
1 Introduction
Outline

• Lie groups

– Lie algebras

– Lie group actions

• Geometries

– Euclidean geometry

– Spherical geometry

– Affine geometry

– Projective geometry

– Conformal geometry: Poincare extensions

– Hyperbolic geometry

∗ Lorentz group
∗ Geometry of hyperbolic space
∗ Beltrami-Klein model
∗ Conformal ball model
∗ The upper-half space model

– Discrete groups: examples (In the next handout.)

Some helpful references

• W. Thurston, Lecture notes...: A chapter on orbifolds, 1977. (This is the principal
source)

• W. Thurston, Three-dimensional geometry and topolgy, PUP, 1997

• M. Berger, Geometry I, Springer

• J. Ratcliffe, Foundations of hyperbolic manifolds, Springer

• M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhauser.

• My talk http://math.kaist.ac.kr/~schoi/Titechtalk.pdf

http://math.kaist.ac.kr/~schoi/Titechtalk.pdf


2 Lie groups

2.1 Lie groups
Section 1: Lie groups

• A Lie group is a space of symmetries of some space. More formally, a Lie group
is a manifold with a group operation ◦ : G×G→ G that satisfies

– ◦ is smooth.

– the inverse ι : G→ G is smooth also.

• Examples:

– The permutation group of a finite set form a 0-dimensional manifold, which
is a finite set.

– R,C with + as an operation. (R+ with + is merely a Lie semigroup.)

– R− {O},C− {O} with ∗ as an operation.

– Tn = Rn/Γ with + as an operation and O as the equivalence class of
(0, 0, ..., 0). (The three are abelian ones.)

• – GL(n,R) = {A ∈Mn(R)|det(A) 6= 0}: the general linear group.

– SL(n,R) = {A ∈ GL(n,R)|det(A) = 1}: the special linear group.

– O(n,R) = {A ∈ GL(n,R)|ATA = I}: the orthogonal group.

– Isom(Rn) = {T : Rn → Rn|T (x) = Ax + b for A ∈ O(n − 1,R), b ∈
Rn}.

– Proofs: One can express the operations as polynomials or rational func-
tions.

• Products of Lie groups are Lie groups.

• A covering space of a connected Lie group form a Lie group.

• A Lie subgroup of a Lie group is a subgroup that is a Lie group with the induced
operation and is a submanifold.

– O(n) ⊂ SL(n,R) ⊂ GL(n,R).

– O(n− 1) ⊂ Isom(Rn).

• A homomorphism f : G→ H of two Lie groups G,H is a smooth map that is a
group homomorphism. The above inclusion maps are homomorphisms.

• The kernel of a homomorphism is a closed normal subgroup. Hence it is a Lie
subgroup also.

• IfG,H are simply connected, f induces a unique homomorphism of Lie algebra
of G to that of H which is Df and conversely.
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2.2 Lie algebras
Lie algebras

• A Lie algebra is a vector space V with an operation [, ] : V × V → V that
satisfies:

– [x, x] = 0 for x ∈ L. (Thus, [x, y] = −[y, x].)

– Jacobi identity [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

• Examples:

– Sending V × V to O is a Lie algebra (abelian ones.)

– Direct sums of Lie algebras is a Lie algebra.

– A subalgebra is a subspace closed under [, ].

– An ideal K of L is a subalgebra such that [x, y] ∈ K for x ∈ K and y ∈ L.

• A homomorphism of a Lie algebra is a linear map preserving [, ].

• The kernel of a homomorphism is an ideal.

Lie groups and Lie algebras

• Let G be a Lie group. A left translation Lg : G→ G is given by x 7→ g(x).

• A left-invariant vector field ofG is a vector field so that the left translation leaves
it invariant, i.e., dLg(X(h)) = X(gh) for g, h ∈ G.

