1 Introduction

Outline

- Section 3: Topology of 2-orbifolds
- Topology of orbifolds
- Smooth 2-orbifolds and triangulations
- Covering spaces
- Fiber-product approach
- Path-approach by Haefliger
- Topological operations on 2-orbifolds: constructions and decompositions

Some helpful references

- W. Thuston, Orbifolds and Seifert space, Chapter 5, notes
- A. Adem, J. Leida, and Y. Ruan, Orbifolds and stringy topology, Cambridge, 2007.
- J. Ratcliffe, Chapter 13 in Foundations of hyperbolic manifolds, Springer]
- M. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grad. Texts in Math. 319, Springer-Verlag, New York, 1999.
- A. Haefliger, Orbi-espaces, In: Progr. Math. 83, Birkhauser, Boston, MA, 1990, pp. 203-212.

Some helpful references

- Y. Matsumoto and J. Montesinos-Amilibia, A proof of Thurston's uniformization theorem of geometric orbifolds, Tokyo J. Mathematics 14, 181-196 (1991)
- I. Moerdijk, Orbifolds as groupoids: an introduction. math.DG./0203100v1
- S. Choi, Geometric Structures on Orbifolds and Holonomy Representations, Geometriae Dedicata 104: 161-199, 2004.
- A. Verona, Stratified mappings-structure and triangulability. Lecture Notes in Mathematics, 1102. Springer-Verlag, 1984. ix+160 pp.
- S. Weinberger, The topological classification of stratified spaces. Chicago Lectures in Mathematics. University of Chicago Press, 1994. xiv+283 pp.

2 Definition

2-orbifolds

- We now wish to concentrate on 2-orbifolds.
- Singularities
- We simply have to classify finite groups in $O(2): \mathbb{Z}_{2}$ acting as a reflection group or a rotation group of angle $\pi / 2$, a cyclic groups C_{n} of order ≥ 3 and dihedral groups D_{n} of order ≥ 4.
- According to this the singularities are of form:
* A silvered point
* A cone-point of order ≥ 2.
* A corner-reflector of order ≥ 2.

2-orbifolds

- On the boundary of a surface with a corner, one can take mutually disjoint open arcs ending at corners. If two arcs meet at a corner-point, then the corner-point is a distinguished one. If not, the corner-point is ordinary. The choice of arcs will be called the boundary pattern.
- As noted above, given a surface with corner and a collection of discrete points in its interior and the boundary pattern, it is possible to put an orbifold structure on it so that the interior points become cone-points and the distinguished cornerpoints the corner-reflectors and boundary points in the arcs the silvered points of any given orders.

The triangulations of 2-orbifolds and classification

- One can put a Riemannian metric on a 2 -orbifold so that the boundary is a union of geodesic arcs and each corner-reflector have angles π / n for its order n and the cone-points have angles $2 \pi / n$.
- Proof: First construct such a metric on the boundary by putting such metrics on the boundary by using a broken geodesic in the euclidean plane and around the cone points and then using partition of unity.
- By removing open balls around cone-points and corner-reflectors, we obtain a smooth surface with corners.
- Find a smooth triangulation of so that the interior of each side is either completely inside the boundary with the corners removed.
- Extend the triangulations by cone-construction to the interiors of the removed balls.

The triangulations of 2-orbifolds and classification

- Theorem: Any 2-orbifold is obtained from a smooth surface with corner by silvering some arcs and putting cone-points and corner-reflectors.
- A 2-orbifold is classified by the underlying smooth topology of the surface with corner and the number and orders of cone-points, corner-reflectors, and the boundary pattern of silvered arcs.
- proof: basically, strata-preserving isotopies.
- In general, a smooth orbifold has a smooth topological stratification and a triangulation so that each open cell is contained in a single strata.
- Smooth topological triangulations satisfying certain weak conditions have a triangulation.
- One should show that the stratification of orbifolds by orbit types satisfies this condition.

