Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

Fopology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

ath-approach to the niversal covering spaces

2-orbifolds, triangulations, and topological constructions and covering spaces of orbifolds

S. Choi

¹ Department of Mathematical Science KAIST, Daejeon, South Korea

KAIST

イロト 不得 とくほ とくほとう ほ

Section 3: Topology of 2-orbifolds

- Topology of 2-orbifolds
- Smooth 2-orbifolds and triangulations
- Covering spaces
 - Fiber-product approach
 - Path-approach by Haeflige

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the iniversal covering spaces

Section 3: Topology of 2-orbifolds

Topology of 2-orbifolds

- Smooth 2-orbifolds and triangulations
- Covering spaces
 - Fiber-product approach
 - Path-approach by Haeflige

Section 3: Topology of orbifolds

S. Choi

Introduction

pology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Section 3: Topology of 2-orbifolds
 - Topology of 2-orbifolds
 - Smooth 2-orbifolds and triangulations
- Covering spaces
 - Fiber-product approach
 - Path-approach by Haefliger

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Section 3: Topology of 2-orbifolds
 - Topology of 2-orbifolds
 - Smooth 2-orbifolds and triangulations
- Covering spaces
 - Fiber-product approach
 - Path-approach by Haefliger

Section 3: Topology of orbifolds

S. Choi

Introduction

pology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Section 3: Topology of 2-orbifolds
 - Topology of 2-orbifolds
 - Smooth 2-orbifolds and triangulations
- Covering spaces
 - Fiber-product approach
 - Path-approach by Haefliger

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the iniversal covering spaces

- Section 3: Topology of 2-orbifolds
 - Topology of 2-orbifolds
 - Smooth 2-orbifolds and triangulations
- Covering spaces
 - Fiber-product approach
 - Path-approach by Haefliger

・ロト・西ト・モト・モー うへの

▶ W. Thuston, Orbifolds and Seifert space, Chapter 5, notes

- A. Adem, J. Leida, and Y. Ruan, Orbifolds and stringy topology, Cambridge, 2007.
- J. Ratcliffe, Chapter 13 in Foundations of hyperbolic manifolds, Springer]
- M. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grad. Texts in Math. 319, Springer-Verlag, New York, 1999.
- A. Haefliger, Orbi-espaces, In: Progr. Math. 83, Birkhauser, Boston, MA, 1990, pp. 203–212.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- W. Thuston, Orbifolds and Seifert space, Chapter 5, notes
- A. Adem, J. Leida, and Y. Ruan, Orbifolds and stringy topology, Cambridge, 2007.
- J. Ratcliffe, Chapter 13 in Foundations of hyperbolic manifolds, Springer]
- M. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grad. Texts in Math. 319, Springer-Verlag, New York, 1999.
- A. Haefliger, Orbi-espaces, In: Progr. Math. 83, Birkhauser, Boston, MA, 1990, pp. 203–212.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- W. Thuston, Orbifolds and Seifert space, Chapter 5, notes
- A. Adem, J. Leida, and Y. Ruan, Orbifolds and stringy topology, Cambridge, 2007.

J. Ratcliffe, Chapter 13 in Foundations of hyperbolic manifolds, Springer]

- M. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grad. Texts in Math. 319, Springer-Verlag, New York, 1999.
- A. Haefliger, Orbi-espaces, In: Progr. Math. 83, Birkhauser, Boston, MA, 1990, pp. 203–212.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- W. Thuston, Orbifolds and Seifert space, Chapter 5, notes
- A. Adem, J. Leida, and Y. Ruan, Orbifolds and stringy topology, Cambridge, 2007.
- J. Ratcliffe, Chapter 13 in Foundations of hyperbolic manifolds, Springer]
- M. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grad. Texts in Math. 319, Springer-Verlag, New York, 1999.
- A. Haefliger, Orbi-espaces, In: Progr. Math. 83, Birkhauser, Boston, MA, 1990, pp. 203–212.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- W. Thuston, Orbifolds and Seifert space, Chapter 5, notes
- A. Adem, J. Leida, and Y. Ruan, Orbifolds and stringy topology, Cambridge, 2007.
- J. Ratcliffe, Chapter 13 in Foundations of hyperbolic manifolds, Springer]
- M. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Grad. Texts in Math. 319, Springer-Verlag, New York, 1999.
- A. Haefliger, Orbi-espaces, In: Progr. Math. 83, Birkhauser, Boston, MA, 1990, pp. 203–212.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Y. Matsumoto and J. Montesinos-Amilibia, A proof of Thurston's uniformization theorem of geometric orbifolds, Tokyo J. Mathematics 14, 181–196 (1991)
- I. Moerdijk, Orbifolds as groupoids: an introduction. math.DG./0203100v1
- S. Choi, Geometric Structures on Orbifolds and Holonomy Representations, Geometriae Dedicata 104: 161–199, 2004.
- A. Verona, Stratified mappings—structure and triangulability. Lecture Notes in Mathematics, 1102. Springer-Verlag, 1984. ix+160 pp.
- S. Weinberger, The topological classification of stratified spaces. Chicago Lectures in Mathematics. University of Chicago Press, 1994. xiv+283 pp.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Y. Matsumoto and J. Montesinos-Amilibia, A proof of Thurston's uniformization theorem of geometric orbifolds, Tokyo J. Mathematics 14, 181–196 (1991)
- I. Moerdijk, Orbifolds as groupoids: an introduction. math.DG./0203100v1
- S. Choi, Geometric Structures on Orbifolds and Holonomy Representations, Geometriae Dedicata 104: 161–199, 2004
- A. Verona, Stratified mappings—structure and triangulability. Lecture Notes in Mathematics, 1102. Springer-Verlag, 1984. ix+160 pp.
- S. Weinberger, The topological classification of stratified spaces. Chicago Lectures in Mathematics. University of Chicago Press, 1994. xiv+283 pp.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Y. Matsumoto and J. Montesinos-Amilibia, A proof of Thurston's uniformization theorem of geometric orbifolds, Tokyo J. Mathematics 14, 181–196 (1991)
- I. Moerdijk, Orbifolds as groupoids: an introduction. math.DG./0203100v1
- S. Choi, Geometric Structures on Orbifolds and Holonomy Representations, Geometriae Dedicata 104: 161–199, 2004.
- A. Verona, Stratified mappings—structure and triangulability. Lecture Notes in Mathematics, 1102. Springer-Verlag, 1984. ix+160 pp.
- S. Weinberger, The topological classification of stratified spaces. Chicago Lectures in Mathematics. University of Chicago Press, 1994. xiv+283 pp.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

- Y. Matsumoto and J. Montesinos-Amilibia, A proof of Thurston's uniformization theorem of geometric orbifolds, Tokyo J. Mathematics 14, 181–196 (1991)
- I. Moerdijk, Orbifolds as groupoids: an introduction. math.DG./0203100v1
- S. Choi, Geometric Structures on Orbifolds and Holonomy Representations, Geometriae Dedicata 104: 161–199, 2004.
- A. Verona, Stratified mappings—structure and triangulability. Lecture Notes in Mathematics, 1102. Springer-Verlag, 1984. ix+160 pp.
- S. Weinberger, The topological classification of stratified spaces. Chicago Lectures in Mathematics. University of Chicago Press, 1994. xiv+283 pp.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

- Y. Matsumoto and J. Montesinos-Amilibia, A proof of Thurston's uniformization theorem of geometric orbifolds, Tokyo J. Mathematics 14, 181–196 (1991)
- I. Moerdijk, Orbifolds as groupoids: an introduction. math.DG./0203100v1
- S. Choi, Geometric Structures on Orbifolds and Holonomy Representations, Geometriae Dedicata 104: 161–199, 2004.
- A. Verona, Stratified mappings—structure and triangulability. Lecture Notes in Mathematics, 1102. Springer-Verlag, 1984. ix+160 pp.
- S. Weinberger, The topological classification of stratified spaces. Chicago Lectures in Mathematics. University of Chicago Press, 1994. xiv+283 pp.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach Path-approach to the universal covering spaces

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and

Covering spaces of orbifolds

Fiber-product approach

We now wish to concentrate on 2-orbifolds.

Singularities

- We simply have to classify finite groups in O(2): Z₂ acting as a reflection group or a rotation group of angle π/2, a cyclic groups C_n of order ≥ 3 and dihedral groups D_n of order ≥ 4.
- According to this the singularities are of form:
 - A silvered point

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and

riangulations

Covering spaces of orbifolds

Fiber-product approach

We now wish to concentrate on 2-orbifolds.

Singularities

- We simply have to classify finite groups in O(2): Z₂ acting as a reflection group or a rotation group of angle π/2, a cyclic groups C_n of order ≥ 3 and dihedral groups D_n of order ≥ 4.
- According to this the singularities are of form:
 - A silvered point
 - A cone-point of order ≥ 2
 - A corner-reflector of order ≥ 2.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds

riangulations

Covering spaces of orbifolds

Fiber-product approach

- We now wish to concentrate on 2-orbifolds.
- Singularities
 - We simply have to classify finite groups in O(2): Z₂ acting as a reflection group or a rotation group of angle π/2, a cyclic groups C_n of order ≥ 3 and dihedral groups D_n of order ≥ 4.
 - According to this the singularities are of form:
 - A silvered point
 A cone-point of order ≥ 2.
 - A corner-reflector of order ≥ 2 .

