1 Introduction
Outline
e Lie groups

— Lie algebras

— Lie group actions

o Geometries

Euclidean geometry

Spherical geometry

Affine geometry

Projective geometry

Conformal geometry: Poincare extensions

Hyperbolic geometry

* Lorentz group

* Geometry of hyperbolic space
* Beltrami-Klein model

* Conformal ball model

* The upper-half space model

Discrete groups: examples (In the next handout.)

Some helpful references

e W. Thurston, Lecture notes...: A chapter on orbifolds, 1977. (This is the principal
source)

e W. Thurston, Three-dimensional geometry and topolgy, PUP, 1997

M. Berger, Geometry I, Springer

J. Ratcliffe, Foundations of hyperbolic manifolds, Springer

e M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhauser.

My talk http://math.kaist.ac.kr/~schoi/Titechtalk.pdf
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2 Lie groups
2.1 Lie groups

Section 1: Lie groups

e A Lie group is a space of symmetries of some space. More formally, a Lie group
is a manifold with a group operation o : G x G — G that satisfies
— o is smooth.
— the inverse ¢ : G — G is smooth also.
e Examples:
— The permutation group of a finite set form a 0-dimensional manifold, which
is a finite set.
— R, C with + as an operation. (R* with + is merely a Lie semigroup.)
- R — {O},C — {O} with * as an operation.
- T™ = R"/T with + as an operation and O as the equivalence class of
(0,0, ...,0). (The three are abelian ones.)
e - GL(n,R)={A¢c M,(R)|det(A) # 0}: the general linear group.
- SL(n,R) = {A € GL(n,R)|det(A) = 1}: the special linear group.
- O(n,R) = {A € GL(n,R)|AT A = 1}: the orthogonal group.

- Isom(R") = {T : R" — R"|T(x) = Ax +bfor A € O(n — 1,R),b €
R'n}.

— Proofs: One can express the operations as polynomials or rational func-
tions.

e Products of Lie groups are Lie groups.
e A covering space of a connected Lie group form a Lie group.

e A Lie subgroup of a Lie group is a subgroup that is a Lie group with the induced
operation and is a submanifold.

- O(n) € SL(n,R) C GL(n,R).
- O(n—1) C Isom(R™).

e A homomorphism f : G — H of two Lie groups G, H is a smooth map that is a
group homomorphism. The above inclusion maps are homomorphisms.

e The kernel of a homomorphism is a closed normal subgroup. Hence it is a Lie
subgroup also.

e If G, H are simply connected, f induces a unique homomorphism of Lie algebra
of G to that of H which is D f and conversely.



2.2

Lie algebras

Lie algebras
e A Lie algebra is a vector space V' with an operation [,] : V x V — V that
satisfies:
- [z,2] =0 forx € L. (Thus, [x,y] = —[y, z].)

— Jacobi identity [z, [y, z]] + [z, [z, y]] + [y, [z, z]] = 0.

Examples:

Sending V' x V to O is a Lie algebra (abelian ones.)

Direct sums of Lie algebras is a Lie algebra.

A subalgebra is a subspace closed under [, ].

Anideal K of L is a subalgebra such that [z,y] € K forz € K andy € L.
A homomorphism of a Lie algebra is a linear map preserving [, ].

The kernel of a homomorphism is an ideal.

Lie groups and Lie algebras

Let G be a Lie group. A left translation L, : G — G is given by  — g(x).

A left-invariant vector field of G is a vector field so that the left translation leaves
it invariant, i.e., dL4(X (h)) = X(gh) for g, h € G.

The set of left-invariant vector fields form a vector space under addition and
scalar multiplication and is vector-space isomorphic to the tangent space at I.
Moreover, [,] is defined as vector-fields brackets. This forms a Lie algebra.

The Lie algebra of G is the the Lie algebra of the left-invariant vector fields on
G.

Example: The Lie algebra of GL(n,R) is isomorphic to gl(n, R):

For X in the Lie algebra of GL(n,R), we can define a flow generated by
X and a path X () along it where X (0) = L.

We obtain an element of gl(n, R) by taking the derivative of X (¢) at 0 seen
as a matrix.

The brackets are preserved.

A Lie algebra of an abelian Lie group is abelian.



Lie algebras

e Given X in the Lie algebra g of G, there is an integral curve X (t) through I. We
define the exponential map exp : g — G by sending X to X (1).

e The exponential map is defined everywhere, smooth, and is a diffeomorphism
near O.

e The matrix exponential defined by

is the exponential map gl(n, R) — GL(n,R).

