1 Introduction

Outline

- Lie groups
- Lie algebras
- Lie group actions
- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions
- Hyperbolic geometry
* Lorentz group
* Geometry of hyperbolic space
* Beltrami-Klein model
* Conformal ball model
* The upper-half space model
- Discrete groups: examples (In the next handout.)

Some helpful references

- W. Thurston, Lecture notes...: A chapter on orbifolds, 1977. (This is the principal source)
- W. Thurston, Three-dimensional geometry and topolgy, PUP, 1997
- M. Berger, Geometry I, Springer
- J. Ratcliffe, Foundations of hyperbolic manifolds, Springer
- M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhauser.
- My talkhttp://math.kaist.ac.kr/~schoi/Titechtalk.pdf

2 Lie groups

2.1 Lie groups

Section 1: Lie groups

- A Lie group is a space of symmetries of some space. More formally, a Lie group is a manifold with a group operation $\circ: G \times G \rightarrow G$ that satisfies
- \circ is smooth.
- the inverse $\iota: G \rightarrow G$ is smooth also.
- Examples:
- The permutation group of a finite set form a 0-dimensional manifold, which is a finite set.
- \mathbb{R}, \mathbb{C} with + as an operation. (\mathbb{R}^{+}with + is merely a Lie semigroup.)
- $\mathbb{R}-\{O\}, \mathbb{C}-\{O\}$ with $*$ as an operation.
- $T^{n}=\mathbb{R}^{n} / \Gamma$ with + as an operation and O as the equivalence class of $(0,0, \ldots, 0)$. (The three are abelian ones.)
- $\quad-G L(n, \mathbb{R})=\left\{A \in M_{n}(\mathbb{R}) \mid \operatorname{det}(A) \neq 0\right\}$: the general linear group.
- $S L(n, \mathbb{R})=\{A \in G L(n, \mathbb{R}) \mid \operatorname{det}(A)=1\}$: the special linear group.
- $O(n, \mathbb{R})=\left\{A \in G L(n, \mathbb{R}) \mid A^{T} A=\mathrm{I}\right\}:$ the orthogonal group.
- $\operatorname{Isom}\left(\mathbb{R}^{n}\right)=\left\{T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid T(x)=A x+b\right.$ for $A \in O(n-1, \mathbb{R}), b \in$ $\left.\mathbb{R}^{n}\right\}$.
- Proofs: One can express the operations as polynomials or rational functions.
- Products of Lie groups are Lie groups.
- A covering space of a connected Lie group form a Lie group.
- A Lie subgroup of a Lie group is a subgroup that is a Lie group with the induced operation and is a submanifold.
- $O(n) \subset S L(n, \mathbb{R}) \subset G L(n, \mathbb{R})$.
$-O(n-1) \subset I \operatorname{som}\left(\mathbb{R}^{n}\right)$.
- A homomorphism $f: G \rightarrow H$ of two Lie groups G, H is a smooth map that is a group homomorphism. The above inclusion maps are homomorphisms.
- The kernel of a homomorphism is a closed normal subgroup. Hence it is a Lie subgroup also.
- If G, H are simply connected, f induces a unique homomorphism of Lie algebra of G to that of H which is $D f$ and conversely.

2.2 Lie algebras

Lie algebras

- A Lie algebra is a vector space V with an operation [,]:V×V $\rightarrow V$ that satisfies:
- $[x, x]=0$ for $x \in L$. (Thus, $[x, y]=-[y, x]$.
- Jacobi identity $[x,[y, z]]+[z,[x, y]]+[y,[z, x]]=0$.
- Examples:
- Sending $V \times V$ to O is a Lie algebra (abelian ones.)
- Direct sums of Lie algebras is a Lie algebra.
- A subalgebra is a subspace closed under [,].
- An ideal K of L is a subalgebra such that $[x, y] \in K$ for $x \in K$ and $y \in L$.
- A homomorphism of a Lie algebra is a linear map preserving [,].
- The kernel of a homomorphism is an ideal.