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and

riangulations

Covering spaces of orbifolds

Fiber-product approach

- We now wish to concentrate on 2-orbifolds.
- Singularities
 - We simply have to classify finite groups in O(2): \mathbb{Z}_2 acting as a reflection group or a rotation group of angle $\pi/2$, a cyclic groups C_n of order ≥ 3 and dihedral groups D_n of order ≥ 4 . According to this the singularities are of form:

Section 3: Topology of orbifolds

S Choi

Topology of 2-orbifolds

- We now wish to concentrate on 2-orbifolds.
- Singularities
 - We simply have to classify finite groups in O(2): \mathbb{Z}_2 acting as a reflection group or a rotation group of angle $\pi/2$, a cyclic groups C_n of order ≥ 3 and dihedral groups D_n of order \geq 4. According to this the singularities are of form:
 - - A silvered point

Section 3: Topology of orbifolds

S Choi

Topology of 2-orbifolds

イロト 不得 トイヨト イヨト 二日

- We now wish to concentrate on 2-orbifolds.
- Singularities
 - We simply have to classify finite groups in O(2): Z₂ acting as a reflection group or a rotation group of angle π/2, a cyclic groups C_n of order ≥ 3 and dihedral groups D_n of order ≥ 4.
 - According to this the singularities are of form:
 - A silvered point
 - A cone-point of order ≥ 2.
 - A corner-reflector of order \geq 2.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds

riangulations

Covering spaces of orbifolds

Fiber-product approach

- We now wish to concentrate on 2-orbifolds.
- Singularities
 - We simply have to classify finite groups in O(2): Z₂ acting as a reflection group or a rotation group of angle π/2, a cyclic groups C_n of order ≥ 3 and dihedral groups D_n of order ≥ 4.
 - According to this the singularities are of form:
 - A silvered point
 - A cone-point of order ≥ 2.
 - ► A corner-reflector of order ≥ 2.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds

riangulations

Covering spaces of orbifolds

Fiber-product approach

S. Choi

Introduction

Topology of 2-orbifolds

Section 3: Topology of

orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and

triangulations

Covering spaces of orbifolds

Fiber-product approach Path-approach to the

- On the boundary of a surface with a corner, one can take mutually disjoint open arcs ending at corners. If two arcs meet at a corner-point, then the corner-point is a *distinguished one*. If not, the corner-point is *ordinary*. The choice of arcs will be called the *boundary pattern*.
- As noted above, given a surface with corner and a collection of discrete points in its interior and the boundary pattern, it is possible to put an orbifold structure on it so that the interior points become cone-points and the distinguished corner-points the corner-reflectors and boundary points in the arcs the silvered points of any given orders.

イロト イポト イヨト イヨト

- On the boundary of a surface with a corner, one can take mutually disjoint open arcs ending at corners. If two arcs meet at a corner-point, then the corner-point is a *distinguished one*. If not, the corner-point is *ordinary*. The choice of arcs will be called the *boundary pattern*.
- As noted above, given a surface with corner and a collection of discrete points in its interior and the boundary pattern, it is possible to put an orbifold structure on it so that the interior points become cone-points and the distinguished corner-points the corner-reflectors and boundary points in the arcs the silvered points of any given orders.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and

Covering spaces of orbifolds

Fiber-product approach Path-approach to the universal covering spaces

▲□▶▲御▶▲臣▶▲臣▶ 臣 のQC

Introduction

Topology of 2-orbifolds Topology of 2-orbifolds Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach Path-approach to the universal covering spaces

Section 3: Topology of orbifolds

S. Choi

Introductio

Topology of 2-orbifolds

Smooth 2-orbifolds and

triangulations

Covering spaces of orbifolds

Fiber-product approach

- One can put a Riemannian metric on a 2-orbifold so that the boundary is a union of geodesic arcs and each corner-reflector have angles π/n for its order n and the cone-points have angles 2π/n.
- Proof: First construct such a metric on the boundary by putting such metrics on the boundary by using a broken geodesic in the euclidean plane and around the cone points and then using partition of unity.
- By removing open balls around cone-points and corner-reflectors, we obtain a smooth surface with corners.
- Find a smooth triangulation of so that the interior of each side is either completely inside the boundary with the corners removed.
- Extend the triangulations by cone-construction to the interiors of the removed balls.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach Path-approach to the universal covering spaces

▲□▶▲御▶★臣▶★臣▶ 臣 のQ()

- One can put a Riemannian metric on a 2-orbifold so that the boundary is a union of geodesic arcs and each corner-reflector have angles π/n for its order n and the cone-points have angles 2π/n.
- Proof: First construct such a metric on the boundary by putting such metrics on the boundary by using a broken geodesic in the euclidean plane and around the cone points and then using partition of unity.
- By removing open balls around cone-points and corner-reflectors, we obtain a smooth surface with corners.
- Find a smooth triangulation of so that the interior of each side is either completely inside the boundary with the corners removed.
- Extend the triangulations by cone-construction to the interiors of the removed balls.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach Path-approach to the universal covering spaces

(ロ) (四) (注) (注) (注) (三) (の)

- One can put a Riemannian metric on a 2-orbifold so that the boundary is a union of geodesic arcs and each corner-reflector have angles π/n for its order n and the cone-points have angles 2π/n.
- Proof: First construct such a metric on the boundary by putting such metrics on the boundary by using a broken geodesic in the euclidean plane and around the cone points and then using partition of unity.
- By removing open balls around cone-points and corner-reflectors, we obtain a smooth surface with corners.
- Find a smooth triangulation of so that the interior of each side is either completely inside the boundary with the corners removed.
- Extend the triangulations by cone-construction to the interiors of the removed balls.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach Path-approach to the

- One can put a Riemannian metric on a 2-orbifold so that the boundary is a union of geodesic arcs and each corner-reflector have angles π/n for its order n and the cone-points have angles 2π/n.
- Proof: First construct such a metric on the boundary by putting such metrics on the boundary by using a broken geodesic in the euclidean plane and around the cone points and then using partition of unity.
- By removing open balls around cone-points and corner-reflectors, we obtain a smooth surface with corners.
- Find a smooth triangulation of so that the interior of each side is either completely inside the boundary with the corners removed.
- Extend the triangulations by cone-construction to the interiors of the removed balls.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach Path-approach to the

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- One can put a Riemannian metric on a 2-orbifold so that the boundary is a union of geodesic arcs and each corner-reflector have angles π/n for its order n and the cone-points have angles 2π/n.
- Proof: First construct such a metric on the boundary by putting such metrics on the boundary by using a broken geodesic in the euclidean plane and around the cone points and then using partition of unity.
- By removing open balls around cone-points and corner-reflectors, we obtain a smooth surface with corners.
- Find a smooth triangulation of so that the interior of each side is either completely inside the boundary with the corners removed.
- Extend the triangulations by cone-construction to the interiors of the removed balls.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

- Theorem: Any 2-orbifold is obtained from a smooth surface with corner by silvering some arcs and putting cone-points and corner-reflectors.
- A 2-orbifold is classified by the underlying smooth topology of the surface with corner and the number and orders of cone-points, corner-reflectors, and the boundary pattern of silvered arcs.
- proof: basically, strata-preserving isotopies.
- In general, a smooth orbifold has a smooth topological stratification and a triangulation so that each open cell is contained in a single strata.
- Smooth topological stratifications satisfying certain weak conditions have triangulations.
- One should show that the stratification of orbifolds by orbit types satisfies this condition.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach

- Theorem: Any 2-orbifold is obtained from a smooth surface with corner by silvering some arcs and putting cone-points and corner-reflectors.
- A 2-orbifold is classified by the underlying smooth topology of the surface with corner and the number and orders of cone-points, corner-reflectors, and the boundary pattern of silvered arcs.
- proof: basically, strata-preserving isotopies.
- In general, a smooth orbifold has a smooth topological stratification and a triangulation so that each open cell is contained in a single strata.
- Smooth topological stratifications satisfying certain weak conditions have triangulations.
- One should show that the stratification of orbifolds by orbit types satisfies this condition.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach

- Theorem: Any 2-orbifold is obtained from a smooth surface with corner by silvering some arcs and putting cone-points and corner-reflectors.
- A 2-orbifold is classified by the underlying smooth topology of the surface with corner and the number and orders of cone-points, corner-reflectors, and the boundary pattern of silvered arcs.
- proof: basically, strata-preserving isotopies.
- In general, a smooth orbifold has a smooth topological stratification and a triangulation so that each open cell is contained in a single strata.
- Smooth topological stratifications satisfying certain weak conditions have triangulations.
- One should show that the stratification of orbifolds by orbit types satisfies this condition.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach

The triangulations of 2-orbifolds and classification

- Theorem: Any 2-orbifold is obtained from a smooth surface with corner by silvering some arcs and putting cone-points and corner-reflectors.
- A 2-orbifold is classified by the underlying smooth topology of the surface with corner and the number and orders of cone-points, corner-reflectors, and the boundary pattern of silvered arcs.
- proof: basically, strata-preserving isotopies.
- In general, a smooth orbifold has a smooth topological stratification and a triangulation so that each open cell is contained in a single strata.
- Smooth topological stratifications satisfying certain weak conditions have triangulations.
- One should show that the stratification of orbifolds by orbit types satisfies this condition.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach

The triangulations of 2-orbifolds and classification

- Theorem: Any 2-orbifold is obtained from a smooth surface with corner by silvering some arcs and putting cone-points and corner-reflectors.
- A 2-orbifold is classified by the underlying smooth topology of the surface with corner and the number and orders of cone-points, corner-reflectors, and the boundary pattern of silvered arcs.
- proof: basically, strata-preserving isotopies.
- In general, a smooth orbifold has a smooth topological stratification and a triangulation so that each open cell is contained in a single strata.
- Smooth topological stratifications satisfying certain weak conditions have triangulations.
- One should show that the stratification of orbifolds by orbit types satisfies this condition.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach

The triangulations of 2-orbifolds and classification

- Theorem: Any 2-orbifold is obtained from a smooth surface with corner by silvering some arcs and putting cone-points and corner-reflectors.
- A 2-orbifold is classified by the underlying smooth topology of the surface with corner and the number and orders of cone-points, corner-reflectors, and the boundary pattern of silvered arcs.
- proof: basically, strata-preserving isotopies.
- In general, a smooth orbifold has a smooth topological stratification and a triangulation so that each open cell is contained in a single strata.
- Smooth topological stratifications satisfying certain weak conditions have triangulations.
- One should show that the stratification of orbifolds by orbit types satisfies this condition.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach

Let X be an orbifold. Give it a Riemannian metric.

