1 Discrete group actions

Discrete groups and discrete group actions

- A discrete group is a group with a discrete topology. (Usually a finitely generated subgroup of a Lie group.) Any group can be made into a discrete group.
- We have many notions of a group action $\Gamma \times X \rightarrow X$:
- The action is effective, is free
- The action is discrete if Γ is discrete in the group of homeomorphisms of X with compact open topology.
- The action has discrete orbits if every x has a neighborhood U so that the orbit points in U is finite.
- The action is wandering if every x has a neighborhood U so that the set of elements γ of Γ so that $\gamma(U) \cap U \neq \emptyset$ is finite.
- The action is properly discontinuous if for every compact subset K the set of γ such that $K \cap \gamma(K) \neq \emptyset$ is finite.
- discrete action < discrete orbit < wandering < properly discontinuous. This is a strict relation (Assuming X is a manifold.)
- The action is wandering and free and gives manifold quotient (possibly nonHausdorff)
- The action of Γ is free and properly discontinuous if and only if X / Γ is a manifold quotient (Hausdorff) and $X \rightarrow X / \Gamma$ is a covering map.
- Γ a discrete subgroup of a Lie group G acting on X with compact stabilizer. Then Γ acts properly discontinuously on X.
- A complete (X, G) manifold is one isomorphic to X / Γ.
- Suppose X is simply-connected. Given a manifold M the set of complete (X, G) structures on M up to (X, G)-isotopies are in one-to-one correspondence with the discrete representations of $\pi(M) \rightarrow G$ up to conjugations.

Examples

- $\mathbb{R}^{2}-\{O\}$ with the group generated by $g_{1}:(x, y) \rightarrow(2 x, y / 2)$. This is a free wondering action but not properly discontinuous.
- $\mathbb{R}^{2}-\{O\}$ with the group generated by $g:(x, y) \rightarrow(2 x, 2 y)$. (free, properly discontinuous.)
- The modular group $\operatorname{PSL}(2, \mathbb{Z})$ the group of Mobius transformations or isometries of hyperbolic plane given by $z \mapsto \frac{a z+b}{c z+d}$ for integer a, b, c, d and $a d-b c=$ 1. http://en.wikipedia.org/wiki/Modular_group This is not a free action.

Convex polyhedrons

- A convex subset of H^{n} is a subset such that for any pair of points, the geodesic segment between them is in the subset.
- Using the Beltrami-Klein model, the open unit ball B, i.e., the hyperbolic space, is a subset of an affine patch \mathbb{R}^{n}. In \mathbb{R}^{n}, one can talk about convex hulls.
- Some facts about convex sets:
- The dimension of a convex set is the least integer m such that C is contained in a unique m-plane \hat{C} in H^{n}.
- The interior C^{o}, the boundary ∂C are defined in \hat{C}.
- The closure of C is in \hat{C}. The interior and closures are convex. They are homeomorphic to an open ball and a contractible domain of dimension equal to that of \hat{C} respectively.

Convex polytopes

- A side C is a nonempty maximal convex subset of ∂C.
- A convex polyhedron is a nonempty closed convex subset such that the set of sides is locally finite in H^{n}.
- A polytope is a convex polyhedron with finitely many vertices and is the convex hull of its vertices in H^{n}.
- A polyhedron P in H^{n} is a generalized polytope if its closure is a polytope in the affine patch. A generalized polytope may have ideal vertices.

Examples of Convex polytopes

- A compact simplex: convex hull of $n+1$ points in H^{n}.
- Start from the origin expand the infinitesimal euclidean polytope from an interior point radially. That is a map sending $x \rightarrow s x$ for $s>0$ and x is the coordinate vector of an affine patch using in fact any vector coordinates. Thus for any Euclidean polytope, we obtain a one parameter family of hyperbolic polytopes.

Regular dodecahedron with all edge angles $\pi / 2$

Fundamental domain of discrete group action

- Let Γ be a group acting on X.
- A fundamental domain for Γ is an open domain F so that $\{g F \mid g \in \Gamma\}$ is a collection of disjoint sets and their closures cover X.
- The fundamental domain is locally finite if the above closures are locally finite.
- The Dirichlet domain for $u \in X$ is the intersection of all $H_{g}(u)=\{x \in$ $X \mid d(x, u)<d(x, g u)\}$. Under nice conditions, $D(u)$ is a convex fundamental polyhedron.
- The regular octahedron example of hyperbolic surface of genus 2 is an example of a Dirichlet domain with the origin as u.

Tessellations

- A tessellation of X is a locally-finite collection of polyhedra covering X with mutually disjoint interiors.
- Convex fundamental polyhedron provides examples of exact tessellations.
- If P is an exact convex fundamental polyhedron of a discrete group Γ of isometries acting on X, then Γ is generated by $\Phi=\{g \in \Gamma \mid P \cap g(P)$ is a side of $P\}$.

