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2 Definition
Definitions

• X a Hausdorff second countable topological space. Let n be fixed.

• An open subset Ũ in Rn with a finite group G acting smoothly on it. A G-
invariant map Ũ → O for an open subset O of X inducing a homeomorphism
Ũ/G→ O. An orbifold chart is such a triple (Ũ , G, φ).

• An embedding i : (Ũ , G, φ) → (Ṽ ,H, ψ) is a smooth imbedding i : Ũ → Ṽ
with φ = ψ ◦ i which induces the inclusion map U → V for U = φ(Ũ) and
V = φ(Ṽ ).

– Equivalently, i is an imbedding inducing the inclusion map U → V and
inducing an injective homomorphism i∗ : G→ H so that i ◦ g = i∗(g) ◦ i
for every g ∈ G. i∗(G) will act on the open set that is the image of i.

– Note here i can be changed to h ◦ i for any h ∈ H . The images of h ◦ i will
be disjoint for representatives h for H/i∗(G).

Definitions

• Two charts (Ũ , φ) and (Ṽ , ψ) are compatible if for every x ∈ U ∩ V , there is
an open neighborhood W of x in U ∩ V and a chart (W̃ ,K, µ) such that there
are embeddings to (Ũ , φ) and (Ṽ , ψ). (One can assume W is a component of
U ∩ V .)

• If we allow Ũ to be an open subset of the closed upper half space, then the
orbifold has boundary.
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Definition of orbifold

• Since G acts smoothly, G acts freely on an open dense subset of Ũ .

• An orbifold atlas on X is a family of compatible charts {(Ũ , φ)} covering X .

• Two orbifold atlases are compatible if charts in one atlas are compatible with
charts in the other atlas.

• Atlases form a partially ordered set. It has a maximal element.

• Given an atlas, there is a unique maximal atlas containing it.

• An orbifold is X with a maximal orbifold atlas.

• One can obtain an atlas of linear charts only: that is, charts where Ũ is Rn and
G ⊂ O(n). That is, for each point, one can find a subgroup Gx stablizing the
point and suitable Gx-invariant neighborhood in Ũ . Then Gx acts linearly up to
a choice of coordinate charts since smooth action is locally smooth (linear).

Definitions

• If we have Ũ with G acting freely, we can drop this from the atlas and replace
with many charts with trivial group.

• A map f : (X,U) → (Y,V) is smooth if for each point x ∈ X , there is a chart
(Ũ , G, φ) with x ∈ U and a chart (Ṽ ,H, ψ) with f(x) ∈ V so that f(V ) ⊂ U
and f lifts to f̃ : Ũ → Ṽ as a smooth map.

• Two orbifolds are diffeomorphic if there is a smooth orbifold-map with a smooth
inverse orbifold-map.

• x ∈ X . A local group Gx of x is obtained by taking a chart (Ũ , G, φ) around x
and finding the stabilizer Gy of y for an inverse image point y of x.

– This is independently defined up to conjugacy for any choice of y.

– Smaller charts will give you the same conjugacy class. Thus, one can take
a linear chart. Once a linear chart is achieved, Gx is well-defined up to
conjugacy (Thus, as an abstract group with an action.)

Definitions

• A singular set is a set of points where Gx is not trivial.

• The subset of the singular set where Gx is constant is a relatively closed sub-
manifold.

• Thus X becomes a stratified smooth topological space where the strata is given
by the conjugacy classes of Gx.
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• A suborbifold Y of an orbifold X is an imbedded subset such that for each point
y in Y and and a chart (Ṽ , G, φ) of X for a neighborhood V of y there is a chart
for y given by (P,G|P, φ) where P is a closed submanifold of Ṽ where G acts
on and G|P is the image of the restriction homomorphism of G to P . (Compare
with P. 35 of Adem.)

Examples

• Clearly, manifolds are orbifolds.

• Let G be a finite group acting on a manifold M smoothly. Then M/G is a
topological space with an orbifold structure.

• Let M = Tn and Z2 act on it with generator acting by −I . For n = 2, M/Z2

is topologically a sphere and has four singular points. For n = 4, we obtain a
Kummer surface with sixteen singular points.

• Let X be a smooth surface. Take a discrete subset. For each point, take a disk
neighborhood D with a chart (D′, Zn, q) where D′ is a disk and Zn acts as a
rotation with O as a fixed point and q : D′ → D as a cyclic branched covering.

Examples

• Given a manifold M with boundary. We can double it as a manifold and obtain
Z2-action. Then M has an orbifold structure.

• Take a surface and make the boundary be a union of piecewise smooth curves
with corners.