- There exists a good covering: each open set is connected and charts have cells as cover and the intersection of any finite collection again has such properties.
- Each point has an open neighborhood with an orthogonal action.
- Now choose sufficiently small ball centered at the origin so that it has a convexity property. (That is, any path can be homotoped into a geodesic.)
- Find a locally finite subcollection.
- Then intersection of any finite collection is still convex and hence has cells as cover.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and

triangulations

Covering spaces of orbifolds

Fiber-product approach

- Let X be an orbifold. Give it a Riemannian metric.
- There exists a good covering: each open set is connected and charts have cells as cover and the intersection of any finite collection again has such properties.
- Each point has an open neighborhood with an orthogonal action.
- Now choose sufficiently small ball centered at the origin so that it has a convexity property. (That is, any path can be homotoped into a geodesic.)
- Find a locally finite subcollection.
- Then intersection of any finite collection is still convex and hence has cells as cover.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach

^ath-approach to the niversal covering spaces

- Let X be an orbifold. Give it a Riemannian metric.
- There exists a good covering: each open set is connected and charts have cells as cover and the intersection of any finite collection again has such properties.
- Each point has an open neighborhood with an orthogonal action.
- Now choose sufficiently small ball centered at the origin so that it has a convexity property. (That is, any path can be homotoped into a geodesic.)
- Find a locally finite subcollection.
- Then intersection of any finite collection is still convex and hence has cells as cover.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach

- Let X be an orbifold. Give it a Riemannian metric.
- There exists a good covering: each open set is connected and charts have cells as cover and the intersection of any finite collection again has such properties.
- Each point has an open neighborhood with an orthogonal action.
- Now choose sufficiently small ball centered at the origin so that it has a convexity property. (That is, any path can be homotoped into a geodesic.)
- Find a locally finite subcollection.
- Then intersection of any finite collection is still convex and hence has cells as cover.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

- Let X be an orbifold. Give it a Riemannian metric.
- There exists a good covering: each open set is connected and charts have cells as cover and the intersection of any finite collection again has such properties.
- Each point has an open neighborhood with an orthogonal action.
- Now choose sufficiently small ball centered at the origin so that it has a convexity property. (That is, any path can be homotoped into a geodesic.)
- Find a locally finite subcollection.
- Then intersection of any finite collection is still convex and hence has cells as cover.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

- Let X be an orbifold. Give it a Riemannian metric.
- There exists a good covering: each open set is connected and charts have cells as cover and the intersection of any finite collection again has such properties.
- Each point has an open neighborhood with an orthogonal action.
- Now choose sufficiently small ball centered at the origin so that it has a convexity property. (That is, any path can be homotoped into a geodesic.)
- Find a locally finite subcollection.
- Then intersection of any finite collection is still convex and hence has cells as cover.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Covering spaces of orbifold

• Let X' be an orbifold with a smooth map $p: X' \to X$ so that for each point x of X, there is a connected model (U, G, ϕ) and the inverse image of $p(\psi(U))$ is a union of open sets with models isomorphic to (U, G', π) where $\pi: U \to U/G'$ is a quotient map and G' is a subgroup of G. Then $p: X' \to X$ is a *covering* and X' is a *covering orbifold* of X.

- ▶ Abstract definition: If X' is a (X_1, X_0) -space and $p_0 : X'_0 \to X_0$ is a covering map, then X' is a *covering orbifold*.
- We can see it as an orbifold bundle over X with discrete fibers. We can choose the fibers to be acted upon by a discrete group G, and hence a principal G-bundle. This gives us a regular (Galois) covering.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Covering spaces of orbifold

- Let X' be an orbifold with a smooth map $p: X' \to X$ so that for each point x of X, there is a connected model (U, G, ϕ) and the inverse image of $p(\psi(U))$ is a union of open sets with models isomorphic to (U, G', π) where $\pi: U \to U/G'$ is a quotient map and G' is a subgroup of G. Then $p: X' \to X$ is a *covering* and X' is a *covering orbifold* of X.
- Abstract definition: If X' is a (X₁, X₀)-space and p₀ : X'₀ → X₀ is a covering map, then X' is a covering orbifold.
- We can see it as an orbifold bundle over X with discrete fibers. We can choose the fibers to be acted upon by a discrete group G, and hence a principal G-bundle. This gives us a regular (Galois) covering.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Covering spaces of orbifold

- Let X' be an orbifold with a smooth map $p: X' \to X$ so that for each point x of X, there is a connected model (U, G, ϕ) and the inverse image of $p(\psi(U))$ is a union of open sets with models isomorphic to (U, G', π) where $\pi: U \to U/G'$ is a quotient map and G' is a subgroup of G. Then $p: X' \to X$ is a *covering* and X' is a *covering orbifold* of X.
- Abstract definition: If X' is a (X₁, X₀)-space and p₀ : X'₀ → X₀ is a covering map, then X' is a covering orbifold.
- We can see it as an orbifold bundle over X with discrete fibers. We can choose the fibers to be acted upon by a discrete group G, and hence a principal G-bundle. This gives us a regular (Galois) covering.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Y a manifold. Ỹ a regular covering map p̃ with the automorphism group Γ. Let Γ_i, i ∈ I be a sequence of subgroups of Γ.

The projection $\tilde{p}_i : \tilde{Y} \times \Gamma_i \setminus \Gamma \to \tilde{Y}$ induces a covering $p_i : (\tilde{Y} \times \Gamma_i \setminus \Gamma) / \Gamma \to \tilde{Y} / \Gamma = Y$ where Γ acts by

 $\gamma(\tilde{x}, \Gamma_i \gamma_i) = (\gamma(\tilde{x}), \Gamma_i \gamma_i \gamma^{-1})$

- This is same as $\tilde{Y}/\Gamma_i \rightarrow Y$ since Γ acts transitively on both spaces.
- Fiber-products $\tilde{Y} \times \prod_{i \in I} \Gamma_i \setminus \Gamma \to \tilde{Y}$. Define left-action of Γ by

 $\gamma(\tilde{x},(\Gamma_i\gamma_i)_{i\in I})=(\gamma(\tilde{x}),(\Gamma_i\gamma_i\gamma^{-1})),\gamma\in\Gamma.$

We obtain the fiber-product

$$(\tilde{Y} \times \prod_{i \in I} \Gamma_i \backslash \Gamma) / \Gamma \to \tilde{Y} / \Gamma = Y.$$

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

- Y a manifold. Ỹ a regular covering map p̃ with the automorphism group Γ. Let Γ_i, i ∈ I be a sequence of subgroups of Γ.
 - The projection p̃_i: Υ̃ × Γ_i \Γ → Υ̃ induces a covering p_i: (Υ̃ × Γ_i \Γ)/Γ → Υ̃/Γ = Υ where Γ acts by

 $\gamma(\tilde{x}, \Gamma_i \gamma_i) = (\gamma(\tilde{x}), \Gamma_i \gamma_i \gamma^{-1})$

- This is same as $\tilde{Y}/\Gamma_i \to Y$ since Γ acts transitively on both spaces.
- Fiber-products $\tilde{Y} \times \prod_{i \in I} \Gamma_i \setminus \Gamma \to \tilde{Y}$. Define left-action of Γ by

 $\gamma(\tilde{x},(\Gamma_i\gamma_i)_{i\in I})=(\gamma(\tilde{x}),(\Gamma_i\gamma_i\gamma^{-1})),\gamma\in\Gamma.$

We obtain the fiber-product

$$(\tilde{Y} \times \prod_{i \in I} \Gamma_i \backslash \Gamma) / \Gamma \to \tilde{Y} / \Gamma = Y.$$

イロト イポト イヨト イヨト 二日

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

- Y a manifold. Ỹ a regular covering map p̃ with the automorphism group Γ. Let Γ_i, i ∈ I be a sequence of subgroups of Γ.
 - The projection p̃_i: Υ̃ × Γ_i \Γ → Υ̃ induces a covering p_i: (Υ̃ × Γ_i \Γ)/Γ → Υ̃/Γ = Y where Γ acts by

$$\gamma(\tilde{x}, \Gamma_i \gamma_i) = (\gamma(\tilde{x}), \Gamma_i \gamma_i \gamma^{-1})$$

- This is same as $\tilde{Y}/\Gamma_i \rightarrow Y$ since Γ acts transitively on both spaces.
- Fiber-products $\tilde{Y} \times \prod_{i \in I} \Gamma_i \setminus \Gamma \to \tilde{Y}$. Define left-action of Γ by

 $\gamma(\tilde{x},(\Gamma_i\gamma_i)_{i\in I})=(\gamma(\tilde{x}),(\Gamma_i\gamma_i\gamma^{-1})),\gamma\in\Gamma.$

We obtain the fiber-product

$$(\tilde{Y} \times \prod_{i \in I} \Gamma_i \backslash \Gamma) / \Gamma \to \tilde{Y} / \Gamma = Y.$$

イロン イヨン イヨン 一日

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

- ► Y a manifold. \tilde{Y} a regular covering map $\tilde{\rho}$ with the automorphism group Γ . Let $\Gamma_i, i \in I$ be a sequence of subgroups of Γ .
 - The projection p̃_i: Υ̃ × Γ_i \Γ → Υ̃ induces a covering p_i: (Υ̃ × Γ_i \Γ)/Γ → Υ̃/Γ = Υ where Γ acts by

 $\gamma(\tilde{x}, \Gamma_i \gamma_i) = (\gamma(\tilde{x}), \Gamma_i \gamma_i \gamma^{-1})$

- This is same as $\tilde{Y}/\Gamma_i \to Y$ since Γ acts transitively on both spaces.
- ► Fiber-products $\tilde{Y} \times \prod_{i \in I} \Gamma_i \setminus \Gamma \to \tilde{Y}$. Define left-action of Γ by

 $\gamma(\tilde{x},(\Gamma_i\gamma_i)_{i\in I})=(\gamma(\tilde{x}),(\Gamma_i\gamma_i\gamma^{-1})),\gamma\in\Gamma.$

We obtain the fiber-product

$$(\tilde{Y} \times \prod_{i \in I} \Gamma_i \backslash \Gamma) / \Gamma \to \tilde{Y} / \Gamma = Y.$$