Side pairings and Poincare fundamental polyhedron theorem

- Given a side S of an exact convex fundamental domain P, there is a unique element g_{S} such that $S=P \cap g_{S}(P)$. And $S^{\prime}=g_{S}^{-1}(S)$ is also a side of P.
- $g_{S^{\prime}}=g_{S}^{-1}$ since $S^{\prime}=P \cap g_{S}^{-1}$.
- Γ-side-pairing is the set of g_{S} for sides S of P.
- The equivalence class at P is generated by $x \cong x^{\prime}$ if there is a side-pairing sending x to x^{\prime} for $x, x^{\prime} \in P$.
- $[x]$ is finite and $[x]=P \cap \Gamma$.
- Cycle relations (This should be cyclic):
- Let $S_{1}=S$ for a given side S. Choose the side R of S_{1}. Obtain S_{1}^{\prime}. Let S_{2} be the side adjacent to S_{1}^{\prime} so that $g_{S_{1}}\left(S_{1}^{\prime} \cap S_{2}\right)=R$.
- Let S_{i+1} be the side of P adjacent to S_{i}^{\prime} such that $g_{S_{i}}\left(S_{i}^{\prime} \cap S_{i+1}\right)=S_{i-1}^{\prime} \cap$ S_{i}.
- Then
- There is an integer l such that $S_{i+l}=S_{i}$ for each i.
- $\sum_{i=1}^{l} \theta\left(S_{i}^{\prime}, S_{i+1}\right)=2 \pi / k$.
- $g_{S_{1}} g_{S_{2}} \ldots g_{S_{l}}$ has order k.
- Example: the octahedron in the hyperbolic plane giving genus 2-surface.
- The period is the number of sides coming into a given side R of codimension two.

- $(a 1, D),\left(a 1^{\prime}, K\right),\left(b 1^{\prime}, K\right),(b 1, B),\left(a 1^{\prime}, B\right),(a 1, C),(b 1, C)$,
- $\left(b 1^{\prime}, H\right),(a 2, H),\left(a 2^{\prime}, E\right),\left(b 2^{\prime}, E\right),(b 2, F),\left(a 2^{\prime}, F\right),(a 2, G)$,
- $(b 2, G),\left(b 2^{\prime}, D\right),(a 1, D),\left(a 1^{\prime}, K\right), \ldots$
- Poincare fundamental polyhedron theorem is the converse. (See Kapovich P. 80-84):
- Given a convex polyhedron P in X with side-pairing isometries satisfying the above relations, then P is the fundamental domain for the discrete group generated by the side-pairing isometries.
- If every k equals 1 , then the result of the face identification is a manifold. Otherwise, we obtain orbifolds.
- The results are always complete.
- See Jeff Weeks http://www.geometrygames.org/CurvedSpaces/ index.html

Reflection groups

- A discrete reflection group is a discrete subgroup in G generated by reflections in X about sides of a convex polyhedron. Then all the dihedral angles are submultiples of π.
- Then the side pairing such that each face is glued to itself by a reflection satisfies the Poincare fundamental theorem.
- The reflection group has presentation $\left\{S_{i}:\left(S_{i} S_{j}\right)^{k_{i j}}\right\}$ where $k_{i i}=1$ and $k_{i j}=$ $k_{j i}$.
- These are examples of Coxeter groups.http://en.wikipedia.org/wik./ coxeter_group

The dodecahedral reflection group
One has a regular dodecahedron with all edge angles $\pi / 2$ and hence it is a fundamental domain of a hyperbolic reflection group.

Triangle groups

- Find a triangle in X with angles submultiples of π.
- We divide into three cases $\pi / a+\pi / b+\pi / c>0,=0,<0$.
- We can always find ones for any integers a, b, c.
- > 0 cases: $(2,2, c),(2,3,3),(2,3,4),(2,3,5)$ corresponding to dihedral group of order $4 c$, a tetrahedral group, octahedral group, and dodecahedral group.
- $=0$ cases: $(3,3,3),(2,4,4),(2,3,6)$.
$-<0$ cases: Infinitely many hyperbolic tessellation groups.
- $(2,4,8)$-triangle group
- The ideal examplehttp://egl.math.umd.edu/software.html

Higher-dimensional examples

- To construct a 3-dimensional examples, obtain a Euclidean regular polytopes and expand it until we achieve that all angles are $\pi / 3$. Regular octahedron with angles $\pi / 2$. These are ideal polytope examples.
- Higher-dimensional examples were analyzed by Vinberg and so on. For example, there are no hyperbolic reflection group of compact type above dimension ≥ 30.

Crystallographic groups

- A crystallographic group is a discrete group of the rigid motions whose quotient space is compact.
- Bieberbach theorem:
- A group is isomorphic to a crystallographic group if and only if it contains a subgroup of finite index that is free abelian of rank equal to the dimension.
- The crystallographic groups are isomorphic as abstract groups if and only if they are conjugate by an affine transformation.

Crystallographic groups

- There are only finitely many crystallographic group for each dimension since once the abelian group action is determined, its symmetry group can only be finitely many.
- 17 wallpaper groups for dimension 2. http://www.clarku.edu/~djoyce/ wallpaper//and see Kali by Weeks h tp://www.geometrygames.org/Kali/index.html.

- 230 space groups for dimension 3. Conway, Thurston, ... http://www. emis.de/journals/BAG/vol.42/no.2/b42h2con.pdf
- Further informations: http://www.ornl.gov/sci/ortep/topology. html

