
1 Discrete group actions
Discrete groups and discrete group actions

• A discrete group is a group with a discrete topology. (Usually a finitely generated
subgroup of a Lie group.) Any group can be made into a discrete group.

• We have many notions of a group action Γ×X → X:

– The action is effective, is free

– The action is discrete if Γ is discrete in the group of homeomorphisms of
X with compact open topology.

– The action has discrete orbits if every x has a neighborhood U so that the
orbit points in U is finite.

– The action is wandering if every x has a neighborhood U so that the set of
elements γ of Γ so that γ(U) ∩ U 6= ∅ is finite.

– The action is properly discontinuous if for every compact subset K the set
of γ such that K ∩ γ(K) 6= ∅ is finite.

• discrete action < discrete orbit < wandering < properly discontinuous. This is a
strict relation (Assuming X is a manifold.)

• The action is wandering and free and gives manifold quotient (possibly non-
Hausdorff)

• The action of Γ is free and properly discontinuous if and only if X/Γ is a mani-
fold quotient (Hausdorff) and X → X/Γ is a covering map.

• Γ a discrete subgroup of a Lie group G acting on X with compact stabilizer.
Then Γ acts properly discontinuously on X .

• A complete (X,G) manifold is one isomorphic to X/Γ.

• SupposeX is simply-connected. Given a manifoldM the set of complete (X,G)-
structures on M up to (X,G)-isotopies are in one-to-one correspondence with
the discrete representations of π(M)→ G up to conjugations.

Examples

• R2 − {O} with the group generated by g1 : (x, y) → (2x, y/2). This is a free
wondering action but not properly discontinuous.

• R2 − {O} with the group generated by g : (x, y) → (2x, 2y). (free, properly
discontinuous.)

• The modular group PSL(2,Z) the group of Mobius transformations or isome-
tries of hyperbolic plane given by z 7→ az+b

cz+d for integer a, b, c, d and ad− bc =
1. http://en.wikipedia.org/wiki/Modular_group. This is not a
free action.
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Convex polyhedrons

• A convex subset of Hn is a subset such that for any pair of points, the geodesic
segment between them is in the subset.

• Using the Beltrami-Klein model, the open unit ball B, i.e., the hyperbolic space,
is a subset of an affine patch Rn. In Rn, one can talk about convex hulls.

• Some facts about convex sets:

– The dimension of a convex set is the least integer m such that C is con-
tained in a unique m-plane Ĉ in Hn.

– The interior Co, the boundary ∂C are defined in Ĉ.

– The closure of C is in Ĉ. The interior and closures are convex. They
are homeomorphic to an open ball and a contractible domain of dimension
equal to that of Ĉ respectively.

Convex polytopes

• A side C is a nonempty maximal convex subset of ∂C.

• A convex polyhedron is a nonempty closed convex subset such that the set of
sides is locally finite in Hn.

• A polytope is a convex polyhedron with finitely many vertices and is the convex
hull of its vertices inHn.

• A polyhedron P in Hn is a generalized polytope if its closure is a polytope in
the affine patch. A generalized polytope may have ideal vertices.

Examples of Convex polytopes

• A compact simplex: convex hull of n+ 1 points in Hn.

• Start from the origin expand the infinitesimal euclidean polytope from an interior
point radially. That is a map sending x → sx for s > 0 and x is the coordinate
vector of an affine patch using in fact any vector coordinates. Thus for any
Euclidean polytope, we obtain a one parameter family of hyperbolic polytopes.

•
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Regular dodecahedron with all edge angles π/2

Fundamental domain of discrete group action

• Let Γ be a group acting on X .

• A fundamental domain for Γ is an open domain F so that {gF |g ∈ Γ} is a
collection of disjoint sets and their closures cover X .

• The fundamental domain is locally finite if the above closures are locally finite.

• The Dirichlet domain for u ∈ X is the intersection of all Hg(u) = {x ∈
X|d(x, u) < d(x, gu)}. Under nice conditions, D(u) is a convex fundamen-
tal polyhedron.

• The regular octahedron example of hyperbolic surface of genus 2 is an example
of a Dirichlet domain with the origin as u.

Tessellations

• A tessellation of X is a locally-finite collection of polyhedra covering X with
mutually disjoint interiors.

• Convex fundamental polyhedron provides examples of exact tessellations.

• If P is an exact convex fundamental polyhedron of a discrete group Γ of isome-
tries acting on X , then Γ is generated by Φ = {g ∈ Γ|P ∩ g(P ) is a side of P}.

Side pairings and Poincare fundamental polyhedron theorem

• Given a side S of an exact convex fundamental domain P , there is a unique
element gS such that S = P ∩ gS(P ). And S′ = g−1S (S) is also a side of P .

