bundle over X with discrete fibers. We can choose the fibers to be acted upon by a discrete group G, and hence a principal G-bundle. This gives us a regular (Galois) covering.

Examples (Thurston)

- Y a manifold. \tilde{Y} a regular covering map \tilde{p} with the automorphism group Γ . Let $\Gamma_i, i \in I$ be a sequence of subgroups of Γ .
 - The projection $\tilde{p}_i: \tilde{Y} \times \Gamma_i \backslash \Gamma \to \tilde{Y}$ induces a covering $p_i: (\tilde{Y} \times \Gamma_i \backslash \Gamma) / \Gamma \to \tilde{Y} / \Gamma = Y$ where Γ acts by

$$\gamma(\tilde{x}, \Gamma_i \gamma_i) = (\gamma(\tilde{x}), \Gamma_i \gamma_i \gamma^{-1})$$

- This is same as $\tilde{Y}/\Gamma_i \to Y$ since Γ acts transitively on both spaces.
- Fiber-products $\tilde{Y} \times \prod_{i \in I} \Gamma_i \setminus \Gamma \to \tilde{Y}$. Define left-action of Γ by

$$\gamma(\tilde{x}, (\Gamma_i \gamma_i)_{i \in I}) = (\gamma(\tilde{x}), (\Gamma_i \gamma_i \gamma^{-1})), \gamma \in \Gamma.$$

We obtain the fiber-product

$$(\tilde{Y} \times \prod_{i \in I} \Gamma_i \backslash \Gamma) / \Gamma \to \tilde{Y} / \Gamma = Y.$$

Developable orbifold

- We can let Γ be a discrete group acting on a manifold \tilde{Y} properly discontinuously but maybe not freely.
- One can find a collection X_i of coverings so that
 - Γ_i = {γ ∈ Γ|γ(X_i) = X_i} is finite and if γ(X_i) ∩ X_i ≠ Ø, then γ is in Γ_i.
 The images of X_i cover Ŷ/Γ.
- $Y = \tilde{Y}/\Gamma$ has an *orbifold quotient* of \tilde{Y} and Y is said to be *developable*.
- In the above example, we can let Γ be a discrete group acting on a manifold *Ỹ* properly discontinuously but maybe not freely. *Y^f* is then the fiber product of orbifold maps *Ỹ*/Γ_i → *Y*.

Doubling an orbifold with mirror points

- A *mirror point* is a singular point with the stablizer group \mathbb{Z}_2 acting as a reflection group.
- One can double an orbifold M with mirror points so that mirror-points disappear. (The double covering orbifold is orientable.)
 - Let V_i be the neighborhoods of M with charts (U_i, G_i, ϕ_i) .

- Define new charts $(U_i \times \{-1, 1\}, G_i, \phi_i^*)$ where G_i acts by (g(x, l) = (g(x), s(g)l) where s(g) is 1 if g is orientation-preserving and -1 if not and ϕ_i^* is the quotient map.
- For each embedding, $i : (W, H, \psi) \to (U_i, G_i, \phi_i)$ we define a lift $(W \times \{-1, 1\}, H, \psi^*) \to (U_i \times \{-1, 1\}, G_i, \phi_i^*$. This defines the gluing.
- The result is the doubled orbifold and the local group actions are orientation preserving.
- The double covers the original orbifold with Galois group \mathbb{Z}_2 .

Doubling an orbifold with mirror points

- In the abstract definition, we simply let X'_0 be the orientation double cover of X_0 where *G*-acts on *X'* preserving the orientation.
- For example, if we double a corner-reflector, it becomes a cone-point.

Some Examples

- Clearly, manifolds are orbifolds. Manifold coverings provide examples.
- Let Y be a tear-drop orbifold with a cone-point of order n. Then this cannot be covered by any other type of an orbifold and hence is a universal cover of itself.
- A sphere Y with two cone-points of order p and q which are relatively prime.
- Choose a cyclic action of Y of order m fixing the cone-point. Then Y/Z_m is an orbifold with two cone-points of order pm and qm.

Universal covering by fiber-product

- A universal cover of an orbifold Y is an orbifold \tilde{Y} covering any covering orbifold of Y.
- We will now show that the universal covering orbifold exists by using fiberproduct constructions. For this we need to discuss elementary neighborhoods. An *elementary* neighborhood is an open subset with a chart components of whose inverse image are open subsets with charts.
- We can take the model open set in the chart to be simply connected.
- Then such an open set is elementary.

Fiber-product for D^n/G_i

- If V is an orbifold D^n/G for a finite group G.
 - Any covering is D^n/G_1 for a subgroup G_1 of G.
 - Given two covering orbifolds D^n/G_1 and V/G_2 , a covering morphism is induced by $g \in G$ so that $gG_1g^{-1} \subset G_2$.
 - The covering morphism is in one-to-one correspondence with the double cosets of form G_2gG_1 for g such that $gG_1g^{-1} \subset G_2$.
 - The covering automorphism group of D^n/G' is given by $N(G_1)/G_1$.