Existence of locally finite good covering

- Let X be an orbifold. Give it a Riemannian metric.
- There exists a good covering: each open set is connected and charts have cells as cover and the intersection of any finite collection again has such properties.
- Each point has an open neighborhood with an orthogonal action.
- Now choose sufficiently small ball centered at the origin so that it has a convexity property. (That is, any path can be homotoped into a geodesic.)
- Find a locally finite subcollection.
- Then intersection of any finite collection is still convex and hence has cells as cover.

3 Covering spaces of orbifolds

Covering spaces of orbifold

- Let X^{\prime} be an orbifold with a smooth map $p: X^{\prime} \rightarrow X$ so that for each point x of X, there is a connected model (U, G, ϕ) and the inverse image of $p(\psi(U))$ is a union of open sets with models isomorphic to $\left(U, G^{\prime}, \pi\right)$ where $\pi: U \rightarrow U / G^{\prime}$ is a quotient map and G^{\prime} is a subgroup of G. Then $p: X^{\prime} \rightarrow X$ is a covering and X^{\prime} is a covering orbifold of X.
- Abstract definition: If X^{\prime} is a $\left(X_{1}, X_{0}\right)$-space and $p_{0}: X_{0}^{\prime} \rightarrow X_{0}$ is a covering map, then X^{\prime} is a covering orbifold.
- We can see it as an orbifold bundle over X with discrete fibers. We can choose the fibers to be acted upon by a discrete group G, and hence a principal G-bundle. This gives us a regular (Galois) covering.

Examples (Thurston)

- Y a manifold. \tilde{Y} a regular covering map \tilde{p} with the automorphism group Γ. Let $\Gamma_{i}, i \in I$ be a sequence of subgroups of Γ.
- The projection $\tilde{p}_{i}: \tilde{Y} \times \Gamma_{i} \backslash \Gamma \rightarrow \tilde{Y}$ induces a covering $p_{i}:\left(\tilde{Y} \times \Gamma_{i} \backslash \Gamma\right) / \Gamma \rightarrow$ $\tilde{Y} / \Gamma=Y$ where Γ acts by

$$
\gamma\left(\tilde{x}, \Gamma_{i} \gamma_{i}\right)=\left(\gamma(\tilde{x}), \Gamma_{i} \gamma_{i} \gamma^{-1}\right)
$$

- This is same as $\tilde{Y} / \Gamma_{i} \rightarrow Y$ since Γ acts transitively on both spaces.
- Fiber-products $\tilde{Y} \times \prod_{i \in I} \Gamma_{i} \backslash \Gamma \rightarrow \tilde{Y}$. Define left-action of Γ by

$$
\gamma\left(\tilde{x},\left(\Gamma_{i} \gamma_{i}\right)_{i \in I}\right)=\left(\gamma(\tilde{x}),\left(\Gamma_{i} \gamma_{i} \gamma^{-1}\right)\right), \gamma \in \Gamma .
$$

We obtain the fiber-product

$$
\left(\tilde{Y} \times \prod_{i \in I} \Gamma_{i} \backslash \Gamma\right) / \Gamma \rightarrow \tilde{Y} / \Gamma=Y
$$

Developable orbifold

- We can let Γ be a discrete group acting on a manifold \tilde{Y} properly discontinuously but maybe not freely.
- One can find a collection X_{i} of coverings so that
- $\Gamma_{i}=\left\{\gamma \in \Gamma \mid \gamma\left(X_{i}\right)=X_{i}\right\}$ is finite and if $\gamma\left(X_{i}\right) \cap X_{i} \neq \emptyset$, then γ is in Γ_{i}.
- The images of X_{i} cover \tilde{Y} / Γ.
- $Y=\tilde{Y} / \Gamma$ has an orbifold quotient of \tilde{Y} and Y is said to be developable.
- In the above example, we can let Γ be a discrete group acting on a manifold \tilde{Y} properly discontinuously but maybe not freely. Y^{f} is then the fiber product of orbifold maps $\tilde{Y} / \Gamma_{i} \rightarrow Y$.