イロト 不得 とくほ とくほとう ほ

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

- We can let
 be a discrete group acting on a manifold
 Y
 properly discontinuously but maybe not freely.
- One can find a collection X_i of coverings so that
 - ▶ $\Gamma_i = \{\gamma \in \Gamma | \gamma(X_i) = X_i\}$ is finite and if $\gamma(X_i) \cap X_i \neq \emptyset$, then γ is in Γ_i . ▶ The images of X_i cover \tilde{Y}/Γ .
- $Y = \tilde{Y}/\Gamma$ has an *orbifold quotient* of \tilde{Y} and Y is said to be *developable*.
- In the above example, we can let Γ be a discrete group acting on a manifold *Y* properly discontinuously but maybe not freely. Y^f is then the fiber product of orbifold maps *Y*/Γ_i → Y.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach Path-approach to the

(ロ) (四) (注) (注) (注) (三) (の)

- We can let Γ be a discrete group acting on a manifold Ỹ properly discontinuously but maybe not freely.
- One can find a collection X_i of coverings so that
 - $\Gamma_i = \{\gamma \in \Gamma | \gamma(X_i) = X_i\}$ is finite and if $\gamma(X_i) \cap X_i \neq \emptyset$, then γ is in Γ_i .
 - The images of X_i cover \tilde{Y}/Γ .
- $Y = \tilde{Y}/\Gamma$ has an *orbifold quotient* of \tilde{Y} and Y is said to be *developable*.
- In the above example, we can let Γ be a discrete group acting on a manifold *Y* properly discontinuously but maybe not freely. Y^f is then the fiber product of orbifold maps *Y*/Γ_i → Y.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- We can let Γ be a discrete group acting on a manifold Ỹ properly discontinuously but maybe not freely.
- One can find a collection X_i of coverings so that
 - ► $\Gamma_i = \{\gamma \in \Gamma | \gamma(X_i) = X_i\}$ is finite and if $\gamma(X_i) \cap X_i \neq \emptyset$, then γ is in Γ_i .
 - The images of X_i cover \tilde{Y}/Γ .
- $Y = \tilde{Y}/\Gamma$ has an *orbifold quotient* of \tilde{Y} and Y is said to be *developable*.
- In the above example, we can let Γ be a discrete group acting on a manifold *Ỹ* properly discontinuously but maybe not freely. *Y^f* is then the fiber product of orbifold maps *Ỹ*/Γ_i → *Y*.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- We can let Γ be a discrete group acting on a manifold Ỹ properly discontinuously but maybe not freely.
- One can find a collection X_i of coverings so that
 - $\Gamma_i = \{\gamma \in \Gamma | \gamma(X_i) = X_i\}$ is finite and if $\gamma(X_i) \cap X_i \neq \emptyset$, then γ is in Γ_i .
 - The images of X_i cover \tilde{Y}/Γ .
- $Y = \tilde{Y}/\Gamma$ has an *orbifold quotient* of \tilde{Y} and Y is said to be *developable*.
- In the above example, we can let Γ be a discrete group acting on a manifold *Y* properly discontinuously but maybe not freely. Y^f is then the fiber product of orbifold maps *Y*/Γ_i → Y.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- We can let Γ be a discrete group acting on a manifold Ỹ properly discontinuously but maybe not freely.
- One can find a collection X_i of coverings so that
 - $\Gamma_i = \{\gamma \in \Gamma | \gamma(X_i) = X_i\}$ is finite and if $\gamma(X_i) \cap X_i \neq \emptyset$, then γ is in Γ_i .
 - The images of X_i cover \tilde{Y}/Γ .
- $Y = \tilde{Y}/\Gamma$ has an *orbifold quotient* of \tilde{Y} and Y is said to be *developable*.
- In the above example, we can let Γ be a discrete group acting on a manifold *Ỹ* properly discontinuously but maybe not freely. *Y^f* is then the fiber product of orbifold maps *Ỹ*/Γ_i → *Y*.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- We can let Γ be a discrete group acting on a manifold Ỹ properly discontinuously but maybe not freely.
- One can find a collection X_i of coverings so that
 - $\Gamma_i = \{\gamma \in \Gamma | \gamma(X_i) = X_i\}$ is finite and if $\gamma(X_i) \cap X_i \neq \emptyset$, then γ is in Γ_i .
 - The images of X_i cover \tilde{Y}/Γ .
- $Y = \tilde{Y}/\Gamma$ has an *orbifold quotient* of \tilde{Y} and Y is said to be *developable*.
- In the above example, we can let Γ be a discrete group acting on a manifold *Ỹ* properly discontinuously but maybe not freely. *Y^f* is then the fiber product of orbifold maps *Ỹ*/Γ_i → *Y*.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

\blacktriangleright A *mirror point* is a singular point with the stablizer group \mathbb{Z}_2 acting as a reflection group.

- One can double an orbifold *M* with mirror points so that mirror-points disappear. (The double covering orbifold is orientable.)
 - Let V_i be the neighborhoods of *M* with charts (U_i, G_i, ϕ_i) .
 - Define new charts (U_i × {−1, 1}, G_i, φ_i^{*}) where G_i acts by (g(x, l) = (g(x), s(g)) where s(g) is 1 if g is orientation-preserving and −1 if not and φ_i^{*} is the quotient map.
 - For each embedding, i : (W, H, ψ) → (U_i, G_i, φ_i) we define a lift (W × {−1, 1}, H, ψ^{*}) → (U_i × {−1, 1}, G_i, φ^{*}_i. This defines the gluing.
 - The result is the doubled orbifold and the local group actions are orientation preserving.
 - The double covers the original orbifold with Galois group Z₂.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- A mirror point is a singular point with the stablizer group \mathbb{Z}_2 acting as a reflection group.
- One can double an orbifold *M* with mirror points so that mirror-points disappear. (The double covering orbifold is orientable.)
 - Let V_i be the neighborhoods of M with charts (U_i, G_i, ϕ_i) .
 - Define new charts (U_i × {−1, 1}, G_i, φ_i^{*}) where G_i acts by (g(x, I) = (g(x), s(g)I) where s(g) is 1 if g is orientation-preserving and −1 if not and φ_i^{*} is the quotient map.
 - For each embedding, $i : (W, H, \psi) \rightarrow (U_i, G_i, \phi_i)$ we define a lift $(W \times \{-1, 1\}, H, \psi^*) \rightarrow (U_i \times \{-1, 1\}, G_i, \phi_i^*$. This defines the gluing.
 - The result is the doubled orbifold and the local group actions are orientation preserving.
 - The double covers the original orbifold with Galois group Z₂.

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- A mirror point is a singular point with the stablizer group \mathbb{Z}_2 acting as a reflection group.
- One can double an orbifold *M* with mirror points so that mirror-points disappear. (The double covering orbifold is orientable.)
 - Let V_i be the neighborhoods of M with charts (U_i, G_i, ϕ_i) .
 - Define new charts (U_i × {−1, 1}, G_i, φ_i^{*}) where G_i acts by (g(x, I) = (g(x), s(g)I) where s(g) is 1 if g is orientation-preserving and −1 if not and φ_i^{*} is the quotient map.
 - For each embedding, $i : (W, H, \psi) \rightarrow (U_i, G_i, \phi_i)$ we define a lift $(W \times \{-1, 1\}, H, \psi^*) \rightarrow (U_i \times \{-1, 1\}, G_i, \phi_i^*$. This defines the gluing.
 - The result is the doubled orbifold and the local group actions are orientation preserving.
 - The double covers the original orbifold with Galois group Z₂.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- A mirror point is a singular point with the stablizer group \mathbb{Z}_2 acting as a reflection group.
- One can double an orbifold *M* with mirror points so that mirror-points disappear. (The double covering orbifold is orientable.)
 - Let V_i be the neighborhoods of M with charts (U_i, G_i, ϕ_i) .
 - Define new charts (U_i × {−1, 1}, G_i, φ_i^{*}) where G_i acts by (g(x, I) = (g(x), s(g)I) where s(g) is 1 if g is orientation-preserving and −1 if not and φ_i^{*} is the quotient map.
 - For each embedding, i : (W, H, ψ) → (U_i, G_i, φ_i) we define a lift (W × {−1, 1}, H, ψ^{*}) → (U_i × {−1, 1}, G_i, φ_i^{*}. This defines the gluing.
 - The result is the doubled orbifold and the local group actions are orientation preserving.
 - The double covers the original orbifold with Galois group Z₂.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- A mirror point is a singular point with the stablizer group \mathbb{Z}_2 acting as a reflection group.
- One can double an orbifold *M* with mirror points so that mirror-points disappear. (The double covering orbifold is orientable.)
 - Let V_i be the neighborhoods of M with charts (U_i, G_i, ϕ_i) .
 - Define new charts (U_i × {−1, 1}, G_i, φ_i^{*}) where G_i acts by (g(x, I) = (g(x), s(g)I) where s(g) is 1 if g is orientation-preserving and −1 if not and φ_i^{*} is the quotient map.
 - For each embedding, i: (W, H, ψ) → (U_i, G_i, φ_i) we define a lift (W × {−1, 1}, H, ψ^{*}) → (U_i × {−1, 1}, G_i, φ_i^{*}. This defines the gluing.
 - The result is the doubled orbifold and the local group actions are orientation preserving.
 - The double covers the original orbifold with Galois group Z₂.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- A mirror point is a singular point with the stablizer group \mathbb{Z}_2 acting as a reflection group.
- One can double an orbifold *M* with mirror points so that mirror-points disappear. (The double covering orbifold is orientable.)
 - Let V_i be the neighborhoods of M with charts (U_i, G_i, ϕ_i) .
 - Define new charts (U_i × {−1, 1}, G_i, φ_i^{*}) where G_i acts by (g(x, I) = (g(x), s(g)I) where s(g) is 1 if g is orientation-preserving and −1 if not and φ_i^{*} is the quotient map.
 - For each embedding, $i : (W, H, \psi) \rightarrow (U_i, G_i, \phi_i)$ we define a lift $(W \times \{-1, 1\}, H, \psi^*) \rightarrow (U_i \times \{-1, 1\}, G_i, \phi_i^*$. This defines the gluing.
 - The result is the doubled orbifold and the local group actions are orientation preserving.
 - The double covers the original orbifold with Galois group Z₂.