Lie groups and Lie algebras

- Let G be a Lie group. A left translation $L_{g}: G \rightarrow G$ is given by $x \mapsto g(x)$.
- A left-invariant vector field of G is a vector field so that the left translation leaves it invariant, i.e., $d L_{g}(X(h))=X(g h)$ for $g, h \in G$.
- The set of left-invariant vector fields form a vector space under addition and scalar multiplication and is vector-space isomorphic to the tangent space at I. Moreover, [,] is defined as vector-fields brackets. This forms a Lie algebra.
- The Lie algebra of G is the the Lie algebra of the left-invariant vector fields on G.
- Example: The Lie algebra of $G L(n, \mathbb{R})$ is isomorphic to $g l(n, \mathbb{R})$:
- For X in the Lie algebra of $G L(n, \mathbb{R})$, we can define a flow generated by X and a path $X(t)$ along it where $X(0)=\mathrm{I}$.
- We obtain an element of $g l(n, \mathbb{R})$ by taking the derivative of $X(t)$ at 0 seen as a matrix.
- The brackets are preserved.
- A Lie algebra of an abelian Lie group is abelian.

Lie algebras

- Given X in the Lie algebra \mathfrak{g} of G, there is an integral curve $X(t)$ through I. We define the exponential map exp : $\mathfrak{g} \rightarrow G$ by sending X to $X(1)$.
- The exponential map is defined everywhere, smooth, and is a diffeomorphism near O.
- The matrix exponential defined by

$$
A \mapsto e^{A}=\sum_{i=0}^{\infty} \frac{1}{k!} A^{k}
$$

is the exponential map $g l(n, \mathbb{R}) \rightarrow G L(n, \mathbb{R})$.

Lie group actions

- A Lie group G-action on a smooth manifold X is given by a smooth map $G \times$ $X \rightarrow X$ so that $(g h)(x)=(g(h(x))$ and $I(x)=x$. (left action)
- A right action satisfies $(x)(g h)=((x) g) h$.
- Each Lie algebra element correspond to a vector field on X by using a vector field.
- The action is faithful if $g(x)=x$ for all x, then g is the identity element of G.
- The action is transitive if given two points $x, y \in X$, there is $g \in G$ such that $g(x)=y$.
- Example:
- $G L(n, \mathbb{R})$ acting on \mathbb{R}^{n}.
- $P G L(n+1, \mathbb{R})$ acting on $\mathbb{R} P^{n}$.

3 Geometries

3.1 Euclidean geometry

Euclidean geometry

- The Euclidean space is \mathbb{R}^{n} and the group $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$ of rigid motions is generated by $O(n)$ and T_{n} the translation group. In fact, we have an inner-product giving us a metric.
- A system of linear equations gives us a subspace (affine or linear)
- This gives us the model for Euclidean axioms....

3.2 Spherical geometry

Spherical geometry

- Let us consider the unit sphere \mathbf{S}^{n} in the Euclidean space \mathbb{R}^{n+1}.
- Many great sphere exists and they are subspaces... (They are given by homogeneous system of linear equations in \mathbb{R}^{n+1}.)
- The lines are replaced by great circles and lengths and angles are also replaced.
- The transformation group is $O(n+1)$.

Spherical trigonometry

- Many spherical triangle theorems exist... http://mathworld.wolfram. com/SphericalTrigonometry.html
- Such a triangle is classified by their angles $\theta_{0}, \theta_{1}, \theta_{2}$ satisfying

$$
\begin{align*}
\theta_{0}+\theta_{1}+\theta_{2} & >\pi \tag{1}\\
\theta_{i} & <\theta_{i+1}+\theta_{i+2}-\pi, i \in \mathbb{Z}_{3} \tag{2}
\end{align*}
$$

3.3 Affine geometry

Affine geometry

- A vector space \mathbb{R}^{n} becomes an affine space by forgetting the origin.
- An affine transformation of \mathbb{R}^{n} is one given by $x \mapsto A x+b$ for $A \in G L(n, \mathbb{R})$ and $b \in \mathbb{R}^{n}$. This notion is more general than that of rigid motions.
- The Euclidean space \mathbb{R}^{n} with the group $\operatorname{Aff}\left(\mathbb{R}^{n}\right)=G L(n, \mathbb{R}) \cdot \mathbb{R}^{n}$ of affine transformations form the affine geometry.
- Of course, angles and lengths do not make sense. But the notion of lines exists.
- The set of three points in a line has an invariant based on ratios of lengths.