Lie group actions

e A Lie group G-action on a smooth manifold X is given by a smooth map G X
X — X sothat (gh)(z) = (9(h(z)) and I(z) = z. (left action)

e A right action satisfies (z)(gh) = ((z)g)h.

e Each Lie algebra element correspond to a vector field on X by using a vector
field.

e The action is faithful if g(«) = x for all z, then g is the identity element of G.

e The action is transitive if given two points x,y € X, there is g € G such that
9(z) = y.

e Example:

- GL(n,R) acting on R™.
- PGL(n + 1,R) acting on RP™.

3 Geometries

3.1 Euclidean geometry

Euclidean geometry

e The Euclidean space is R™ and the group Isom(R™) of rigid motions is gener-
ated by O(n) and T, the translation group. In fact, we have an inner-product
giving us a metric.

e A system of linear equations gives us a subspace (affine or linear)

e This gives us the model for Euclidean axioms....
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3.2 Spherical geometry
Spherical geometry
e Let us consider the unit sphere S™ in the Euclidean space R™*!,

e Many great sphere exists and they are subspaces... (They are given by homoge-
neous system of linear equations in R"*1.)

e The lines are replaced by great circles and lengths and angles are also replaced.

e The transformation group is O(n + 1).

Spherical trigonometry

e Many spherical triangle theorems exist... http://mathworld.wolfram.
com/SphericalTrigonometry.html

e Such a triangle is classified by their angles 6y, 01, 62 satisfying

90 +01 +62 > T (1)
0; < 0iy1+0;42—micZs. 2)
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3.3

Affine geometry

Affine geometry

34

A vector space R™ becomes an affine space by forgetting the origin.

An affine transformation of R™ is one given by « — Az + b for A € GL(n,R)
and b € R™. This notion is more general than that of rigid motions.

The Euclidean space R™ with the group Af f(R™) = GL(n,R) - R™ of affine
transformations form the affine geometry.

Of course, angles and lengths do not make sense. But the notion of lines exists.

The set of three points in a line has an invariant based on ratios of lengths.

Projective geometry

Projective geometry

Projective geometry was first considered from fine art.
Desargues (and Kepler) first considered points at infinity.
Poncelet first added infinite points to the euclidean plane.

Projective transformations are compositions of perspectivities. Often, they send
finite points to infinite points and vice versa. (i.e., two planes that are not paral-
lel).



The added points are same as ordinary points up to projective transformations.

Lines have well defined infinite points and are really circles topologically.

Some notions lose meanings. However, many interesting theorems can be proved.
Duality of theorems plays an interesting role.

See for an interactive course: http://www.math.poly.edu/courses/
projective_geometry/

andhttp://demonstrations.wolfram.com/TheoremeDePappusFrench/,
http://demonstrations.wolfram.com/TheoremeDePascalFrench/,
http://www.math.umd.edu/~wphooper/pappus9/pappus.html,
http://www.math.umd.edu/~wphooper/pappus/

Formal definition with topology is given by Felix Klein using homogeneous co-
ordinates.

The projective space RP" is R"Tt — {0}/ ~ where ~ is given by v ~ w if
v =swfors € R.

Each point is given a homogeneous coordinates: [v] = [z, Z1, ..., Zy].

The projective transformation group PGL(n+1,R) = GL(n+1,R)/ ~ acts on
R P™ by each element sending each ray to a ray using the corresponding general
linear maps.

Here, each element of g of PGL(n + 1, R) acts by [v] — [¢'(v)] for a represen-
tative ¢’ in GL(n + 1,R) of g. Also any coordinate change can be viewed this
way.

The affine geometry can be "imbedded": R™ can be identified with the set of
points in RP™ where x is not zero, i.e., the set of points {[1,z1, Z2, ..., ]}
This is called an affine patch. The subgroup of PGL(n + 1,R) fixing R"™ is
precisely Af f(R™) = GL(n,R) - R™.

The subspace of points {[0, 21, Z2, ..., 5]} is the complement homeomorphic to
RP" 1 This is the set of infinities, i.e., directions in RP™.