Section 3: Topology of orbifolds

S. Choi

Introductior

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- A mirror point is a singular point with the stablizer group \mathbb{Z}_2 acting as a reflection group.
- One can double an orbifold *M* with mirror points so that mirror-points disappear. (The double covering orbifold is orientable.)
 - Let V_i be the neighborhoods of M with charts (U_i, G_i, ϕ_i) .
 - Define new charts (U_i × {−1, 1}, G_i, φ_i^{*}) where G_i acts by (g(x, I) = (g(x), s(g)I) where s(g) is 1 if g is orientation-preserving and −1 if not and φ_i^{*} is the quotient map.
 - For each embedding, $i : (W, H, \psi) \rightarrow (U_i, G_i, \phi_i)$ we define a lift $(W \times \{-1, 1\}, H, \psi^*) \rightarrow (U_i \times \{-1, 1\}, G_i, \phi_i^*$. This defines the gluing.
 - The result is the doubled orbifold and the local group actions are orientation preserving.
 - ► The double covers the original orbifold with Galois group Z₂.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach Path-approach to the

In the abstract definition, we simply let X'₀ be the orientation double cover of X₀ where G-acts on X' preserving the orientation.

イロト 不得 とくほ とくほとう ほ

For example, if we double a corner-reflector, it becomes a cone-point.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach Path-approach to the universal covering spaces

In the abstract definition, we simply let X'₀ be the orientation double cover of X₀ where G-acts on X' preserving the orientation.

イロト 不得 とくほ とくほとう ほ

► For example, if we double a corner-reflector, it becomes a cone-point.

Clearly, manifolds are orbifolds. Manifold coverings provide examples.

- Let Y be a tear-drop orbifold with a cone-point of order n. Then this cannot be covered by any other type of an orbifold and hence is a universal cover of itself.
- A sphere Y with two cone-points of order p and q which are relatively prime.
- Choose a cyclic action of Y of order m fixing the cone-point. Then Y/Zm is an orbifold with two cone-points of order pm and qm.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

- Clearly, manifolds are orbifolds. Manifold coverings provide examples.
- Let Y be a tear-drop orbifold with a cone-point of order n. Then this cannot be covered by any other type of an orbifold and hence is a universal cover of itself.
- A sphere Y with two cone-points of order p and q which are relatively prime.
- Choose a cyclic action of Y of order m fixing the cone-point. Then Y/Zm is an orbifold with two cone-points of order pm and qm.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

- Clearly, manifolds are orbifolds. Manifold coverings provide examples.
- Let Y be a tear-drop orbifold with a cone-point of order n. Then this cannot be covered by any other type of an orbifold and hence is a universal cover of itself.
- A sphere Y with two cone-points of order p and q which are relatively prime.
- Choose a cyclic action of Y of order m fixing the cone-point. Then Y/Zm is an orbifold with two cone-points of order pm and qm.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

- Clearly, manifolds are orbifolds. Manifold coverings provide examples.
- Let Y be a tear-drop orbifold with a cone-point of order n. Then this cannot be covered by any other type of an orbifold and hence is a universal cover of itself.
- A sphere Y with two cone-points of order p and q which are relatively prime.
- Choose a cyclic action of Y of order m fixing the cone-point. Then Y/Zm is an orbifold with two cone-points of order pm and qm.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Outline

Introduction

opology of 2-orbifolds Topology of 2-orbifolds Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the universal covering spaces

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

A universal cover of an orbifold Y is an orbifold Y covering any covering orbifold of Y.

- We will now show that the universal covering orbifold exists by using fiber-product constructions. For this we need to discuss elementary neighborhoods. An *elementary* neighborhood is an open subset with a chart components of whose inverse image are open subsets with charts.
- We can take the model open set in the chart to be simply connected.
- Then such an open set is elementary.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- A universal cover of an orbifold Y is an orbifold Y
 covering any covering orbifold of Y.
- We will now show that the universal covering orbifold exists by using fiber-product constructions. For this we need to discuss elementary neighborhoods. An *elementary* neighborhood is an open subset with a chart components of whose inverse image are open subsets with charts.
- We can take the model open set in the chart to be simply connected.
- Then such an open set is elementary.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- A universal cover of an orbifold Y is an orbifold Y
 covering any covering orbifold of Y.
- We will now show that the universal covering orbifold exists by using fiber-product constructions. For this we need to discuss elementary neighborhoods. An *elementary* neighborhood is an open subset with a chart components of whose inverse image are open subsets with charts.
- We can take the model open set in the chart to be simply connected.

Then such an open set is elementary.

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- A universal cover of an orbifold Y is an orbifold Y
 covering any covering orbifold of Y.
- We will now show that the universal covering orbifold exists by using fiber-product constructions. For this we need to discuss elementary neighborhoods. An *elementary* neighborhood is an open subset with a chart components of whose inverse image are open subsets with charts.
- We can take the model open set in the chart to be simply connected.
- Then such an open set is elementary.

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the iniversal covering spaces

• If V is an orbifold D^n/G for a finite group G.

- Any covering is Dⁿ/G₁ for a subgroup G₁ of G.
- Given two covering orbifolds Dⁿ/G₁ and V/G₂, a covering morphism is induced by g ∈ G so that gG₁g⁻¹ ⊂ G₂.
- The covering morphism is in one-to-one correspondence with the double cosets of form G₂gG₁ for g such that gG₁g⁻¹ ⊂ G₂.
- The covering automorphism group of D^n/G' is given by $N(G_1)/G_1$.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − りへぐ

• If V is an orbifold D^n/G for a finite group G.

• Any covering is D^n/G_1 for a subgroup G_1 of G.

- Given two covering orbifolds Dⁿ/G₁ and V/G₂, a covering morphism is induced by g ∈ G so that gG₁g⁻¹ ⊂ G₂.
- The covering morphism is in one-to-one correspondence with the double cosets of form G₂gG₁ for g such that gG₁g⁻¹ ⊂ G₂.
- ► The covering automorphism group of Dⁿ/G' is given by N(G₁)/G₁.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the iniversal covering spaces

- If V is an orbifold D^n/G for a finite group G.
 - Any covering is D^n/G_1 for a subgroup G_1 of G.
 - Given two covering orbifolds Dⁿ/G₁ and V/G₂, a covering morphism is induced by g ∈ G so that gG₁g⁻¹ ⊂ G₂.
 - The covering morphism is in one-to-one correspondence with the double cosets of form G₂gG₁ for g such that gG₁g⁻¹ ⊂ G₂.
 - The covering automorphism group of D^n/G' is given by $N(G_1)/G_1$.

・ロト・日本・日本・日本・日本・日本

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the iniversal covering spaces

- If V is an orbifold D^n/G for a finite group G.
 - Any covering is D^n/G_1 for a subgroup G_1 of G.
 - Given two covering orbifolds Dⁿ/G₁ and V/G₂, a covering morphism is induced by g ∈ G so that gG₁g⁻¹ ⊂ G₂.
 - The covering morphism is in one-to-one correspondence with the double cosets of form G₂gG₁ for g such that gG₁g⁻¹ ⊂ G₂.
 - The covering automorphism group of Dⁿ/G' is given by N(G₁)/G₁.

・ロト・西ト・ヨト・ヨー シタの

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the iniversal covering spaces

- If V is an orbifold D^n/G for a finite group G.
 - Any covering is D^n/G_1 for a subgroup G_1 of G.
 - Given two covering orbifolds Dⁿ/G₁ and V/G₂, a covering morphism is induced by g ∈ G so that gG₁g⁻¹ ⊂ G₂.
 - The covering morphism is in one-to-one correspondence with the double cosets of form G₂gG₁ for g such that gG₁g⁻¹ ⊂ G₂.

イロト イポト イヨト イヨト 一日

• The covering automorphism group of D^n/G' is given by $N(G_1)/G_1$.

Given coverings p_i : V/G_i → V/G for G_i ⊂ G for V homeomorphic to a cell, we form a fiber-product.

 $V^f = (V imes \prod_{i \in I} G_i ackslash G) / G o V / G$

If we choose all subgroups G_i of G, then any covering of V/G is covered by V^f induced by projection to G_i-factor (universal property)

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Given coverings p_i : V/G_i → V/G for G_i ⊂ G for V homeomorphic to a cell, we form a fiber-product.

 $V^f = (V imes \prod_{i \in I} G_i ackslash G) / G o V / G$

イロト 不得 とくき とくき とうき

If we choose all subgroups G_i of G, then any covering of V/G is covered by V^f induced by projection to G_i-factor (universal property)

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

▶ Let Y_i , $i \in I$ be a collection of the orbifold-coverings of Y.

- We cover Y by elementary neighborhoods V_j for j ∈ J forming a good cover.
- We take inverse images p_i⁻¹(V_j) which is a disjoint union of V/G_k for some finite group G_k.
- Fix *j* and we form one fiber product by V/G_k by taking one from $p_i^{-1}(V_j)$ for each *i*.
- Fix j and we form a fiber-product of p_i⁻¹(V_j), which will essentially be the disjoint union of the above fiber products indiced by the product of the component indices for each i.
- Over regular points of V_i, this is the ordinary fiber-product.

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- Let Y_i , $i \in I$ be a collection of the orbifold-coverings of Y.
- We cover Y by elementary neighborhoods V_j for j ∈ J forming a good cover.
- We take inverse images p_i⁻¹(V_j) which is a disjoint union of V/G_k for some finite group G_k.
- Fix *j* and we form one fiber product by V/G_k by taking one from $p_i^{-1}(V_j)$ for each *i*.
- Fix j and we form a fiber-product of p_i⁻¹(V_j), which will essentially be the disjoint union of the above fiber products indiced by the product of the component indices for each i.
- Over regular points of V_i, this is the ordinary fiber-product.

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- Let $Y_i, i \in I$ be a collection of the orbifold-coverings of Y.
- We cover Y by elementary neighborhoods V_j for j ∈ J forming a good cover.
- We take inverse images p_i⁻¹(V_j) which is a disjoint union of V/G_k for some finite group G_k.
- Fix *j* and we form one fiber product by V/G_k by taking one from $p_i^{-1}(V_j)$ for each *i*.
- Fix j and we form a fiber-product of p_i⁻¹(V_j), which will essentially be the disjoint union of the above fiber products indiced by the product of the component indices for each i.
- Over regular points of V_i, this is the ordinary fiber-product.