3.4 Projective geometry

Projective geometry

- Projective geometry was first considered from fine art.
- Desargues (and Kepler) first considered points at infinity.
- Poncelet first added infinite points to the euclidean plane.
- Projective transformations are compositions of perspectivities. Often, they send finite points to infinite points and vice versa. (i.e., two planes that are not parallel).
- The added points are same as ordinary points up to projective transformations.
- Lines have well defined infinite points and are really circles topologically.
- Some notions lose meanings. However, many interesting theorems can be proved. Duality of theorems plays an interesting role.
- See for an interactive course: http://www.math.poly.edu/courses/ projective_geometry/
- andhttp://demonstrations.wolfram.com/TheoremeDePappusFrench/,
http://demonstrations.wolfram.com/TheoremeDePascalFrench/, http://www.math.umd.edu/~wphooper/pappus9/pappus.html, http://www.math.umd.edu/~wphooper/pappus/
- Formal definition with topology is given by Felix Klein using homogeneous coordinates.
- The projective space $\mathbb{R} P^{n}$ is $\mathbb{R}^{n+1}-\{O\} / \sim$ where \sim is given by $v \sim w$ if $v=s w$ for $s \in \mathbb{R}$.
- Each point is given a homogeneous coordinates: $[v]=\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
- The projective transformation group $\operatorname{PGL}(n+1, \mathbb{R})=G L(n+1, \mathbb{R}) / \sim$ acts on $\mathbb{R} P^{n}$ by each element sending each ray to a ray using the corresponding general linear maps.
- Here, each element of g of $\operatorname{PGL}(n+1, \mathbb{R})$ acts by $[v] \mapsto\left[g^{\prime}(v)\right]$ for a representative g^{\prime} in $G L(n+1, \mathbb{R})$ of g. Also any coordinate change can be viewed this way.
- The affine geometry can be "imbedded": \mathbb{R}^{n} can be identified with the set of points in $\mathbb{R} P^{n}$ where x_{0} is not zero, i.e., the set of points $\left\{\left[1, x_{1}, x_{2}, \ldots, x_{n}\right]\right\}$. This is called an affine patch. The subgroup of $\operatorname{PGL}(n+1, \mathbb{R})$ fixing \mathbb{R}^{n} is precisely $\operatorname{Aff}\left(\mathbb{R}^{n}\right)=G L(n, \mathbb{R}) \cdot \mathbb{R}^{n}$.
- The subspace of points $\left\{\left[0, x_{1}, x_{2}, \ldots, x_{n}\right]\right\}$ is the complement homeomorphic to $\mathbb{R} P^{n-1}$. This is the set of infinities, i.e., directions in $\mathbb{R} P^{n}$.
- From affine geometry, one can construct a unique projective geometry and conversely using this idea. (See Berger for the complete abstract approach.)
- A subspace is the set of points whose representative vectors satisfy a homogeneous system of linear equations. The subspace in \mathbb{R}^{n+1} corresponding to a projective subspace in $\mathbb{R} P^{n}$ in a one-to-one manner while the dimension drops by 1 .
- The independence of points are defined. The dimension of a subspace is the maximal number of independent set minus 1 .
- A hyperspace is given by a single linear equation. The complement of a hyperspace can be identified with an affine space.
- A line is the set of points $[v]$ where $v=s v_{1}+t v_{2}$ for $s, t \in \mathbb{R}$ for the independent pair v_{1}, v_{2}. Acutally a line is $\mathbb{R} P^{1}$ or a line \mathbb{R}^{1} with a unique infinity.
- Cross ratios of four points on a line (x, y, z, t). There is a unique coordinate system so that $x=[1,0], y=[0,1], z=[1,1], t=[b, 1]$. Thus $b=b(x, y, z, t)$ is the cross-ratio.
- If the four points are on \mathbb{R}^{1}, the cross ratio is given as