From affine geometry, one can construct a unique projective geometry and con-
versely using this idea. (See Berger for the complete abstract approach.)
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e A subspace is the set of points whose representative vectors satisfy a homoge-
neous system of linear equations. The subspace in R"*! corresponding to a
projective subspace in RP"™ in a one-to-one manner while the dimension drops
by 1.

e The independence of points are defined. The dimension of a subspace is the
maximal number of independent set minus 1.

e A hyperspace is given by a single linear equation. The complement of a hyper-
space can be identified with an affine space.

e Aline is the set of points [v] where v = sv1 +tvs for s, ¢ € R for the independent
pair vy, vo. Acutally a line is RP! or a line R! with a unique infinity.

e Cross ratios of four points on a line (z,y, z,¢). There is a unique coordinate
system so that z = [1,0],y = [0,1],z = [1,1],t = [b,1]. Thus b = b(x,y, 2, t)
is the cross-ratio.

e If the four points are on R!, the cross ratio is given as

(21 — 23)(22 — 24)
(21 — 2z4)(22 — 23)

(z,y;2,t) =
if we can write

T = [17 Zl]a Yy = [17 ZQ]a z = [15 Z3]at = [1; 24]
e One can define cross ratios of four hyperplanes meeting in a projective subspace

of codimension 2.

e For us n = 2 is important. Here we have a familiar projective plane as topolog-
ical type of RP?, which is a Mobius band with a disk filled in at the boundary.
http://www.geom.uiuc.edu/zoo/toptype/pplane/cap/

3.5 Conformal geometry

Conformal geometry

e Reflections of R™. The hyperplane P(a,t) given by a cot z = b. Then p(x) =
x+2(t—a-x)a.

e Inversions. The hypersphere S(a,r) given by |z — a| = r. Then o(z) = a +
(52 - a).
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We can compactify R" to R" = §» by adding infinity. This can be accom-
plished by a stereographic projection from the unit sphere S™ in R"*! from the
northpole (0,0, ...,1). Then these reflections and inversions induce conformal
homeomorphisms.

The group of transformations generated by these homeomorphisms is called the
Mobius transformation group.

They form the conformal transformation group of R™ = S".

For n = 2, R? is the Riemann sphere C and a Mobius transformation is a either
a fractional linear transformation of form

az+b
cz+d’

VA

ad —be #0,a,b,¢,d € C
or a fractional linear transformation pre-composed with the conjugation map
z— Z.

In higher-dimensions, a description as a sphere of null-lines and the special
Lorentizian group exists.

Poincare extensions

3.6

We can identify E"~! with E"~! x {O} in E™.

We can extend each Mobius transformation of £"~! to E™ that preserves the
upper half space U: We extend reflections and inversions in the obvious way.

The Mobius transformation of E™ that preserves the open upper half spaces are
exactly the extensions of the Mobius transformations of £~ 1.

M(U™) = M(E"1).
We can put the pair (U™, E"~1) to (B",S"!) by a Mobius transformation.

Thus, M (U™) is isomorphic to M (S™~!) for the boundary sphere.

Hyperbolic geometry

Lorentzian geometry

e A hyperbolic space H" is defined as a complex Riemannian manifold of constant

curvature equal to —1.

e Such a space cannot be realized as a submanifold in a Euclidean space of even

very large dimensions.

e Butitis realized as a "sphere" in a Lorentzian space.



A Lorentzian space is R*" with an inner product

Ty =—ToYo +T1Yy1+  +Tn-1Yn—1+ Tn¥Yn.

A Lorentzian norm ||z|| = (z - y)'/2, a positive, zero, or positive imaginary
number.

One can define Lorentzian angles.

The null vectors form a light cone divide into positive, negative cone, and 0.

Space like vectors and time like vectors and null vectors.

Ordinary notions such as orthogonality, orthonormality,...

Lorentz group

e A Lorentzian transformation is a linear map preserving the inner-product.

e For J the diagonal matrix with entries —1,1, ..., 1, A'tJA = J iff Ais a Lorentzian
matrix.

e A Lorentzian transformation sends time-like vectors to time-like vectors. It is
either positive or negative.

e The set of Lorentzian transformations form a Lie group O(1,n).

e The set of positive Lorentzian transformations form a Lie subgroup PO(1, n).

Hyperbolic space

o Given two positive time-like vectors, there is a time-like angle
z -y = [[zll|lyllcoshn(z, y)

e A hyperbolic space is an upper component of the submanifold defined by ||z||> =
—loraz? =1+a%+ -+ 22. This is a subset of a positive cone.

e Topologically, it is homeomorphic to R”.
e One induces a metric from the Lorentzian space which is positive definite.

e This gives us a Riemannian metric of constant curvature —1. (The computation
is very similar to the computations for the sphere.)

e PO(1,n) is the isometry group of H™ which is homogeneous and directionless.

e A hyperbolic line is an intersection of H™ with a time-like two-dimensional
vector subspace.

e The hyperbolic sine law, The first law of cosines, The second law of cosines...
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e One can assign any interior angles to a hyperbolic triangle as long as the sum is
less than 7.

e One can assign any lengths to a hyperbolic triangle.