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Let $Y_i, i \in I$ be a collection of the orbifold-coverings of Y.
- We cover Y by elementary neighborhoods V_j for j ∈ J forming a good cover.
- We take inverse images p_i⁻¹(V_j) which is a disjoint union of V/G_k for some finite group G_k.
- Fix *j* and we form one fiber product by V/G_k by taking one from $p_i^{-1}(V_j)$ for each *i*.
- Fix j and we form a fiber-product of p_i⁻¹(V_j), which will essentially be the disjoint union of the above fiber products indiced by the product of the component indices for each i.
- Over regular points of V_i, this is the ordinary fiber-product.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- Let Y_i , $i \in I$ be a collection of the orbifold-coverings of Y.
- We cover Y by elementary neighborhoods V_j for j ∈ J forming a good cover.
- We take inverse images p_i⁻¹(V_j) which is a disjoint union of V/G_k for some finite group G_k.
- Fix *j* and we form one fiber product by V/G_k by taking one from $p_i^{-1}(V_j)$ for each *i*.
- Fix j and we form a fiber-product of p_i⁻¹(V_i), which will essentially be the disjoint union of the above fiber products indiced by the product of the component indices for each i.
- Over regular points of V_i , this is the ordinary fiber-product.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- Let $Y_i, i \in I$ be a collection of the orbifold-coverings of Y.
- We cover Y by elementary neighborhoods V_j for j ∈ J forming a good cover.
- We take inverse images p_i⁻¹(V_j) which is a disjoint union of V/G_k for some finite group G_k.
- Fix *j* and we form one fiber product by V/G_k by taking one from p_i⁻¹(V_j) for each *i*.
- Fix j and we form a fiber-product of p_i⁻¹(V_j), which will essentially be the disjoint union of the above fiber products indiced by the product of the component indices for each i.
- Over regular points of V_i, this is the ordinary fiber-product.

Section 3: Topology of orbifolds

S. Choi

Introductior

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- ▶ Now, we wish to patch these up using imbeddings. Let $U \rightarrow V_j \cap V_k$. We can assume $U = V_i \cap V_k$ which has a convex cell as a cover.
 - We form the fiber products of $p_i^{-1}(U)$ as before which can be realized in V_j and V_k .
 - Over the regular points in V_j and V_k, they are isomorphic. Then they are isomorphic.
 - Thus, each component of the fiber-product can be identified.
- By patching, we obtain a covering Y^f of Y with the covering map p^f .

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- ▶ Now, we wish to patch these up using imbeddings. Let $U \rightarrow V_j \cap V_k$. We can assume $U = V_i \cap V_k$ which has a convex cell as a cover.
 - We form the fiber products of $p_i^{-1}(U)$ as before which can be realized in V_j and V_k .
 - Over the regular points in V_j and V_k, they are isomorphic. Then they are isomorphic.
 - Thus, each component of the fiber-product can be identified.
- By patching, we obtain a covering Y^f of Y with the covering map p^f .

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- ▶ Now, we wish to patch these up using imbeddings. Let $U \rightarrow V_j \cap V_k$. We can assume $U = V_j \cap V_k$ which has a convex cell as a cover.
 - We form the fiber products of $p_i^{-1}(U)$ as before which can be realized in V_j and V_k .
 - Over the regular points in V_j and V_k, they are isomorphic. Then they are isomorphic.
 - Thus, each component of the fiber-product can be identified.
- By patching, we obtain a covering Y^f of Y with the covering map p^f.

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- ▶ Now, we wish to patch these up using imbeddings. Let $U \rightarrow V_j \cap V_k$. We can assume $U = V_j \cap V_k$ which has a convex cell as a cover.
 - We form the fiber products of $p_i^{-1}(U)$ as before which can be realized in V_j and V_k .
 - Over the regular points in V_j and V_k, they are isomorphic. Then they are isomorphic.
 - Thus, each component of the fiber-product can be identified.

By patching, we obtain a covering Y^f of Y with the covering map p^f .

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- ▶ Now, we wish to patch these up using imbeddings. Let $U \rightarrow V_j \cap V_k$. We can assume $U = V_j \cap V_k$ which has a convex cell as a cover.
 - We form the fiber products of $p_i^{-1}(U)$ as before which can be realized in V_j and V_k .

・ロット (四) ・ (日) ・ (日)

- Over the regular points in V_j and V_k, they are isomorphic. Then they are isomorphic.
- Thus, each component of the fiber-product can be identified.
- By patching, we obtain a covering Y^f of Y with the covering map p^f .

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Let I be the unit interval. Make two endpoints into silvered points.

- Then I₁ = I is double covered by S¹ with the deck transformation group Z₂. Let p₁ denote the covering map.
- ▶ $I_2 = I$ is also covered by *I* by a map $x \mapsto 2x$ for $x \in [0, 1/2]$ and $x \mapsto 2 2x$ for $x \in [1/2, 1]$. Let p_2 denote this covering map.
- Then the fiber product of p₁ and p₂ is what?
- Cover *I* by $A_1 = [0, \epsilon), A_2 = (\epsilon/2, 1 \epsilon/2), A_3 = (\epsilon, 1].$
 - Over A₁, I₁ has an open interval and I₂ has two half-open intervals. The fiber-product is a union of two copies of open intervals.
 - Over A₂, the fiber product is a union of four copies of open intervals
 - Over A₃, the fiber product is a union of two copies of open intervals

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- ▶ Let *I* be the unit interval. Make two endpoints into silvered points.
- Then I₁ = I is double covered by S¹ with the deck transformation group Z₂. Let p₁ denote the covering map.
- ▶ $I_2 = I$ is also covered by *I* by a map $x \mapsto 2x$ for $x \in [0, 1/2]$ and $x \mapsto 2 2x$ for $x \in [1/2, 1]$. Let p_2 denote this covering map.
- Then the fiber product of p₁ and p₂ is what?
- Cover *I* by $A_1 = [0, \epsilon), A_2 = (\epsilon/2, 1 \epsilon/2), A_3 = (\epsilon, 1].$
 - Over A₁, I₁ has an open interval and I₂ has two half-open intervals. The fiber-product is a union of two copies of open intervals.
 - Over A₂, the fiber product is a union of four copies of open intervals
 - Over A₃, the fiber product is a union of two copies of open intervals

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Let I be the unit interval. Make two endpoints into silvered points.
- Then I₁ = I is double covered by S¹ with the deck transformation group Z₂. Let p₁ denote the covering map.
- ▶ $I_2 = I$ is also covered by *I* by a map $x \mapsto 2x$ for $x \in [0, 1/2]$ and $x \mapsto 2 2x$ for $x \in [1/2, 1]$. Let p_2 denote this covering map.
- Then the fiber product of p₁ and p₂ is what?
- ► Cover I by A₁ = [0, ε), A₂ = (ε/2, 1 ε/2), A₃ = (ε, 1].
 - Over A₁, I₁ has an open interval and I₂ has two half-open intervals. The fiber-product is a union of two copies of open intervals.
 - Over A₂, the fiber product is a union of four copies of open intervals
 - Over A₃, the fiber product is a union of two copies of open intervals

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Let I be the unit interval. Make two endpoints into silvered points.
- Then I₁ = I is double covered by S¹ with the deck transformation group Z₂. Let p₁ denote the covering map.
- ▶ $I_2 = I$ is also covered by *I* by a map $x \mapsto 2x$ for $x \in [0, 1/2]$ and $x \mapsto 2 2x$ for $x \in [1/2, 1]$. Let p_2 denote this covering map.
- Then the fiber product of p₁ and p₂ is what?
- ► Cover I by A₁ = [0, ε), A₂ = (ε/2, 1 − ε/2), A₃ = (ε, 1].
 - Over A₁, I₁ has an open interval and I₂ has two half-open intervals. The fiber-product is a union of two copies of open intervals.
 - Over A₂, the fiber product is a union of four copies of open interval.
 - Over A₃, the fiber product is a union of two copies of open intervals

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Let I be the unit interval. Make two endpoints into silvered points.
- Then I₁ = I is double covered by S¹ with the deck transformation group Z₂. Let p₁ denote the covering map.
- ▶ $I_2 = I$ is also covered by *I* by a map $x \mapsto 2x$ for $x \in [0, 1/2]$ and $x \mapsto 2 2x$ for $x \in [1/2, 1]$. Let p_2 denote this covering map.
- Then the fiber product of p₁ and p₂ is what?
- ► Cover / by A₁ = [0, ε), A₂ = (ε/2, 1 ε/2), A₃ = (ε, 1].
 - Over A₁, I₁ has an open interval and I₂ has two half-open intervals. The fiber-product is a union of two copies of open intervals.
 - Over A₂, the fiber product is a union of four copies of open intervals.
 - Over A₃, the fiber product is a union of two copies of open intervals.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Let I be the unit interval. Make two endpoints into silvered points.
- Then I₁ = I is double covered by S¹ with the deck transformation group Z₂. Let p₁ denote the covering map.
- ▶ $I_2 = I$ is also covered by *I* by a map $x \mapsto 2x$ for $x \in [0, 1/2]$ and $x \mapsto 2 2x$ for $x \in [1/2, 1]$. Let p_2 denote this covering map.
- Then the fiber product of p₁ and p₂ is what?
- ► Cover I by A₁ = [0, ε), A₂ = (ε/2, 1 ε/2), A₃ = (ε, 1].
 - Over A₁, I₁ has an open interval and I₂ has two half-open intervals. The fiber-product is a union of two copies of open intervals.
 - Over A₂, the fiber product is a union of four copies of open intervals
 - Over A₃, the fiber product is a union of two copies of open intervals.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Let I be the unit interval. Make two endpoints into silvered points.
- Then I₁ = I is double covered by S¹ with the deck transformation group Z₂. Let p₁ denote the covering map.
- ▶ $I_2 = I$ is also covered by *I* by a map $x \mapsto 2x$ for $x \in [0, 1/2]$ and $x \mapsto 2 2x$ for $x \in [1/2, 1]$. Let p_2 denote this covering map.
- Then the fiber product of p₁ and p₂ is what?
- ► Cover I by A₁ = [0, ε), A₂ = (ε/2, 1 ε/2), A₃ = (ε, 1].
 - Over A₁, I₁ has an open interval and I₂ has two half-open intervals. The fiber-product is a union of two copies of open intervals.
 - Over A₂, the fiber product is a union of four copies of open intervals.
 - Over A₃, the fiber product is a union of two copies of open intervals.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Let I be the unit interval. Make two endpoints into silvered points.
- Then I₁ = I is double covered by S¹ with the deck transformation group Z₂. Let p₁ denote the covering map.
- ▶ $I_2 = I$ is also covered by *I* by a map $x \mapsto 2x$ for $x \in [0, 1/2]$ and $x \mapsto 2 2x$ for $x \in [1/2, 1]$. Let p_2 denote this covering map.
- Then the fiber product of p₁ and p₂ is what?
- ► Cover I by A₁ = [0, ε), A₂ = (ε/2, 1 ε/2), A₃ = (ε, 1].
 - Over A₁, I₁ has an open interval and I₂ has two half-open intervals. The fiber-product is a union of two copies of open intervals.
 - Over A₂, the fiber product is a union of four copies of open intervals.
 - Over A₃, the fiber product is a union of two copies of open intervals.