$$
(x, y ; z, t)=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}
$$

if we can write

$$
x=\left[1, z_{1}\right], y=\left[1, z_{2}\right], z=\left[1, z_{3}\right], t=\left[1, z_{4}\right]
$$

- One can define cross ratios of four hyperplanes meeting in a projective subspace of codimension 2.
- For us $n=2$ is important. Here we have a familiar projective plane as topological type of $\mathbb{R} P^{2}$, which is a Mobius band with a disk filled in at the boundary. http://www.geom.uiuc.edu/zoo/toptype/pplane/cap/

3.5 Conformal geometry

Conformal geometry

- Reflections of \mathbb{R}^{n}. The hyperplane $P(a, t)$ given by $a \cot x=b$. Then $\rho(x)=$ $x+2(t-a \cdot x) a$.
- Inversions. The hypersphere $S(a, r)$ given by $|x-a|=r$. Then $\sigma(x)=a+$ $\left(\frac{r}{|x-a|}\right)^{2}(x-a)$.
- We can compactify \mathbb{R}^{n} to $\hat{\mathbb{R}}^{n}=\mathbf{S}^{n}$ by adding infinity. This can be accomplished by a stereographic projection from the unit sphere \mathbf{S}^{n} in \mathbb{R}^{n+1} from the northpole $(0,0, \ldots, 1)$. Then these reflections and inversions induce conformal homeomorphisms.
- The group of transformations generated by these homeomorphisms is called the Mobius transformation group.
- They form the conformal transformation group of $\hat{\mathbb{R}}^{n}=\mathbf{S}^{n}$.
- For $n=2, \hat{\mathbb{R}}^{2}$ is the Riemann sphere $\hat{\mathbb{C}}$ and a Mobius transformation is a either a fractional linear transformation of form

$$
z \mapsto \frac{a z+b}{c z+d}, a d-b c \neq 0, a, b, c, d \in \mathbb{C}
$$

or a fractional linear transformation pre-composed with the conjugation map $z \mapsto \bar{z}$.

- In higher-dimensions, a description as a sphere of null-lines and the special Lorentizian group exists.

Poincare extensions

- We can identify E^{n-1} with $E^{n-1} \times\{O\}$ in E^{n}.
- We can extend each Mobius transformation of \hat{E}^{n-1} to \hat{E}^{n} that preserves the upper half space U : We extend reflections and inversions in the obvious way.
- The Mobius transformation of \hat{E}^{n} that preserves the open upper half spaces are exactly the extensions of the Mobius transformations of \hat{E}^{n-1}.
- $M\left(U^{n}\right)=M\left(\hat{E}^{n-1}\right)$.
- We can put the pair $\left(U^{n}, \hat{E}^{n-1}\right)$ to $\left(B^{n}, \mathbf{S}^{n-1}\right)$ by a Mobius transformation.
- Thus, $M\left(U^{n}\right)$ is isomorphic to $M\left(\mathbf{S}^{n-1}\right)$ for the boundary sphere.

3.6 Hyperbolic geometry

Lorentzian geometry

- A hyperbolic space H^{n} is defined as a complex Riemannian manifold of constant curvature equal to -1 .
- Such a space cannot be realized as a submanifold in a Euclidean space of even very large dimensions.
- But it is realized as a "sphere" in a Lorentzian space.
- A Lorentzian space is $\mathbb{R}^{1, n}$ with an inner product

$$
x \cdot y=-x_{0} y_{0}+x_{1} y_{1}+\cdots+x_{n-1} y_{n-1}+x_{n} y_{n} .
$$

- A Lorentzian norm $\|x\|=(x \cdot y)^{1 / 2}$, a positive, zero, or positive imaginary number.
- One can define Lorentzian angles.
- The null vectors form a light cone divide into positive, negative cone, and 0 .
- Space like vectors and time like vectors and null vectors.
- Ordinary notions such as orthogonality, orthonormality,...