Doubling an orbifold with mirror points

- A mirror point is a singular point with the stablizer group \mathbb{Z}_{2} acting as a reflection group.
- One can double an orbifold M with mirror points so that mirror-points disappear. (The double covering orbifold is orientable.)
- Let V_{i} be the neighborhoods of M with charts $\left(U_{i}, G_{i}, \phi_{i}\right)$.
- Define new charts $\left(U_{i} \times\{-1,1\}, G_{i}, \phi_{i}^{*}\right)$ where G_{i} acts by $(g(x, l)=$ $(g(x), s(g) l)$ where $s(g)$ is 1 if g is orientation-preserving and -1 if not and ϕ_{i}^{*} is the quotient map.
- For each embedding, $i:(W, H, \psi) \rightarrow\left(U_{i}, G_{i}, \phi_{i}\right)$ we define a lift $(W \times$ $\left.\{-1,1\}, H, \psi^{*}\right) \rightarrow\left(U_{i} \times\{-1,1\}, G_{i}, \phi_{i}^{*}\right.$. This defines the gluing.
- The result is the doubled orbifold and the local group actions are orientation preserving.
- The double covers the original orbifold with Galois group \mathbb{Z}_{2}.

Doubling an orbifold with mirror points

- In the abstract definition, we simply let X_{0}^{\prime} be the orientation double cover of X_{0} where G-acts on X^{\prime} preserving the orientation.
- For example, if we double a corner-reflector, it becomes a cone-point.

Some Examples

- Clearly, manifolds are orbifolds. Manifold coverings provide examples.
- Let Y be a tear-drop orbifold with a cone-point of order n. Then this cannot be covered by any other type of an orbifold and hence is a universal cover of itself.
- A sphere Y with two cone-points of order p and q which are relatively prime.
- Choose a cyclic action of Y of order m fixing the cone-point. Then Y / Z_{m} is an orbifold with two cone-points of order $p m$ and $q m$.

Universal covering by fiber-product

- A universal cover of an orbifold Y is an orbifold \tilde{Y} covering any covering orbifold of Y.
- We will now show that the universal covering orbifold exists by using fiberproduct constructions. For this we need to discuss elementary neighborhoods. An elementary neighborhood is an open subset with a chart components of whose inverse image are open subsets with charts.
- We can take the model open set in the chart to be simply connected.
- Then such an open set is elementary.

Fiber-product for D^{n} / G_{i}

- If V is an orbifold D^{n} / G for a finite group G.
- Any covering is D^{n} / G_{1} for a subgroup G_{1} of G.
- Given two covering orbifolds D^{n} / G_{1} and V / G_{2}, a covering morphism is induced by $g \in G$ so that $g G_{1} g^{-1} \subset G_{2}$.
- The covering morphism is in one-to-one correspondence with the double cosets of form $G_{2} g G_{1}$ for g such that $g G_{1} g^{-1} \subset G_{2}$.
- The covering automorphism group of D^{n} / G^{\prime} is given by $N\left(G_{1}\right) / G_{1}$.

Fiber-product for D^{n} / G_{i}

- Given coverings $p_{i}: V / G_{i} \rightarrow V / G$ for $G_{i} \subset G$ for V homeomorphic to a cell, we form a fiber-product.

$$
V^{f}=\left(V \times \prod_{i \in I} G_{i} \backslash G\right) / G \rightarrow V / G
$$

- If we choose all subgroups G_{i} of G, then any covering of V / G is covered by V^{f} induced by projection to G_{i}-factor (universal property)

The construction of the fiber-product of a sequence of orbifolds

- Let $Y_{i}, i \in I$ be a collection of the orbifold-coverings of Y.
- We cover Y by elementary neighborhoods V_{j} for $j \in J$ forming a good cover.
- We take inverse images $p_{i}^{-1}\left(V_{j}\right)$ which is a disjoint union of V / G_{k} for some finite group G_{k}.
- Fix j and we form one fiber product by V / G_{k} by taking one from $p_{i}^{-1}\left(V_{j}\right)$ for each i.
- Fix j and we form a fiber-product of $p_{i}^{-1}\left(V_{j}\right)$, which will essentially be the disjoint union of the above fiber products indiced by the product of the component indices for each i.
- Over regular points of V_{j}, this is the ordinary fiber-product.