Section 3: Topology of orbifolds

S. Choi

Introduction

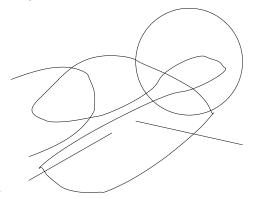
Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

▶ By pasting considerations, we obtain a circle mapping 4-1 almost everywhere to *I*.



Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the iniversal covering spaces

・ロト・日本・日本・日本・日本・日本

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the iniversal covering spaces

▶ By pasting considerations, we obtain a circle mapping 4-1 almost everywhere to *I*.

イロト イヨト イヨト イヨト 二百一

- The collection of cover of an orbifold is countable upto isomorphisms preserving base points. (Cover by a countable good cover and for each elementary neighborhood, there is a countable choice.)
- Take a fiber product of Y_i, i = 1, 2, 3, The fiber-product Y with a base point *. We take a connected component.
- The for any cover Y_i , there is a morphism $\tilde{Y} \to Y_i$.
- The universal cover is unique up to covering orbifold-isomorphisms by the universality property.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- The collection of cover of an orbifold is countable upto isomorphisms preserving base points. (Cover by a countable good cover and for each elementary neighborhood, there is a countable choice.)
- Take a fiber product of Y_i, i = 1, 2, 3, The fiber-product Ỹ with a base point *. We take a connected component.
- The for any cover Y_i , there is a morphism $\tilde{Y} \to Y_i$.
- The universal cover is unique up to covering orbifold-isomorphisms by the universality property.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- The collection of cover of an orbifold is countable upto isomorphisms preserving base points. (Cover by a countable good cover and for each elementary neighborhood, there is a countable choice.)
- Take a fiber product of Y_i, i = 1, 2, 3, The fiber-product Ỹ with a base point *. We take a connected component.
- The for any cover Y_i , there is a morphism $\tilde{Y} \to Y_i$.
- The universal cover is unique up to covering orbifold-isomorphisms by the universality property.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- The collection of cover of an orbifold is countable upto isomorphisms preserving base points. (Cover by a countable good cover and for each elementary neighborhood, there is a countable choice.)
- Take a fiber product of Y_i, i = 1, 2, 3, The fiber-product Ỹ with a base point *. We take a connected component.
- The for any cover Y_i , there is a morphism $\tilde{Y} \to Y_i$.
- The universal cover is unique up to covering orbifold-isomorphisms by the universality property.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

The group of automorphisms of Υ̃ is called the fundamental group and is denoted by π₁(Y).

▶ $\pi_1(Y)$ acts transitively on \tilde{Y} on fibers of $\tilde{p}^{-1}(x)$ for each *x* in *Y*. (To prove this, we choose one covering of *Y* from a class of base-point preserving isomorphism classes of coverings of *Y*. Then the universal cover with any base-point occurs will occur in the list and hence a map from \tilde{Y} to it preserving base-points.)

$$\blacktriangleright \quad \tilde{Y}/\pi_1(Y) = Y.$$

- Any covering of Y is of form \tilde{Y}/Γ for a subgroup Γ of $\pi_1(Y)$.
- The isomorphism classes of coverings of Y is the set of conjugacy classes of subgroups of π₁(Y).

Section 3: Topology of orbifolds

S. Choi

Introductior

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- The group of automorphisms of *Y* is called the fundamental group and is denoted by π₁(Y).
- π₁(Y) acts transitively on Ỹ on fibers of p̃⁻¹(x) for each x in Y. (To prove this, we choose one covering of Y from a class of base-point preserving isomorphism classes of coverings of Y. Then the universal cover with any base-point occurs will occur in the list and hence a map from Ỹ to it preserving base-points.)
- $\tilde{Y}/\pi_1(Y) = Y.$
- The isomorphism classes of coverings of Y is the set of conjugacy classes of subgroups of π₁(Y).

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- The group of automorphisms of *Y* is called the fundamental group and is denoted by π₁(Y).
- π₁(Y) acts transitively on Ỹ on fibers of p̃⁻¹(x) for each x in Y. (To prove this, we choose one covering of Y from a class of base-point preserving isomorphism classes of coverings of Y. Then the universal cover with any base-point occurs will occur in the list and hence a map from Ỹ to it preserving base-points.)
- $\tilde{Y}/\pi_1(Y) = Y.$
- Any covering of Y is of form \tilde{Y}/Γ for a subgroup Γ of $\pi_1(Y)$.
- The isomorphism classes of coverings of Y is the set of conjugacy classes of subgroups of π₁(Y).

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- The group of automorphisms of *Y* is called the fundamental group and is denoted by π₁(Y).
- π₁(Y) acts transitively on Ỹ on fibers of p̃⁻¹(x) for each x in Y. (To prove this, we choose one covering of Y from a class of base-point preserving isomorphism classes of coverings of Y. Then the universal cover with any base-point occurs will occur in the list and hence a map from Ỹ to it preserving base-points.)
- $\tilde{Y}/\pi_1(Y) = Y.$
- Any covering of Y is of form \tilde{Y}/Γ for a subgroup Γ of $\pi_1(Y)$.

The isomorphism classes of coverings of Y is the set of conjugacy classes of subgroups of π₁(Y).

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- The group of automorphisms of *Y* is called the fundamental group and is denoted by π₁(Y).
- π₁(Y) acts transitively on Ỹ on fibers of p̃⁻¹(x) for each x in Y. (To prove this, we choose one covering of Y from a class of base-point preserving isomorphism classes of coverings of Y. Then the universal cover with any base-point occurs will occur in the list and hence a map from Ỹ to it preserving base-points.)

$$\check{Y}/\pi_1(Y)=Y.$$

- Any covering of Y is of form \tilde{Y}/Γ for a subgroup Γ of $\pi_1(Y)$.
- The isomorphism classes of coverings of Y is the set of conjugacy classes of subgroups of π₁(Y).

Section 3: Topology of orbifolds

S. Choi

Introductior

Topology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the universal covering spaces

• The group of automorphism is $N(\Gamma)/\Gamma$.

- A covering is regular if and only if Γ is normal.
- A good orbifold is an orbifold with a cover that is a manifold.
- An very good orbifold is an orbifold with a finite cover that is a manifold.
- A good orbifold has a simply-connected manifold as a universal covering space.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the universal covering spaces

• The group of automorphism is $N(\Gamma)/\Gamma$.

A covering is regular if and only if Γ is normal.

- A good orbifold is an orbifold with a cover that is a manifold.
- An very good orbifold is an orbifold with a finite cover that is a manifold.
- A good orbifold has a simply-connected manifold as a universal covering space.

• The group of automorphism is $N(\Gamma)/\Gamma$.

- A covering is regular if and only if Γ is normal.
- A good orbifold is an orbifold with a cover that is a manifold.
- An very good orbifold is an orbifold with a finite cover that is a manifold.
- A good orbifold has a simply-connected manifold as a universal covering space.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

• The group of automorphism is $N(\Gamma)/\Gamma$.

- A covering is regular if and only if Γ is normal.
- A good orbifold is an orbifold with a cover that is a manifold.
- An very good orbifold is an orbifold with a finite cover that is a manifold.
- A good orbifold has a simply-connected manifold as a universal covering space.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

• The group of automorphism is $N(\Gamma)/\Gamma$.

- A covering is regular if and only if Γ is normal.
- A good orbifold is an orbifold with a cover that is a manifold.
- An very good orbifold is an orbifold with a finite cover that is a manifold.
- A good orbifold has a simply-connected manifold as a universal covering space.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Given two orbifolds Y_1 and Y_2 and an orbifold-diffeomorphism $g: Y_1 \to Y_2$. Then the lift to the universal covers \tilde{Y}_1 and \tilde{Y}_2 is also an orbifold-diffeomorphism. Furthermore, once the lift value is determined at a point, then the lift is unique.
- Also, homotopies $f_t : Y_1 \to Y_2$ of orbifold-maps lift to homotopies in the universal covering orbifolds $\tilde{f}_t : \tilde{Y}_1 \to \tilde{Y}_2$. Proof: we consider regular parts and model neighborhoods where the lift clearly exists uniquely.
- Given orbifold-diffeomorphism $f: Y \to Z$ which lift to a diffeomorphism $\tilde{f}: \tilde{Y} \to \tilde{Z}$, we obtain $f_*: \pi_1(Y) \to \pi_1(Z)$.
- If g is homotopic to f, then $g_* = f_*$.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Given two orbifolds Y_1 and Y_2 and an orbifold-diffeomorphism $g: Y_1 \to Y_2$. Then the lift to the universal covers \tilde{Y}_1 and \tilde{Y}_2 is also an orbifold-diffeomorphism. Furthermore, once the lift value is determined at a point, then the lift is unique.
- Also, homotopies $f_t: Y_1 \to Y_2$ of orbifold-maps lift to homotopies in the universal covering orbifolds $\tilde{f}_t: \tilde{Y}_1 \to \tilde{Y}_2$. Proof: we consider regular parts and model neighborhoods where the lift clearly exists uniquely.
- Given orbifold-diffeomorphism $f: Y \to Z$ which lift to a diffeomorphism $\tilde{f}: \tilde{Y} \to \tilde{Z}$, we obtain $f_*: \pi_1(Y) \to \pi_1(Z)$.
- If g is homotopic to f, then $g_* = f_*$.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Given two orbifolds Y_1 and Y_2 and an orbifold-diffeomorphism $g: Y_1 \to Y_2$. Then the lift to the universal covers \tilde{Y}_1 and \tilde{Y}_2 is also an orbifold-diffeomorphism. Furthermore, once the lift value is determined at a point, then the lift is unique.
- Also, homotopies $f_t: Y_1 \to Y_2$ of orbifold-maps lift to homotopies in the universal covering orbifolds $\tilde{f}_t: \tilde{Y}_1 \to \tilde{Y}_2$. Proof: we consider regular parts and model neighborhoods where the lift clearly exists uniquely.
- Given orbifold-diffeomorphism $f: Y \to Z$ which lift to a diffeomorphism $\tilde{f}: \tilde{Y} \to \tilde{Z}$, we obtain $f_*: \pi_1(Y) \to \pi_1(Z)$.