Lorentz group

- A Lorentzian transformation is a linear map preserving the inner-product.
- For J the diagonal matrix with entries $-1,1, \ldots, 1, A^{t} J A=J$ iff A is a Lorentzian matrix.
- A Lorentzian transformation sends time-like vectors to time-like vectors. It is either positive or negative.
- The set of Lorentzian transformations form a Lie group $O(1, n)$.
- The set of positive Lorentzian transformations form a Lie subgroup $P O(1, n)$.

Hyperbolic space

- Given two positive time-like vectors, there is a time-like angle

$$
x \cdot y=\|x\|\|y\| \cosh \eta(x, y)
$$

- A hyperbolic space is an upper component of the submanifold defined by $\|x\|^{2}=$ -1 or $x_{0}^{2}=1+x_{1}^{2}+\cdots+x_{n}^{2}$. This is a subset of a positive cone.
- Topologically, it is homeomorphic to \mathbb{R}^{n}. Minkowsky model
- One induces a metric from the Lorentzian space which is positive definite.
- This gives us a Riemannian metric of constant curvature -1 . (The computation is very similar to the computations for the sphere.)
- $P O(1, n)$ is the isometry group of H^{n} which is homogeneous and directionless.
- A hyperbolic line is an intersection of H^{n} with a time-like two-dimensional vector subspace.
- The hyperbolic sine law, The first law of cosines, The second law of cosines...
- One can assign any interior angles to a hyperbolic triangle as long as the sum is less than π.
- One can assign any lengths to a hyperbolic triangle.
- The triangle formula can be generalized to formula for quadrilateral, pentagon, hexagon.
- Basic philosophy here is that one can push the vertex outside and the angle becomes distances between lines. (See Ratcliffe, http://online.redwoods. cc.ca.us/instruct/darnold/staffdev/Assignments/sinandcos. pdf)
- hyperbolic law of sines:

$$
\sin A / \sinh a=\sin B / \sinh b=\sin C / \sinh c
$$

- hyperbolic law of cosines:

$$
\begin{gathered}
\cosh c=\cosh a \cosh b-\sinh a \sinh b \cos C \\
\cosh c=(\cosh A \cosh B+\cos C) / \sinh A \sinh B
\end{gathered}
$$

Beltrami-Klein models of hyperbolic geometry

- Beltrami-Klein model is directly obtained from the hyperboloid model.
- $d_{k}(P, Q)=1 / 2 \log |(A B, P Q)|$ where A, P, Q, B are on a segment with endpoints A, B and

$$
(A B, P Q)=\left|\frac{A P}{B P} \frac{B Q}{A Q}\right|
$$

- There is an imbedding from H^{n} onto an open ball B in the affine patch \mathbb{R}^{n} of $\mathbb{R} P^{n}$. This is standard radial projection $\mathbb{R}^{n+1}-\{O\} \rightarrow \mathbb{R} P^{n}$.
- B can be described as a ball of radius 1 with center at O.
- The isometry group $P O(1, n)$ also maps injectively to a subgroup of $P G L(n+$ $1, \mathbb{R}$) that preserves B.
- The projective automorphism group of B is precisely this group.
- The metric is induced on B. This is precisely the metric given by the log of the cross ratio. Note that $\lambda(t)=(\cosh t, \sinh t, 0, \ldots, 0)$ define a unit speed geodesic in H^{n}. Under the Riemannian metric, we have $d\left(e_{1},(\cosh t, \sinh t, 0, \ldots, 0)\right)=t$ for t positive.
- Under d_{k}, we obtain the same. Since any geodesic segment of same length is congruent under the isometry, we see that the two metrics coincide. BetramiKlein model
- Beltrami-Klein model is nice because you can see outside. The outside is the anti-de Sitter spacehttp://en.wikipedia.org/wiki/Anti_de_Sitt.er_ space
- Also, we can treat points outside and inside together.
- Each line (hyperplane) in the model is dual to a point outside. (i.e., orthogonal by the Lorentzian inner-product) A point in the model is dual to a hyperplane outside. Infact any subspace of dimenstion i is dual to a subspace of dimension $n-i-1$ by orthogonality.
- For $n=2$, the duality of a line is given by taking tangent lines to the disk at the endpoints and taking the intersection.
- The distance between two hyperplanes can be obtained by two dual points. The two dual points span an orthogonal plane to the both hyperperplanes and hence provide a shortest geodesic.