– The interior is given charts with trivial groups.
– The interior of a boundary curve is given charts with Z2 as a group. (sil-

vering)
– The corner point is given charts with a dihedral group as a group.

Examples

• An embedded arc in the surface orbifold as above ending at two silvered bound-
ary points is a one-dimensional suborbifold.

• Take a surface and make the boundary be a union of piecewise smooth curves
with corners.

– Some arcs are given Z2 as groups but not all.
– If two such arcs meet, then the vertex is given a dihedral group as a group.
– Then the union of the interiors of the remaining arcs is the boundary of the

orbifold.
– A nicely imbedded arc ending at a corner may not be a suborbifold unless

it is in the boundary of the surface.
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An abstract definition using Lie groupoid

• We will try to avoid the definitions using the category theory as related to the
theory of stacks in algebraic geometry as much as possible and use the more
concrete set theoretic approach.

• A topological groupoid consists of a space G0 of objects and a space G1 of
arrows with five continuous maps: the source map s : G1 → G0, target map
t : G1 → G0, an associative composition map m : G1s ×t G1 → G1 a unit
map u : G0 → G1 so that su(x) = x = tu(y) and gu(x) = g = u(x)g and
an inverse map i : G1 → G1 so that if g : x → y, then i(g) : y → x and
i(g)g = u(x) and gi(g) = u(y).

• A Lie groupoid is one where G0 and G1 are smooth manifolds.

• M a smooth manifold. Let G0 = G1 = M and all maps identity, then this is a
unit groupoid.

More on Lie groupoid

• isotropy group at x is the set of all arrows from x to itself.

• A homomorphism of Lie groupoids φ : H → G is a pair of smooth maps φ0 :
H0 → G0 and φ1 : H1 → G1 commuting with all structure maps.

• The fiber-product: φ : H → G,ψ : K → G the fiber product H ×G K is
the Lie groupoid whose objects are (y, g, z) for y ∈ H0, z ∈ K0, and arrow
φ(y)→ ψ(z) and whose arrows (y, g, z)→ (y′, g′, z′) are pairs (h, k) of arrows
h : y → y′, k : z → z′ so that g′φ(h) = ψ(h)g.

More on Lie groupoid

• φ is an equivalence if it is an etale map and

– If φ0 induces an isomorphism of stablizer group from x to φ0(x).

– If φ induces a bijection of orbit spaces.

• IfG andG′ are differentiable etale groupoid, then φ : G→ G′ is a differentiable
equivalence if φ0 is an equivalence and is a local diffeomorphism.

• This generates an equivalence relation on groupoids.

• Two groupoids are equivalent iff they are Morita equivalent: i.e., there exists
another pseudogroup and an equivalence map from it to the two groupoids.
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More on Lie groupoid

• The nerve of a groupoid: Let G be a Lie groupoid. Define

Gn = {(g1, ..., gn)|gi ∈ G1, s(gi) = t(gi+1)}

as a fiber product. The face operator di : Gn → Gn−1 by sending (g1, ..., gn) to
(g1, ..., gigi+1, ..., gn). This forms a simplicial manifold.

• The classifying space BG is the geometric realization as a simplicial complex.

• An orbifold X with G as the Lie groupoid has πn defined as πn(BG).

An abstract definition

• A Lie group K acting smoothly on M . The action Lie groupoid L is given by
L0 = M and L1 = K ×M with s projection and t the action.

• An orbifold groupoid is a proper etale Lie groupoid.

• A groupoid is proper if s× t : G1 → G0 ×G0 is proper.

• A groupoid is etale if s and t are local diffeomorphisms.

• Theorem: Let G be a proper effective etale groupoid. Then its orbit space |G| can
be given the structure of an effective orbifold.

• Example:Ê M a smooth manifold with an atlas U . Let M0 be the disjoint union∐
U∈U U and M1 be

∐
U,V ∈U U ×X V . Then the space of orbits is M .

Action of a Lie groupoid

• Let G be an orbifold groupoid. A left G-space is a manifold E equipped with an
action by G: Such an action is given by two maps: an anchor π : E → G0 and
an action µ : G1 ×G0 E → E.

– This map is defined on (g, e) with π(e) = s(g) and written µ(g, e) = g.e.

– It satisfies the action identity: π(g.e) = t(g), 1x.e = e, and g.(h.e) =
(gh).e for h : x→ y and g : y → z and e ∈ E with π(e) = x.

• A right G-space is left Gop-space obtained by switching the source and target
map.
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Differentiable structures on orbifolds

• Suppose we are given smooth structures on each (Ũ , G, φ), i.e., Ũ is given a
smooth structure and G is a smooth action on it. We assume that all embeddings
in the atlas is smooth. Then M is given a smooth structure.