The construction of the fiber-product of a sequence of orbifolds

- Now, we wish to patch these up using imbeddings. Let $U \rightarrow V_{j} \cap V_{k}$. We can assume $U=V_{j} \cap V_{k}$ which has a convex cell as a cover.
- We form the fiber products of $p_{i}^{-1}(U)$ as before which can be realized in V_{j} and V_{k}.
- Over the regular points in V_{j} and V_{k}, they are isomorphic. Then they are isomorphic.
- Thus, each component of the fiber-product can be identified.
- By patching, we obtain a covering Y^{f} of Y with the covering map p^{f}.

Thurston's example of fiber product

- Let I be the unit interval. Make two endpoints into silvered points.
- Then $I_{1}=I$ is double covered by \mathbf{S}^{1} with the deck transformation group \mathbb{Z}_{2}. Let p_{1} denote the covering map.
- $I_{2}=I$ is also covered by I by a map $x \mapsto 2 x$ for $x \in[0,1 / 2]$ and $x \mapsto 2-2 x$ for $x \in[1 / 2,1]$. Let p_{2} denote this covering map.
- Then the fiber product of p_{1} and p_{2} is what?
- Cover I by $A_{1}=[0, \epsilon), A_{2}=(\epsilon / 2,1-\epsilon / 2), A_{3}=(\epsilon, 1]$.
- Over A_{1}, I_{1} has an open interval and I_{2} has two half-open intervals. The fiber-product is a union of two copies of open intervals.
- Over A_{2}, the fiber product is a union of four copies of open intervals.
- Over A_{3}, the fiber product is a union of two copies of open intervals.
- By pasting considerations, we obtain a circle mapping 4-1 almost everywhere to I.

The construction of the universal cover

- The collection of cover of an orbifold is countable upto isomorphisms preserving base points. (Cover by a countable good cover and for each elementary neighborhood, there is a countable choice.)
- Take a fiber product of $Y_{i}, i=1,2,3, \ldots$. The fiber-product \tilde{Y} with a base point *. We take a connected component.
- The for any cover Y_{i}, there is a morphism $\tilde{Y} \rightarrow Y_{i}$.
- The universal cover is unique up to covering orbifold-isomorphisms by the universality property.

Properties of the universal cover

- The group of automorphisms of \tilde{Y} is called the fundamental group and is denoted by $\pi_{1}(Y)$.
- $\pi_{1}(Y)$ acts transitively on \tilde{Y} on fibers of $\tilde{p}^{-1}(x)$ for each x in Y. (To prove this, we choose one covering of Y from a class of base-point preserving isomorphism classes of coverings of Y. Then the universal cover with any base-point occurs will occur in the list and hence a map from \tilde{Y} to it preserving base-points.)
- $\tilde{Y} / \pi_{1}(Y)=Y$.
- Any covering of Y is of form \tilde{Y} / Γ for a subgroup Γ of $\pi_{1}(Y)$.
- The isomorphism classes of coverings of Y is the set of conjugacy classes of subgroups of $\pi_{1}(Y)$.

Properties of the universal cover

- The group of automorphism is $N(\Gamma) / \Gamma$.
- A covering is regular if and only if Γ is normal.
- A good orbifold is an orbifold with a cover that is a manifold.
- An very good orbifold is an orbifold with a finite cover that is a manifold.
- A good orbifold has a simply-connected manifold as a universal covering space.

Induced homomorphism of the fundamental group

- Given two orbifolds Y_{1} and Y_{2} and an orbifold-diffeomorphism $g: Y_{1} \rightarrow Y_{2}$. Then the lift to the universal covers \tilde{Y}_{1} and \tilde{Y}_{2} is also an orbifold-diffeomorphism. Furthermore, once the lift value is determined at a point, then the lift is unique.
- Also, homotopies $f_{t}: Y_{1} \underset{\tilde{f_{t}}}{ } Y_{2}$ of orbifold-maps lift to homotopies in the universal covering orbifolds $\tilde{f}_{t}: \tilde{Y}_{1} \rightarrow \tilde{Y}_{2}$. Proof: we consider regular parts and model neighborhoods where the lift clearly exists uniquely.
- Given orbifold-diffeomorphism $f: Y \rightarrow Z$ which lift to a diffeomorphism $\tilde{f}: \tilde{Y} \rightarrow \tilde{Z}$, we obtain $f_{*}: \pi_{1}(Y) \rightarrow \pi_{1}(Z)$.
- If g is homotopic to f, then $g_{*}=f_{*}$.