The conformal ball model (Poincare ball model)

- The stereo-graphic projection H^{n} to the plane P given by $x_{0}=0$ from the point $(-1,0, \ldots, 0)$.
- The formula for the map $\kappa: H^{n} \rightarrow P$ is given by

$$
\kappa(x)=\left(\frac{y_{1}}{1+y_{0}}, \ldots, \frac{y_{n}}{1+y_{0}}\right)
$$

where the image lies in an open ball of radius 1 with center O in P. The inverse is given by

$$
\zeta(x)=\left(\frac{1+|x|^{2}}{1-|x|^{2}}, \frac{2 x_{1}}{1-|x|^{2}}, \ldots, \frac{2 x_{n}}{1-|x|^{2}},\right) .
$$

- Since this is a diffeomorphism, B has an induced Riemannian metric of constant curvature -1 .
- We show

$$
\cosh d_{B}(x, y)=1+\frac{2|x-y|^{2}}{\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)}
$$

and inversions acting on B preserves the metric. Thus, the group of Mobius transformations of B preserve metric.

- The corresponding Riemannian metric is $g_{i j}=2 \delta_{i j} /\left(1-|x|^{2}\right)^{2}$.
- It follows that the group of Mobius transformations acting on B is precisely the isometry group of B. Thus, $\operatorname{Isom}(B)=M\left(\mathbf{S}^{n-1}\right)$.
- Geodesics would be lines through O and arcs on circles perpendicular to the sphere of radius 1 .

The upper-half space model.

- Now we put B to U by a Mobius transformation. This gives a Riemannian metric constant curvature -1 .
- We have by computations $\cosh d_{U}(x, y)=1+|x-y|^{2} / 2 x_{n} y_{n}$ and the Riemannian metric is given by $g_{i j}=\delta_{i j} / x_{n}^{2}$. Then $I(U)=M(U)=M\left(E^{n-1}\right)$.
- Geodesics would be arcs on lines or circles perpendicular to E^{n-1}.
- Since \hat{E}^{1} is a circle and \hat{E}^{2} is the complex sphere, we obtain $\operatorname{Isom}^{+}\left(B^{2}\right)=$ $\operatorname{PSL}(2, \mathbb{R})$ and $\operatorname{Isom}^{+}\left(B^{3}\right)=\operatorname{PSL}(2, \mathbb{C})$.
- Orientation-preserving isometries of hyperbolic plane can have at most one fixed point. elliptic, hyperbolic, parabolic.

$$
z \mapsto e^{i \theta}, z \mapsto a z, a \neq 1, a \in \mathbb{R}^{+}, z \mapsto z+1
$$

- Isometries of a hyperbolic space: loxodromic, hyperbolic, elliptic, parabolic.
- Up to conjugations, they are represented as Mobius transformations which has forms
- $z \mapsto \alpha z, \operatorname{Im} \alpha \neq 0,|\alpha| \neq 1$.
$-z \mapsto a z, a \neq 1, a \in \mathbb{R}^{+}$.
- $z \mapsto e^{i \theta} z, \theta \neq 0$.
$-z \mapsto z+1$.