• Given a chart (Ũ , G, φ), the space of smooth forms is the space of smooth forms
in Ũ invariant under the G-action. A smooth form on the orbifold is the col-
lection of smooth forms on each of the charts so that under embeddings they
correspond.

• One can define an integral of smooth singular simplices into charts. This can be
extended to any smooth simplex using partition of unity and varicentric subdivi-
sions of the simplex.

Differentiable structures on orbifolds

• Given a locally finite covering of X , then we can define a smooth partition of
unity (in the same way as in the manifold case. See Munkres.)

– We refine to obtain a cover whose closures are invariant compact subsets.

– The idea is to find smooth functions on each chart which vanishes outside
the invariant compact subsets.

– The images of compact subsets can be chosen to cover X .

– Thus, these functions become functions on X which sums to a positive
valued function.

– We divide by the sum.

Differentiable structures on orbifolds: Integration

• An orbifold X is orientable if one can choose an atlas of charts where Ũ is
given an orientation with G acting in an orientation-preserving manner and each
imbedding of charts to another charts is orientation-preserving.

• An n-form can be integrated on an orientable orbifold.∫
Ũ

ω =
1
|G|

∫
U

ω′

where (Ũi, G, φ) is the chart for U . (Otherwise, one can define n-density to
integrate.)

• Then any n-form can be integrated by using a partition of unity.
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Differentiable structures on orbifolds: Integration

• Poincare duality pairing: For a compact orbifold X∫
: Hp(X)⊗Hn−q

c (X)→ R.

This is nondegenerate if X has a finite good cover.

• A cover of an orbifold is good if each U is of form Rn/G and all of its intersec-
tions is of the form. In this case, the standard differentiable form arguments work
(See Bott-Tu). A compact orbifold has a finite good cover. (Note the confusing
terminology here.)

Bundles over orbifolds

• An orbifold-bundle (or V -bundle) E over an orbifold X is given by a smooth
orbifold E and a smooth map π : E → X so that

– Let F be a smooth manifold with a Lie group G acting on it smoothly.

– Pair of defining families F for X and F ′ for E so that (U,G, φ) of X
corresponds to (U∗, G∗, φ∗) so that U∗ = U × F and π ◦ φ∗ = φ ◦ π.

– Given (U,G, φ), (U∗, G∗, φ∗), and (U ′, G′, φ), (U∗.
′
, G∗.

′
, φ∗,

′
) there is

a correspondence of embeddings λ : (U,G, φ) → (U ′, G′, φ) and λ∗ :
(U∗, G∗, φ∗) → (U∗.

′
, G∗.′, φ∗.′) where λ∗(p, q) = (λ(p), gλ(p)q) for

(p, q) ∈ U∗ = U × F with gλ(p) ∈ G.

– We have
gµλ(p) = gµ(λ(p)) ◦ gλ(p)

for embeddings (U,G, φ)→ (U ′, G′, φ′)→ (U ′′, G′′, φ′′).

– If F = G, then this is a principle orbifold bundle.

Tangent bundles, Tensor bundles

• A principle L-bundle for a Lie group L over a Lie groupoid is a G-space P with
a left action L×P → P which maps π : P → G0 into a principle L-bundle and
(l.p).g = l.(p.g) for p ∈ P, l ∈ L and g : x→ y.

• Given an orbifold, we can build a tangent orbifold-bundle by taking F = Rn
G = GL(n,R) and gλ(p) be the Jacobian of λ at p.

• We can build any tensor bundles in this way.

• Frame bundles also.

• A Riemannian metric on an orbifold is given by equivariant Riemannian metric
on each chart which matches up under imbeddings.
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• Such can be built using partition of unity again from any given Riemannian met-
rics on charts.

• Orthogonal frame bundles can be build in this way.

• Connections, cuvature, geodesics, and exponential maps can be defined.

Gauss-Bonnet theorem

• Assuming thatX admits a finite smooth triangulation so that interior of each cell
lies in singularity with locally constant isotopy groups, then we define the Euler
characteristic to be

χ(X) =
∑
k

(−1)dim sk1/Nsk

where sk denotes the kth-cell and Nsk
the order of the isotropy group.

• Such a triangulation always seem to exist always. (Proved in Verona.)

• Theorem (Allendoerfer-Weil, Hopf) Let M be a compact Riemannian orbifold
of even dimension m. Then

(2/Om)
∫
M

Kdw = χ(M),

where Om is the volume of the m-sphere.

• The proof essentially follows that of Chern for manifolds.
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