Fiber-product for D^n/G_i

 Given coverings p_i: V/G_i → V/G for G_i ⊂ G for V homeomorphic to a cell, we form a fiber-product.

$$V^f = (V \times \prod_{i \in I} G_i \backslash G) / G \to V / G$$

• If we choose all subgroups G_i of G, then any covering of V/G is covered by V^f induced by projection to G_i -factor (universal property)

The construction of the fiber-product of a sequence of orbifolds

- Let $Y_i, i \in I$ be a collection of the orbifold-coverings of Y.
- We cover Y by elementary neighborhoods V_j for $j \in J$ forming a good cover.
- We take inverse images $p_i^{-1}(V_j)$ which is a disjoint union of V/G_k for some finite group G_k .
- Fix j and we form one fiber product by V/G_k by taking one from $p_i^{-1}(V_j)$ for each i.
- Fix j and we form a fiber-product of $p_i^{-1}(V_j)$, which will essentially be the disjoint union of the above fiber products indiced by the product of the component indices for each *i*.
- Over regular points of V_i , this is the ordinary fiber-product.

The construction of the fiber-product of a sequence of orbifolds

- Now, we wish to patch these up using imbeddings. Let $U \to V_j \cap V_k$. We can assume $U = V_j \cap V_k$ which has a convex cell as a cover.
 - We form the fiber products of $p_i^{-1}(U)$ as before which can be realized in V_j and V_k .

- Over the regular points in V_j and V_k , they are isomorphic. Then they are isomorphic.
- Thus, each component of the fiber-product can be identified.
- By patching, we obtain a covering Y^f of Y with the covering map p^f .

Thurston's example of fiber product

- Let *I* be the unit interval. Make two endpoints into silvered points.
- Then $I_1 = I$ is double covered by S^1 with the deck transformation group \mathbb{Z}_2 . Let p_1 denote the covering map.
- I₂ = I is also covered by I by a map x → 2x for x ∈ [0, 1/2] and x → 2 2x for x ∈ [1/2, 1]. Let p₂ denote this covering map.
- Then the fiber product of p_1 and p_2 is what?
- Cover I by $A_1 = [0, \epsilon), A_2 = (\epsilon/2, 1 \epsilon/2), A_3 = (\epsilon, 1].$
 - Over A_1 , I_1 has an open interval and I_2 has two half-open intervals. The fiber-product is a union of two copies of open intervals.
 - Over A_2 , the fiber product is a union of four copies of open intervals.
 - Over A_3 , the fiber product is a union of two copies of open intervals.
- By pasting considerations, we obtain a circle mapping 4-1 almost everywhere to *I*.

The construction of the universal cover

• The collection of cover of an orbifold is countable upto isomorphisms preserving base points. (Cover by a countable good cover and for each elementary neighborhood, there is a countable choice.)

- Take a fiber product of Y_i , i = 1, 2, 3, ... The fiber-product \tilde{Y} with a base point *. We take a connected component.
- The for any cover Y_i , there is a morphism $\tilde{Y} \to Y_i$.
- The universal cover is unique up to covering orbifold-isomorphisms by the universality property.

Properties of the universal cover

- The group of automorphisms of \tilde{Y} is called the fundamental group and is denoted by $\pi_1(Y)$.
- π₁(Y) acts transitively on Y on fibers of p̃⁻¹(x) for each x in Y. (To prove this, we choose one covering of Y from a class of base-point preserving isomorphism classes of coverings of Y. Then the universal cover with any base-point occurs will occur in the list and hence a map from Y to it preserving base-points.)
- $\tilde{Y}/\pi_1(Y) = Y.$
- Any covering of Y is of form \tilde{Y}/Γ for a subgroup Γ of $\pi_1(Y)$.
- The isomorphism classes of coverings of Y is the set of conjugacy classes of subgroups of π₁(Y).

Properties of the universal cover

- The group of automorphism is $N(\Gamma)/\Gamma$.
- A covering is regular if and only if Γ is normal.
- A good orbifold is an orbifold with a cover that is a manifold.
- An very good orbifold is an orbifold with a finite cover that is a manifold.
- A good orbifold has a simply-connected manifold as a universal covering space.