• The set of left-invariant vector fields form a vector space under addition and
scalar multiplication and is vector-space isomorphic to the tangent space at I.
Moreover, [, ] is defined as vector-fields brackets. This forms a Lie algebra.

• The Lie algebra of G is the the Lie algebra of the left-invariant vector fields on
G.

• Example: The Lie algebra of GL(n,R) is isomorphic to gl(n,R):

– For X in the Lie algebra of GL(n,R), we can define a flow generated by
X and a path X(t) along it where X(0) = I.

– We obtain an element of gl(n,R) by taking the derivative of X(t) at 0 seen
as a matrix.

– The brackets are preserved.

– A Lie algebra of an abelian Lie group is abelian.
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Lie algebras

• Given X in the Lie algebra g of G, there is an integral curve X(t) through I. We
define the exponential map exp : g→ G by sending X to X(1).

• The exponential map is defined everywhere, smooth, and is a diffeomorphism
near O.

• The matrix exponential defined by

A 7→ eA =
∞∑
i=0

1
k!
Ak

is the exponential map gl(n,R)→ GL(n,R).

Lie group actions

• A Lie group G-action on a smooth manifold X is given by a smooth map G ×
X → X so that (gh)(x) = (g(h(x)) and I(x) = x. (left action)

• A right action satisfies (x)(gh) = ((x)g)h.

• Each Lie algebra element correspond to a vector field on X by using a vector
field.

• The action is faithful if g(x) = x for all x, then g is the identity element of G.

• The action is transitive if given two points x, y ∈ X , there is g ∈ G such that
g(x) = y.

• Example:

– GL(n,R) acting on Rn.

– PGL(n+ 1,R) acting on RPn.

3 Geometries

3.1 Euclidean geometry
Euclidean geometry

• The Euclidean space is Rn and the group Isom(Rn) of rigid motions is gener-
ated by O(n) and Tn the translation group. In fact, we have an inner-product
giving us a metric.

• A system of linear equations gives us a subspace (affine or linear)

• This gives us the model for Euclidean axioms....
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3.2 Spherical geometry
Spherical geometry

• Let us consider the unit sphere Sn in the Euclidean space Rn+1.

• Many great sphere exists and they are subspaces... (They are given by homoge-
neous system of linear equations in Rn+1.)

• The lines are replaced by great circles and lengths and angles are also replaced.

• The transformation group is O(n+ 1).

Spherical trigonometry

• Many spherical triangle theorems exist... http://mathworld.wolfram.
com/SphericalTrigonometry.html

• Such a triangle is classified by their angles θ0, θ1, θ2 satisfying

θ0 + θ1 + θ2 > π (1)
θi < θi+1 + θi+2 − π, i ∈ Z3. (2)

•
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•

3.3 Affine geometry
Affine geometry

• A vector space Rn becomes an affine space by forgetting the origin.

• An affine transformation of Rn is one given by x 7→ Ax+ b for A ∈ GL(n,R)
and b ∈ Rn. This notion is more general than that of rigid motions.

• The Euclidean space Rn with the group Aff(Rn) = GL(n,R) · Rn of affine
transformations form the affine geometry.

• Of course, angles and lengths do not make sense. But the notion of lines exists.

• The set of three points in a line has an invariant based on ratios of lengths.

3.4 Projective geometry
Projective geometry

• Projective geometry was first considered from fine art.

• Desargues (and Kepler) first considered points at infinity.

• Poncelet first added infinite points to the euclidean plane.

• Projective transformations are compositions of perspectivities. Often, they send
finite points to infinite points and vice versa. (i.e., two planes that are not paral-
lel).
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• The added points are same as ordinary points up to projective transformations.

• Lines have well defined infinite points and are really circles topologically.

• Some notions lose meanings. However, many interesting theorems can be proved.
Duality of theorems plays an interesting role.