4 Path-approach to the universal covering spaces

Path-approach to the universal covering spaces.

- G-paths. Given an etale groupoid X. A G-path $c=\left(g_{0}, c_{1}, g_{1}, \ldots, c_{k}, g_{k}\right)$ over a subdivision $a=t_{0} \leq t_{1} \leq \ldots \leq t_{k}=b$ of interval $[a, b]$ consists of
- continuous maps $c_{i}:\left[t_{i-1}, t_{i}\right] \rightarrow X_{0}$
- elements $g_{i} \in X_{1}$ so that $s\left(g_{i}\right)=c_{i+1}\left(t_{i}\right)$ for $i=0,1, . ., k-1$ and $t\left(g_{i}\right)=c_{i}\left(t_{i}\right)$ for $i=1, . ., k$.
- The initial point is $t\left(g_{0}\right)$ and the terminal point is $s\left(g_{k}\right)$.
- The two operations define an equivalence relation:
- Subdivision. Add new division point t_{i}^{\prime} in $\left[t_{i}, t_{i+1}\right]$ and $g_{i}^{\prime}=1_{c_{i}\left(t_{i}^{\prime}\right)}$ and replacing c_{i} with $c_{i}^{\prime}, g_{i}^{\prime}, c_{i}^{\prime \prime}$ where $c_{i}^{\prime}, c_{i}^{\prime \prime}$ are restrictions to $\left[t_{i}, t_{i}^{\prime}\right]$ and $\left[t_{i}^{\prime}, t_{i+1}\right]$.
- Replacement: replace c with $c^{\prime}=\left(g_{0}^{\prime}, c_{1}^{\prime}, g_{1}^{\prime}, . ., c_{k}^{\prime}, g_{k}^{\prime}\right)$ as follows. For each i choose continuous map $h_{i}:\left[t_{i-1}, t_{i}\right] \rightarrow X_{1}$ so that $s\left(h_{i}(t)\right)=c_{i}(t)$ and define $c_{i}^{\prime}(t)=t\left(h_{i}(t)\right)$ and $g_{i}^{\prime}=h_{i}\left(t_{i}\right) g_{i} h_{i+1}^{-1}\left(t_{i}\right)$ for $i=1, . ., k-1$ and $g_{0}^{\prime}=g_{0} h_{1}^{-1}\left(t_{0}\right)$ and $g_{k}^{\prime}=h_{k}\left(t_{k}\right) g_{k}$.

Compositions of G-paths

- All paths are defined on $[0,1]$ from now on.
- Given two paths $c=\left(g_{0}, c_{1}, . ., c_{k}, g_{k}\right)$ over $0=t_{0} \leq t_{1} \leq \ldots \leq t_{k}=1$ and $c^{\prime}=\left(g_{0}^{\prime}, c_{1}^{\prime}, . ., c_{k^{\prime}}^{\prime}, g_{k^{\prime}}^{\prime}\right)$ such that the terminal point of c equals the initial point of c^{\prime}, the composition $c * c^{\prime}$ is the G-path $c^{\prime \prime}=\left(g_{0}^{\prime \prime}, c_{1}^{\prime \prime}, . ., g_{k+k^{\prime}}^{\prime \prime}\right)$ so that

$$
\begin{aligned}
& \text { - } t_{i}^{\prime \prime}=t_{i} / 2 \text { for } i=0, . ., k \text { and } t_{i}^{\prime \prime}=1 / 2+t_{i-k}^{\prime} / 2 \text { and } \\
& -c_{i}^{\prime \prime}(t)=c_{i}(2 t) \text { for } i=1, . ., k \text { and } c_{i}^{\prime \prime}(t)=c_{i-k}^{\prime}(2 t-1) \text { for } i=k+ \\
& \quad 1, \ldots, k+k^{\prime} . \\
& -g_{i}^{\prime \prime}=g_{i} \text { for } i=1, . ., k-1 \text { and } g_{k}^{\prime \prime}=g_{k} g_{0}^{\prime}, g_{i}^{\prime \prime}=g_{i-k}^{\prime} \text { for } i=k+1, . ., k+k^{\prime}
\end{aligned}
$$