Induced homomorphism of the fundamental group

- Given two orbifolds Y_1 and Y_2 and an orbifold-diffeomorphism $g: Y_1 \to Y_2$. Then the lift to the universal covers \tilde{Y}_1 and \tilde{Y}_2 is also an orbifold-diffeomorphism. Furthermore, once the lift value is determined at a point, then the lift is unique.
- Also, homotopies f_t : Y₁ → Y₂ of orbifold-maps lift to homotopies in the universal covering orbifolds f̃_t : Ỹ₁ → Ỹ₂. Proof: we consider regular parts and model neighborhoods where the lift clearly exists uniquely.
- Given orbifold-diffeomorphism $f : Y \to Z$ which lift to a diffeomorphism $\tilde{f} : \tilde{Y} \to \tilde{Z}$, we obtain $f_* : \pi_1(Y) \to \pi_1(Z)$.
- If g is homotopic to f, then $g_* = f_*$.

4 Path-approach to the universal covering spaces

Path-approach to the universal covering spaces.

- G-paths. Given an etale groupoid X. A G-path c = (g₀, c₁, g₁, ..., c_k, g_k) over a subdivision a = t₀ ≤ t₁ ≤ ... ≤ t_k = b of interval [a, b] consists of
 - continuous maps $c_i : [t_{i-1}, t_i] \to X_0$
 - elements $g_i \in X_1$ so that $s(g_i) = c_{i+1}(t_i)$ for i = 0, 1, ..., k 1 and $t(g_i) = c_i(t_i)$ for i = 1, ..., k.
- The initial point is $t(g_0)$ and the terminal point is $s(g_k)$.
- The two operations define an equivalence relation:
 - Subdivision. Add new division point t'_i in $[t_i, t_{i+1}]$ and $g'_i = 1_{c_i(t'_i)}$ and replacing c_i with c'_i, g'_i, c''_i where c'_i, c''_i are restrictions to $[t_i, t'_i]$ and $[t'_i, t_{i+1}]$.
 - Replacement: replace c with $c' = (g'_0, c'_1, g'_1, ..., c'_k, g'_k)$ as follows. For each i choose continuous map $h_i : [t_{i-1}, t_i] \to X_1$ so that $s(h_i(t)) = c_i(t)$ and define $c'_i(t) = t(h_i(t))$ and $g'_i = h_i(t_i)g_ih_{i+1}^{-1}(t_i)$ for i = 1, ..., k - 1and $g'_0 = g_0h_1^{-1}(t_0)$ and $g'_k = h_k(t_k)g_k$.

Compositions of *G***-paths**

- All paths are defined on [0, 1] from now on.
- Given two paths $c = (g_0, c_1, .., c_k, g_k)$ over $0 = t_0 \le t_1 \le ... \le t_k = 1$ and $c' = (g'_0, c'_1, .., c'_{k'}, g'_{k'})$ such that the terminal point of c equals the initial point of c', the composition c * c' is the G-path $c'' = (g''_0, c''_1, .., g''_{k+k'})$ so that
 - $t''_i = t_i/2$ for i = 0, .., k and $t''_i = 1/2 + t'_{i-k}/2$ and
 - $c''_i(t) = c_i(2t)$ for i = 1, ..., k and $c''_i(t) = c'_{i-k}(2t-1)$ for i = k + 1, ..., k + k'.
 - $g_i'' = g_i$ for i = 1, ..., k-1 and $g_k'' = g_k g_0', g_i'' = g_{i-k}'$ for i = k+1, ..., k+k'.
- The inverse c^{-1} is $(g'_0, c'_1, ..., c'_k, g'_k)$ over the subdivision where $t'_i = 1 t_i$ so that $g'_i = g_{k-i}^{-1}$ and $c'_i(t) = c_{k-i+1}(1-t)$.

Homotopies of G-paths

- · There are two types
 - equivalences
 - An elementary homotopy is a family of *G*-paths $c^s = (g_0^s, c_1^s, ..., g_k^s)$ over the subdivision $0 = t_0^s \le t_1^s \le ... \le t_k^s = 1$ so that t_k^s, g_i^s, c_i^s depends continously on *s*.
 - A homotopy class of c is denoted [c].

- [c*c'] is well-defined in the homotopy classes [c] and [c']. Hence, we define [c] * [c'].
- [c * (c' * c'')] = [(c * c') * c''].
- The constant path $e_x = (1_x, x, 1_x)$. Then $[c * c^{-1}] = [e_x]$ if the initial point of c is x and $[c^{-1} * c] = [e_y]$ if the terminal point of c is y. Thus, $[c]^{-1} = [c^{-1}]$.