• See for an interactive course: http://www.math.poly.edu/courses/
projective_geometry/

• and http://demonstrations.wolfram.com/TheoremeDePappusFrench/,
http://demonstrations.wolfram.com/TheoremeDePascalFrench/,
http://www.math.umd.edu/~wphooper/pappus9/pappus.html,
http://www.math.umd.edu/~wphooper/pappus/

• Formal definition with topology is given by Felix Klein using homogeneous co-
ordinates.

• The projective space RPn is Rn+1 − {O}/ ∼ where ∼ is given by v ∼ w if
v = sw for s ∈ R.

• Each point is given a homogeneous coordinates: [v] = [x0, x1, ..., xn].

• The projective transformation group PGL(n+1,R) = GL(n+1,R)/ ∼ acts on
RPn by each element sending each ray to a ray using the corresponding general
linear maps.

• Here, each element of g of PGL(n+ 1,R) acts by [v] 7→ [g′(v)] for a represen-
tative g′ in GL(n + 1,R) of g. Also any coordinate change can be viewed this
way.

• The affine geometry can be "imbedded": Rn can be identified with the set of
points in RPn where x0 is not zero, i.e., the set of points {[1, x1, x2, ..., xn]}.
This is called an affine patch. The subgroup of PGL(n + 1,R) fixing Rn is
precisely Aff(Rn) = GL(n,R) · Rn.

• The subspace of points {[0, x1, x2, ..., xn]} is the complement homeomorphic to
RPn−1. This is the set of infinities, i.e., directions in RPn.

• From affine geometry, one can construct a unique projective geometry and con-
versely using this idea. (See Berger for the complete abstract approach.)
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• A subspace is the set of points whose representative vectors satisfy a homoge-
neous system of linear equations. The subspace in Rn+1 corresponding to a
projective subspace in RPn in a one-to-one manner while the dimension drops
by 1.

• The independence of points are defined. The dimension of a subspace is the
maximal number of independent set minus 1.

• A hyperspace is given by a single linear equation. The complement of a hyper-
space can be identified with an affine space.

• A line is the set of points [v] where v = sv1+tv2 for s, t ∈ R for the independent
pair v1, v2. Acutally a line is RP 1 or a line R1 with a unique infinity.

• Cross ratios of four points on a line (x, y, z, t). There is a unique coordinate
system so that x = [1, 0], y = [0, 1], z = [1, 1], t = [b, 1]. Thus b = b(x, y, z, t)
is the cross-ratio.

• If the four points are on R1, the cross ratio is given as

(x, y; z, t) =
(z1 − z3)(z2 − z4)
(z1 − z4)(z2 − z3)

if we can write

x = [1, z1], y = [1, z2], z = [1, z3], t = [1, z4]

• One can define cross ratios of four hyperplanes meeting in a projective subspace
of codimension 2.

• For us n = 2 is important. Here we have a familiar projective plane as topolog-
ical type of RP 2, which is a Mobius band with a disk filled in at the boundary.
http://www.geom.uiuc.edu/zoo/toptype/pplane/cap/

3.5 Conformal geometry
Conformal geometry

• Reflections of Rn. The hyperplane P (a, t) given by a cotx = b. Then ρ(x) =
x+ 2(t− a · x)a.

• Inversions. The hypersphere S(a, r) given by |x − a| = r. Then σ(x) = a +
( r
|x−a| )

2(x− a).
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• We can compactify Rn to R̂n = Sn by adding infinity. This can be accom-
plished by a stereographic projection from the unit sphere Sn in Rn+1 from the
northpole (0, 0, ..., 1). Then these reflections and inversions induce conformal
homeomorphisms.

• The group of transformations generated by these homeomorphisms is called the
Mobius transformation group.

• They form the conformal transformation group of R̂n = Sn.

• For n = 2, R̂2 is the Riemann sphere Ĉ and a Mobius transformation is a either
a fractional linear transformation of form

z 7→ az + b

cz + d
, ad− bc 6= 0, a, b, c, d ∈ C

or a fractional linear transformation pre-composed with the conjugation map
z 7→ z̄.