- The inverse c^{-1} is $\left(g_{0}^{\prime}, c_{1}^{\prime}, \ldots, c_{k}^{\prime}, g_{k}^{\prime}\right)$ over the subdivision where $t_{i}^{\prime}=1-t_{i}$ so that $g_{i}^{\prime}=g_{k-i}^{-1}$ and $c_{i}^{\prime}(t)=c_{k-i+1}(1-t)$.

Homotopies of G-paths

- There are two types
- equivalences
- An elementary homotopy is a family of G-paths $c^{s}=\left(g_{0}^{s}, c_{1}^{s}, \ldots, g_{k}^{s}\right)$ over the subdivision $0=t_{0}^{s} \leq t_{1}^{s} \leq \ldots \leq t_{k}^{s}=1$ so that $t_{k}^{s}, g_{i}^{s}, c_{i}^{s}$ depends continously on s.
- A homotopy class of c is denoted $[c]$.
- $\left[c * c^{\prime}\right]$ is well-defined in the homotopy classes $[c]$ and $\left[c^{\prime}\right]$. Hence, we define $[c] *\left[c^{\prime}\right]$.
$-\left[c *\left(c^{\prime} * c^{\prime \prime}\right)\right]=\left[\left(c * c^{\prime}\right) * c^{\prime \prime}\right]$.
- The constant path $e_{x}=\left(1_{x}, x, 1_{x}\right)$. Then $\left[c * c^{-1}\right]=\left[e_{x}\right]$ if the initial point of c is x and $\left[c^{-1} * c\right]=\left[e_{y}\right]$ if the terminal point of c is y. Thus, $[c]^{-1}=\left[c^{-1}\right]$.

Fundamental group $\pi_{1}\left(X, x_{0}\right)$

- The fundamental group $\pi_{1}\left(X, x_{0}\right)$ based at $x_{0} \in X_{0}$ is the group of loops based at x_{0}.
- A continuous homomorphism $f: X \rightarrow Y$ induces a homomorphism f_{*} : $\pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, f\left(x_{0}\right)\right)$.
- This is well-defined up to conjuations.
- An equivalence induces an isomorphism.
- Seifert-Van Kampen theorem: X an orifold. $X_{0}=U \cup V$ where U and V are open and $U \cap V=W$. Assume that the groupoid restrictions G_{U}, G_{V}, G_{W} to U, V, W are connected. And let $x_{0} \in W$. Then $\pi_{1}\left(X, x_{0}\right)$ is the quotient group of the free product $\pi_{1}\left(G_{U}, x_{0}\right) * \pi_{1}\left(G_{V}, x_{0}\right)$ by the normal subgroup generated by $j_{U}(\gamma) j_{W}\left(\gamma^{-1}\right)$ for $\gamma \in \pi_{1}\left(G_{W}, x_{0}\right)$ for j_{U} the induced homomorphism $\pi_{1}\left(G_{W}, x_{0}\right) \rightarrow \pi_{1}\left(G_{U}, x_{0}\right)$ and j_{V} the induced homomorphism $\pi_{1}\left(G_{W}, x_{0}\right) \rightarrow \pi_{1}\left(G_{V}, x_{0}\right)$.