e The triangle formula can be generalized to formula for quadrilateral, pentagon,
hexagon.

e Basic philosophy here is that one can push the vertex outside and the angle be-
comes distances between lines. (See Ratcliffe, http://online.redwoods
cc.ca.us/instruct/darnold/staffdev/Assignments/sinandcos.
pdf)

e hyperbolic law of sines:

sin A/ sinha = sin B/sinh b = sin C/ sinh ¢

e hyperbolic law of cosines:
cosh ¢ = cosh a cosh b — sinh asinh bcos C

cosh ¢ = (cosh A cosh B + cos C')/ sinh A sinh B

Beltrami-Klein models of hyperbolic geometry

e Beltrami-Klein model is directly obtained from the hyperboloid model.

o di(P,Q) = 1/2log|(AB, PQ)| where A, P,Q, B are on a segment with end-
points A, B and
AP BQ
AB,PQ) = |——=]|.
(15.7Q) = | 51 50
e There is an imbedding from H™ onto an open ball B in the affine patch R™ of
RP™. This is standard radial projection R"** — {0} — RP™.

e B can be described as a ball of radius 1 with center at O.

e The isometry group PO(1, n) also maps injectively to a subgroup of PGL(n +
1,R) that preserves B.

e The projective automorphism group of B is precisely this group.

e The metric is induced on B. This is precisely the metric given by the log of the
cross ratio. Note that A(¢) = (cosht,sinht, 0, ..., 0) define a unit speed geodesic
in H™. Under the Riemannian metric, we have d(e1, (cosh¢,sinh¢,0,...,0)) = ¢
for ¢ positive.

e Under dj, we obtain the same. Since any geodesic segment of same length is
congruent under the isometry, we see that the two metrics coincide. Betrami-
Klein model
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e Beltrami-Klein model is nice because you can see outside. The outside is the
anti-de Sitter spacehttp://en.wikipedia.org/wiki/Anti_de_Sitter_
space

e Also, we can treat points outside and inside together.

e Each line (hyperplane) in the model is dual to a point outside. (i.e., orthogonal
by the Lorentzian inner-product) A point in the model is dual to a hyperplane
outside. Infact any subspace of dimenstion ¢ is dual to a subspace of dimension
n — ¢ — 1 by orthogonality.

e For n = 2, the duality of a line is given by taking tangent lines to the disk at the
endpoints and taking the intersection.

e The distance between two hyperplanes can be obtained by two dual points. The
two dual points span an orthogonal plane to the both hyperperplanes and hence
provide a shortest geodesic.

The conformal ball model (Poincare ball model)

e The stereo-graphic projection H" to the plane P given by oy = 0 from the point
(-1,0,...,0).

e The formula for the map x : H™ — P is given by

K($)=< A — >
T+y "14wy)’

where the image lies in an open ball of radius 1 with center O in P. The inverse
is given by
_ (14?2 2z,
C(I)_ <1_|x2?1_x|27"'71_|$|27 .

o Since this is a diffeomorphism, B has an induced Riemannian metric of constant
curvature —1.

e We show
2l — y?
(1= |=[*) (1 = y[)’
and inversions acting on B preserves the metric. Thus, the group of Mobius
transformations of B preserve metric.

coshdp(z,y) =1+

e The corresponding Riemannian metric is g;; = 24;;/(1 — |z|?).

o It follows that the group of Mobius transformations acting on B is precisely the
isometry group of B. Thus, Isom(B) = M(S"1).

e Geodesics would be lines through O and arcs on circles perpendicular to the
sphere of radius 1.
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The upper-half space model.

Now we put B to U by a Mobius transformation. This gives a Riemannian metric
constant curvature —1.

We have by computations cosh dy; (z,y) = 1+ |z — y|? /2x,,y,, and the Rieman-
nian metric is given by g;; = &;;/22. Then I(U) = M(U) = M (E™™1).

Geodesics would be arcs on lines or circles perpendicular to £™~ 1.

Since E! is a circle and E2 is the complex sphere, we obtain Isom™*(B2) =
PSL(2,R) and Isom™ (B?) = PSL(2,C).

Orientation-preserving isometries of hyperbolic plane can have at most one fixed
point. elliptic, hyperbolic, parabolic.
z—e? zaz,a#l,aeRY 2 241

Isometries of a hyperbolic space: loxodromic, hyperbolic, elliptic, parabolic.

Up to conjugations, they are represented as Mobius transformations which has
forms

z v az, Ima #0,|a # 1.
zaz,a#1,a € RT,
2 €020 #0.

-z z4+ 1.
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