• In higher-dimensions, a description as a sphere of null-lines and the special
Lorentizian group exists.

Poincare extensions

• We can identify En−1 with En−1 × {O} in En.

• We can extend each Mobius transformation of Ên−1 to Ên that preserves the
upper half space U : We extend reflections and inversions in the obvious way.

• The Mobius transformation of Ên that preserves the open upper half spaces are
exactly the extensions of the Mobius transformations of Ên−1.

• M(Un) = M(Ên−1).

• We can put the pair (Un, Ên−1) to (Bn,Sn−1) by a Mobius transformation.

• Thus, M(Un) is isomorphic to M(Sn−1) for the boundary sphere.

3.6 Hyperbolic geometry
Lorentzian geometry

• A hyperbolic spaceHn is defined as a complex Riemannian manifold of constant
curvature equal to −1.

• Such a space cannot be realized as a submanifold in a Euclidean space of even
very large dimensions.

• But it is realized as a "sphere" in a Lorentzian space.
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• A Lorentzian space is R1,n with an inner product

x · y = −x0y0 + x1y1 + · · ·+ xn−1yn−1 + xnyn.

• A Lorentzian norm ||x|| = (x · y)1/2, a positive, zero, or positive imaginary
number.

• One can define Lorentzian angles.

• The null vectors form a light cone divide into positive, negative cone, and 0.

• Space like vectors and time like vectors and null vectors.

• Ordinary notions such as orthogonality, orthonormality,...

Lorentz group

• A Lorentzian transformation is a linear map preserving the inner-product.

• For J the diagonal matrix with entries−1, 1, ..., 1,AtJA = J iffA is a Lorentzian
matrix.

• A Lorentzian transformation sends time-like vectors to time-like vectors. It is
either positive or negative.

• The set of Lorentzian transformations form a Lie group O(1, n).

• The set of positive Lorentzian transformations form a Lie subgroup PO(1, n).

Hyperbolic space

• Given two positive time-like vectors, there is a time-like angle

x · y = ||x||||y||coshη(x, y)

• A hyperbolic space is an upper component of the submanifold defined by ||x||2 =
−1 or x2

0 = 1 + x2
1 + · · ·+ x2

n. This is a subset of a positive cone.

• Topologically, it is homeomorphic to Rn. Minkowsky model

• One induces a metric from the Lorentzian space which is positive definite.

• This gives us a Riemannian metric of constant curvature −1. (The computation
is very similar to the computations for the sphere.)

• PO(1, n) is the isometry group of Hn which is homogeneous and directionless.

• A hyperbolic line is an intersection of Hn with a time-like two-dimensional
vector subspace.

• The hyperbolic sine law, The first law of cosines, The second law of cosines...
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• One can assign any interior angles to a hyperbolic triangle as long as the sum is
less than π.

• One can assign any lengths to a hyperbolic triangle.

• The triangle formula can be generalized to formula for quadrilateral, pentagon,
hexagon.

• Basic philosophy here is that one can push the vertex outside and the angle be-
comes distances between lines. (See Ratcliffe, http://online.redwoods.
cc.ca.us/instruct/darnold/staffdev/Assignments/sinandcos.
pdf)

• hyperbolic law of sines:

sinA/ sinh a = sinB/ sinh b = sinC/ sinh c

• hyperbolic law of cosines:

cosh c = cosh a cosh b− sinh a sinh b cosC

cosh c = (coshA coshB + cosC)/ sinhA sinhB

Beltrami-Klein models of hyperbolic geometry

• Beltrami-Klein model is directly obtained from the hyperboloid model.

• dk(P,Q) = 1/2 log |(AB,PQ)| where A,P,Q,B are on a segment with end-
points A,B and

(AB,PQ) =
∣∣∣∣APBP BQ

AQ

∣∣∣∣ .
• There is an imbedding from Hn onto an open ball B in the affine patch Rn of

RPn. This is standard radial projection Rn+1 − {O} → RPn.