Examples

- Let a discrete group Γ act on a connected manifold X_{0} properly discontinuously. Then $\left(\Gamma, X_{0}\right)$ has an orbifold structure. Any loop can be made into a G-path $\left(1_{x}, c, \gamma\right)$ so that $\gamma(x)=c(1)$. and $c(0)=x$. Thus, there is an exact sequence

$$
1 \rightarrow \pi_{1}\left(X_{0}, x_{0}\right) \rightarrow \pi_{1}\left(\left(\Gamma, X_{0}\right), x_{0}\right) \rightarrow \Gamma \rightarrow 1
$$

- A two-orbifold that is a disk with an arc silvered has the fundamental group isomorphic to Z_{2}.
- A two-dimensional orbifold with cone-points which is boundariless and with no silvered point.
- A tear drop: A sphere with one cone-point of order n has the trivial fundamental group

Examples

- An annulus with one boundary component silvered has a fundamental group isomorphic to $Z \times Z_{2}$.
The fundamental group can be computed by removing open-ball neighborhoods of the cone-points and using Van-Kampen theorem.
- Suppose that a two-dimensional orbifold has boundary and silvered points. Then remove open-ball neighborhoods of the cone-points and corner-reflector points. Then the fundamental group of remaining part can be computed by Van-Kampen theorem by taking open neighborhoods of silvered boundary arcs. Finally, adding the open-ball neighborhoods, we compute the fundamental group.
- The fundamental group of a three-dimensional orbifold can be computed similarly.

Seifert fibered 3-manifold Examples

- We can obtain a 2 -orbifold from a Seifert fibered 3-manifold M.
- X_{0} will be the union of patches transversal to the fibers.
- X_{1} will be the arrows obtained by the flow.
- The orbifold X will be a 2-dimensional one with cone-points whose orders are obtained as the numerators of the fiber-order.
- The fundamental group of X is then the quotient of the ordinary fundamental group $\pi_{1}(M)$ by the central cyclic group \mathbb{Z} generated by the generic fiber.

Covering spaces and the fundamental group

- One can build the theory of covering spaces using the fundamental group.
- Given a covering $X^{\prime} \rightarrow X$:
- For every G-path c in X, there is a lift G-path in X^{\prime}. If we assign the initial point, the lift is unique.
- If c^{\prime} is homotopic to c, then the lift of c^{\prime} is also homotopic to the lift of c provided the initial points are the same.
- $\pi_{1}\left(X^{\prime}, x_{0}^{\prime}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is injective.
- A map from a simply connected orbifold to an orbifold lifts to a cover. The lift is unique if the base-point lift is assigned. Thus, a simply connected cover of an orbifold covers any cover of the given orbifold.
- From this, we can show that the fiber-product construction is simply-connected and hence is a universal cover.
- Two simply-connected coverings of an orbifold are isomorphic and if basepoints are given, we can find an isomorphism preserving the base-points.

Covering spaces and the fundamental group

- A simply-connected covering of an orbifold X is a Galois-covering with the Galois-group isomorphic to $\pi_{1}\left(X, x_{0}\right)$.
- Proof: Consider $p^{-1}\left(x_{0}\right)$. Choose a base-point \tilde{x}_{0} in it. Given a point of $p^{-1}\left(x_{0}\right)$, connected it with \tilde{x}_{0} by a path. The paths map to the fundamental group. The Galois-group acts transitively on $p^{-1}(x)$. Hence the Galois-group is isomorphic to the fundamental group.

The existence of the universal cover using path-approach

- The construction follows that of the ordinary covering space theory.
- Let \hat{X} be the set of homotopy classes $[c]$ of G-paths in X with a fixed starting point x_{0}.
- We define a topology on \hat{X} by open set $U_{[c]}$ that is the set of paths ending at a simply-connected open subset U of X with homotopy class $c * d$ for a path d in U.
- Define a map $\hat{X} \rightarrow X$ sending $[c]$ to its endpoint other than x_{0}.
- Define a map $\hat{X} \times X_{1} \rightarrow \hat{X}$ given by $([c], g) \rightarrow[c * g]$. This defines a right G-action on \hat{X}. This makes \hat{X} into a bundle.
- Define a left action of $\pi_{1}\left(X, x_{0}\right)$ on \hat{X} given by $[c] *\left[c^{\prime}\right]=\left[c * c^{\prime}\right]$ for $\left[c^{\prime}\right] \in \pi_{1}\left(X, x_{0}\right)$. This is transitive on fibers.
- We show that \hat{X} is a simply connected orbifold.