• gS′ = g−1S since S′ = P ∩ g−1S .
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• Γ-side-pairing is the set of gS for sides S of P .

• The equivalence class at P is generated by x ∼= x′ if there is a side-pairing
sending x to x′ for x, x′ ∈ P .

• [x] is finite and [x] = P ∩ Γ.

• Cycle relations (This should be cyclic):

– Let S1 = S for a given side S. Choose the side R of S1. Obtain S′1. Let
S2 be the side adjacent to S′1 so that gS1(S′1 ∩ S2) = R.

– Let Si+1 be the side of P adjacent to S′i such that gSi(S
′
i∩Si+1) = S′i−1∩

Si.

• Then

– There is an integer l such that Si+l = Si for each i.

–
∑l

i=1 θ(S
′
i, Si+1) = 2π/k.

– gS1gS2 ....gSl
has order k.

• Example: the octahedron in the hyperbolic plane giving genus 2-surface.

• The period is the number of sides coming into a given side R of codimension
two.
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• (a1, D), (a1′,K), (b1′,K), (b1, B), (a1′, B), (a1, C), (b1, C),

• (b1′, H), (a2, H), (a2′, E), (b2′, E), (b2, F ), (a2′, F ), (a2, G),

• (b2, G), (b2′, D), (a1, D), (a1′,K), ...

• Poincare fundamental polyhedron theorem is the converse. (See Kapovich P.
80–84):
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• Given a convex polyhedron P in X with side-pairing isometries satisfying the
above relations, then P is the fundamental domain for the discrete group gener-
ated by the side-pairing isometries.

• If every k equals 1, then the result of the face identification is a manifold. Oth-
erwise, we obtain orbifolds.

• The results are always complete.

• See Jeff Weeks http://www.geometrygames.org/CurvedSpaces/
index.html

Reflection groups

• A discrete reflection group is a discrete subgroup in G generated by reflections
in X about sides of a convex polyhedron. Then all the dihedral angles are sub-
multiples of π.

• Then the side pairing such that each face is glued to itself by a reflection satisfies
the Poincare fundamental theorem.

• The reflection group has presentation {Si : (SiSj)
kij} where kii = 1 and kij =

kji.

• These are examples of Coxeter groups. http://en.wikipedia.org/wiki/
Coxeter_group

The dodecahedral reflection group
One has a regular dodecahedron with all edge angles π/2 and hence it is a funda-

mental domain of a hyperbolic reflection group.

5

http://www.geometrygames.org/CurvedSpaces/index.html
http://www.geometrygames.org/CurvedSpaces/index.html
http://en.wikipedia.org/wiki/Coxeter_group
http://en.wikipedia.org/wiki/Coxeter_group


Triangle groups

• Find a triangle in X with angles submultiples of π.

• We divide into three cases π/a+ π/b+ π/c > 0,= 0, < 0.

• We can always find ones for any integers a, b, c.

– > 0 cases: (2, 2, c), (2, 3, 3), (2, 3, 4), (2, 3, 5) corresponding to dihedral
group of order 4c, a tetrahedral group, octahedral group, and dodecahedral
group.

– = 0 cases: (3, 3, 3), (2, 4, 4), (2, 3, 6).

– < 0 cases: Infinitely many hyperbolic tessellation groups.

• (2, 4, 8)-triangle group

• The ideal example http://egl.math.umd.edu/software.html

Higher-dimensional examples

• To construct a 3-dimensional examples, obtain a Euclidean regular polytopes
and expand it until we achieve that all angles are π/3. Regular octahedron with
angles π/2. These are ideal polytope examples.

• Higher-dimensional examples were analyzed by Vinberg and so on. For exam-
ple, there are no hyperbolic reflection group of compact type above dimension
≥ 30.

Crystallographic groups

• A crystallographic group is a discrete group of the rigid motions whose quotient
space is compact.

• Bieberbach theorem:

– A group is isomorphic to a crystallographic group if and only if it contains a
subgroup of finite index that is free abelian of rank equal to the dimension.

– The crystallographic groups are isomorphic as abstract groups if and only
if they are conjugate by an affine transformation.

Crystallographic groups

• There are only finitely many crystallographic group for each dimension since
once the abelian group action is determined, its symmetry group can only be
finitely many.

• 17 wallpaper groups for dimension 2. http://www.clarku.edu/~djoyce/
wallpaper/ and see Kali by Weeks http://www.geometrygames.org/Kali/index.html.

6

http://egl.math.umd.edu/software.html
http://www.clarku.edu/~djoyce/wallpaper/
http://www.clarku.edu/~djoyce/wallpaper/
h


7



8



• 230 space groups for dimension 3. Conway, Thurston, ... http://www.
emis.de/journals/BAG/vol.42/no.2/b42h2con.pdf

• Further informations: http://www.ornl.gov/sci/ortep/topology.
html
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