Fundamental group $\pi_1(X, x_0)$

- The fundamental group π₁(X, x₀) based at x₀ ∈ X₀ is the group of loops based at x₀.
- A continuous homomorphism $f : X \to Y$ induces a homomorphism $f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$.
- This is well-defined up to conjustions.
- An equivalence induces an isomorphism.
- Seifert-Van Kampen theorem: X an orifold. $X_0 = U \cup V$ where U and V are open and $U \cap V = W$. Assume that the groupoid restrictions G_U , G_V , G_W to U, V, W are connected. And let $x_0 \in W$. Then $\pi_1(X, x_0)$ is the quotient group of the free product $\pi_1(G_U, x_0) * \pi_1(G_V, x_0)$ by the normal subgroup generated by $j_U(\gamma)j_W(\gamma^{-1})$ for $\gamma \in \pi_1(G_W, x_0)$ for j_U the induced homomorphism $\pi_1(G_W, x_0) \to \pi_1(G_U, x_0)$ and j_V the induced homomorphism $\pi_1(G_W, x_0) \to \pi_1(G_V, x_0)$.

Examples

• Let a discrete group Γ act on a connected manifold X_0 properly discontinuously. Then (Γ, X_0) has an orbifold structure. Any loop can be made into a *G*-path $(1_x, c, \gamma)$ so that $\gamma(x) = c(1)$. and c(0) = x. Thus, there is an exact sequence

$$1 \to \pi_1(X_0, x_0) \to \pi_1((\Gamma, X_0), x_0) \to \Gamma \to 1$$

- A two-orbifold that is a disk with an arc silvered has the fundamental group isomorphic to Z₂.
- A two-dimensional orbifold with cone-points which is boundariless and with no silvered point.
- A tear drop: A sphere with one cone-point of order *n* has the trivial fundamental group

Examples

• An annulus with one boundary component silvered has a fundamental group isomorphic to $Z \times Z_2$.

The fundamental group can be computed by removing open-ball neighborhoods of the cone-points and using Van-Kampen theorem.

- Suppose that a two-dimensional orbifold has boundary and silvered points. Then remove open-ball neighborhoods of the cone-points and corner-reflector points. Then the fundamental group of remaining part can be computed by Van-Kampen theorem by taking open neighborhoods of silvered boundary arcs. Finally, adding the open-ball neighborhoods, we compute the fundamental group.
- The fundamental group of a three-dimensional orbifold can be computed similarly.

Seifert fibered 3-manifold Examples

- We can obtain a 2-orbifold from a Seifert fibered 3-manifold M.
- X_0 will be the union of patches transversal to the fibers.
- X_1 will be the arrows obtained by the flow.
- The orbifold X will be a 2-dimensional one with cone-points whose orders are obtained as the numerators of the fiber-order.
- The fundamental group of X is then the quotient of the ordinary fundamental group $\pi_1(M)$ by the central cyclic group \mathbb{Z} generated by the generic fiber.

Covering spaces and the fundamental group

- One can build the theory of covering spaces using the fundamental group.
- Given a covering $X' \to X$:
 - For every G-path c in X, there is a lift G-path in X'. If we assign the initial point, the lift is unique.
 - If c' is homotopic to c, then the lift of c' is also homotopic to the lift of c provided the initial points are the same.
 - $\pi_1(X', x'_0) \rightarrow \pi_1(X, x_0)$ is injective.
 - A map from a simply connected orbifold to an orbifold lifts to a cover. The lift is unique if the base-point lift is assigned. Thus, a simply connected cover of an orbifold covers any cover of the given orbifold.
 - From this, we can show that the fiber-product construction is simply-connected and hence is a universal cover.
 - Two simply-connected coverings of an orbifold are isomorphic and if basepoints are given, we can find an isomorphism preserving the base-points.

Covering spaces and the fundamental group

- A simply-connected covering of an orbifold X is a Galois-covering with the Galois-group isomorphic to $\pi_1(X, x_0)$.
- Proof: Consider $p^{-1}(x_0)$. Choose a base-point \tilde{x}_0 in it. Given a point of $p^{-1}(x_0)$, connected it with \tilde{x}_0 by a path. The paths map to the fundamental group. The Galois-group acts transitively on $p^{-1}(x)$. Hence the Galois-group is isomorphic to the fundamental group.

The existence of the universal cover using path-approach

- The construction follows that of the ordinary covering space theory.
 - Let \hat{X} be the set of homotopy classes [c] of G-paths in X with a fixed starting point x_0 .
 - We define a topology on \hat{X} by open set $U_{[c]}$ that is the set of paths ending at a simply-connected open subset U of X with homotopy class c * d for a path d in U.
 - Define a map $\hat{X} \to X$ sending [c] to its endpoint other than x_0 .
 - Define a map $\hat{X} \times X_1 \to \hat{X}$ given by $([c], g) \to [c * g]$. This defines a right *G*-action on \hat{X} . This makes \hat{X} into a bundle.
 - Define a left action of $\pi_1(X, x_0)$ on \hat{X} given by [c] * [c'] = [c * c'] for $[c'] \in \pi_1(X, x_0)$. This is transitive on fibers.
 - We show that \hat{X} is a simply connected orbifold.