• B can be described as a ball of radius 1 with center at O.

• The isometry group PO(1, n) also maps injectively to a subgroup of PGL(n+
1,R) that preserves B.

• The projective automorphism group of B is precisely this group.

• The metric is induced on B. This is precisely the metric given by the log of the
cross ratio. Note that λ(t) = (cosh t, sinh t, 0, ..., 0) define a unit speed geodesic
inHn. Under the Riemannian metric, we have d(e1, (cosh t, sinh t, 0, ..., 0)) = t
for t positive.

• Under dk, we obtain the same. Since any geodesic segment of same length is
congruent under the isometry, we see that the two metrics coincide. Betrami-
Klein model
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• Beltrami-Klein model is nice because you can see outside. The outside is the
anti-de Sitter space http://en.wikipedia.org/wiki/Anti_de_Sitter_
space

• Also, we can treat points outside and inside together.

• Each line (hyperplane) in the model is dual to a point outside. (i.e., orthogonal
by the Lorentzian inner-product) A point in the model is dual to a hyperplane
outside. Infact any subspace of dimenstion i is dual to a subspace of dimension
n− i− 1 by orthogonality.

• For n = 2, the duality of a line is given by taking tangent lines to the disk at the
endpoints and taking the intersection.

• The distance between two hyperplanes can be obtained by two dual points. The
two dual points span an orthogonal plane to the both hyperperplanes and hence
provide a shortest geodesic.

The conformal ball model (Poincare ball model)

• The stereo-graphic projection Hn to the plane P given by x0 = 0 from the point
(−1, 0, ..., 0).

• The formula for the map κ : Hn → P is given by

κ(x) =
(

y1
1 + y0

, ...,
yn

1 + y0

)
,

where the image lies in an open ball of radius 1 with center O in P . The inverse
is given by

ζ(x) =
(

1 + |x|2

1− |x|2
,

2x1

1− |x|2
, ...,

2xn
1− |x|2

,

)
.

• Since this is a diffeomorphism, B has an induced Riemannian metric of constant
curvature −1.

• We show

cosh dB(x, y) = 1 +
2|x− y|2

(1− |x|2)(1− |y|2)
,

and inversions acting on B preserves the metric. Thus, the group of Mobius
transformations of B preserve metric.

• The corresponding Riemannian metric is gij = 2δij/(1− |x|2)2.

• It follows that the group of Mobius transformations acting on B is precisely the
isometry group of B. Thus, Isom(B) = M(Sn−1).

• Geodesics would be lines through O and arcs on circles perpendicular to the
sphere of radius 1.
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The upper-half space model.

• Now we putB toU by a Mobius transformation. This gives a Riemannian metric
constant curvature −1.

• We have by computations cosh dU (x, y) = 1+ |x−y|2/2xnyn and the Rieman-
nian metric is given by gij = δij/x

2
n. Then I(U) = M(U) = M(En−1).

• Geodesics would be arcs on lines or circles perpendicular to En−1.

• Since Ê1 is a circle and Ê2 is the complex sphere, we obtain Isom+(B2) =
PSL(2,R) and Isom+(B3) = PSL(2,C).

• Orientation-preserving isometries of hyperbolic plane can have at most one fixed
point. elliptic, hyperbolic, parabolic.

z 7→ eiθ, z 7→ az, a 6= 1, a ∈ R+, z 7→ z + 1

• Isometries of a hyperbolic space: loxodromic, hyperbolic, elliptic, parabolic.

• Up to conjugations, they are represented as Mobius transformations which has
forms

– z 7→ αz, Imα 6= 0, |α| 6= 1.

– z 7→ az, a 6= 1, a ∈ R+.

– z 7→ eiθz, θ 6= 0.

– z 7→ z + 1.
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