• If g is homotopic to f, then $g_* = f_*$.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- Given two orbifolds Y_1 and Y_2 and an orbifold-diffeomorphism $g: Y_1 \to Y_2$. Then the lift to the universal covers \tilde{Y}_1 and \tilde{Y}_2 is also an orbifold-diffeomorphism. Furthermore, once the lift value is determined at a point, then the lift is unique.
- Also, homotopies $f_t: Y_1 \to Y_2$ of orbifold-maps lift to homotopies in the universal covering orbifolds $\tilde{f}_t: \tilde{Y}_1 \to \tilde{Y}_2$. Proof: we consider regular parts and model neighborhoods where the lift clearly exists uniquely.
- Given orbifold-diffeomorphism $f: Y \to Z$ which lift to a diffeomorphism $\tilde{f}: \tilde{Y} \to \tilde{Z}$, we obtain $f_*: \pi_1(Y) \to \pi_1(Z)$.
- If g is homotopic to f, then $g_* = f_*$.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Outline

Introduction

opology of 2-orbifolds Topology of 2-orbifolds Smooth 2-orbifolds and triangulations

Covering spaces of orbifolds

Fiber-product approach Path-approach to the universal covering spaces

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

opology of 2-orbifolds

Section 3: Topology of

orbifolds S. Choi

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the universal covering spaces

G-paths. Given an etale groupoid X. A G-path c = (g₀, c₁, g₁, ..., c_k, g_k) over a subdivision a = t₀ ≤ t₁ ≤ ... ≤ t_k = b of interval [a, b] consists of

イロト イポト イヨト イヨト 三日

- continuous maps $c_i : [t_{i-1}, t_i] \to X_0$
- ▶ elements $g_i \in X_1$ so that $s(g_i) = c_{i+1}(t_i)$ for i = 0, 1, ..., k 1 and $t(g_i) = c_i(t_i)$ for i = 1, ..., k.
- The initial point is $t(g_0)$ and the terminal point is $s(g_k)$.

124/177

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the universal covering spaces

G-paths. Given an etale groupoid X. A G-path c = (g₀, c₁, g₁, ..., c_k, g_k) over a subdivision a = t₀ ≤ t₁ ≤ ... ≤ t_k = b of interval [a, b] consists of

イロト イポト イヨト イヨト 三日

- continuous maps $c_i : [t_{i-1}, t_i] \rightarrow X_0$
- elements $g_i \in X_1$ so that $s(g_i) = c_{i+1}(t_i)$ for i = 0, 1, ..., k 1 and $t(g_i) = c_i(t_i)$ for i = 1, ..., k.
- The initial point is $t(g_0)$ and the terminal point is $s(g_k)$.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the universal covering spaces

G-paths. Given an etale groupoid X. A G-path c = (g₀, c₁, g₁, ..., c_k, g_k) over a subdivision a = t₀ ≤ t₁ ≤ ... ≤ t_k = b of interval [a, b] consists of

イロト イポト イヨト イヨト 三日

- continuous maps $c_i : [t_{i-1}, t_i] \to X_0$
- elements $g_i \in X_1$ so that $s(g_i) = c_{i+1}(t_i)$ for i = 0, 1, ..., k 1 and $t(g_i) = c_i(t_i)$ for i = 1, ..., k.
- The initial point is $t(g_0)$ and the terminal point is $s(g_k)$.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the universal covering spaces

G-paths. Given an etale groupoid X. A G-path c = (g₀, c₁, g₁, ..., c_k, g_k) over a subdivision a = t₀ ≤ t₁ ≤ ... ≤ t_k = b of interval [a, b] consists of

イロト イポト イヨト イヨト 三日

- continuous maps $c_i : [t_{i-1}, t_i] \to X_0$
- elements $g_i \in X_1$ so that $s(g_i) = c_{i+1}(t_i)$ for i = 0, 1, ..., k 1 and $t(g_i) = c_i(t_i)$ for i = 1, ..., k.
- The initial point is $t(g_0)$ and the terminal point is $s(g_k)$.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the universal covering spaces

The two operations define an equivalence relation:

- Subdivision. Add new division point t'_i in $[t_i, t_{i+1}]$ and $g'_i = 1_{c_i(t'_i)}$ and replacing c_i with c'_i, a'_i, c''_i where c'_i, c''_i are restrictions to $[t_i, t'_i]$ and $[t'_i, t_{i+1}]$.
- ▶ Replacement: replace *c* with *c*' = ($g'_0, c'_1, g'_1, ..., c'_k, g'_k$) as follows. For each *i* choose continuous map $h_i : [t_{i-1}, t_i] \rightarrow X_1$ so that $s(h_i(t)) = c_i(t)$ and define $c'_i(t) = t(h_i(t))$ and $g'_i = h_i(t_i)g_ih_{i+1}^{-1}(t_i)$ for i = 1, ..., k 1 and $g'_a = a_bh_i^{-1}(t_b)$ and $g'_i = h_b(t_b)g_b$.

イロト 不得 とくき とくき とうき

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the universal covering spaces

- The two operations define an equivalence relation:
 - Subdivision. Add new division point t'_i in $[t_i, t_{i+1}]$ and $g'_i = 1_{c_i(t'_i)}$ and replacing c_i with c'_i, g'_i, c''_i where c'_i, c''_i are restrictions to $[t_i, t'_i]$ and $[t'_i, t_{i+1}]$.
 - Peplacement: replace c with c' = (g'_0, c'_1, g'_1, ..., c'_k, g'_k) as follows. For each i choose continuous map h_i : [t_{i-1}, t_i] → X₁ so that s(h_i(t)) = c_i(t) and define c'_i(t) = t(h_i(t)) and g'_i = h_i(t_i)g_ih_{i-1}⁻¹(t_i) for i = 1, ..., k 1 and g'₀ = g₀h₁⁻¹(t₀) and g'_k = h_k(t_k)g_k.

イロト 不得 とくほ とくほとう ほ

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the universal covering spaces

- The two operations define an equivalence relation:
 - Subdivision. Add new division point t'_i in $[t_i, t_{i+1}]$ and $g'_i = 1_{c_i(t'_i)}$ and replacing c_i with c'_i, g'_i, c''_i where c'_i, c''_i are restrictions to $[t_i, t'_i]$ and $[t'_i, t_{i+1}]$.
 - ▶ Replacement: replace *c* with $c' = (g'_0, c'_1, g'_1, ..., c'_k, g'_k)$ as follows. For each *i* choose continuous map $h_i : [t_{i-1}, t_i] \rightarrow X_1$ so that $s(h_i(t)) = c_i(t)$ and define $c'_i(t) = t(h_i(t))$ and $g'_i = h_i(t_i)g_i h_{i+1}^{-1}(t_i)$ for i = 1, ..., k 1 and $g'_0 = g_0 h_i^{-1}(t_0)$ and $g'_k = h_k(t_k)g_k$.

イロト 不得 とくほ とくほとう ほ

All paths are defined on [0, 1] from now on.

• Given two paths $c = (g_0, c_1, .., c_k, g_k)$ over $0 = t_0 \le t_1 \le ... \le t_k = 1$ and $c' = (g'_0, c'_1, .., c'_{k'}, g'_{k'})$ such that the terminal point of c equals the initial point of c', the composition c * c' is the *G*-path $c'' = (g''_0, c''_1, .., g''_{k+k'})$ so that

•
$$t''_i = t_i/2$$
 for $i = 0, ..., k$ and $t''_i = 1/2 + t'_{i-k}/2$ and

- $c_i''(t) = c_i(2t)$ for i = 1, ..., k and $c_i''(t) = c_{i-k}'(2t-1)$ fo
- ▶ $g_i'' = g_i$ for i = 1, ..., k 1 and $g_k'' = g_k g_0', g_i'' = g_{i-k}'$ for i = k + 1, ..., k + k'.

► The inverse c^{-1} is $(g'_0, c'_1, ..., c'_k, g'_k)$ over the subdivision where $t'_i = 1 - t_i$ so that $g'_i = g^{-1}_{k-i}$ and $c'_i(t) = c_{k-i+1}(1-t)$.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- All paths are defined on [0, 1] from now on.
- Given two paths $c = (g_0, c_1, .., c_k, g_k)$ over $0 = t_0 \le t_1 \le ... \le t_k = 1$ and $c' = (g'_0, c'_1, ..., c'_{k'}, g'_{k'})$ such that the terminal point of c equals the initial point of c', the composition c * c' is the *G*-path $c'' = (g''_0, c''_1, ..., g''_{k+k'})$ so that

•
$$t''_i = t_i/2$$
 for $i = 0, ..., k$ and $t''_i = 1/2 + t'_{i-k}/2$ and

•
$$c_i''(t) = c_i(2t)$$
 for $i = 1, ..., k$ and $c_i''(t) = c_{i-k}'(2t-1)$ fo

$$i = k + 1, \dots, k + k'.$$

•
$$g_i'' = g_i$$
 for $i = 1, ..., k - 1$ and $g_k'' = g_k g_0', g_i'' = g_{i-k}'$ for $i = k + 1, ..., k + k'$.

► The inverse c^{-1} is $(g'_0, c'_1, ..., c'_k, g'_k)$ over the subdivision where $t'_i = 1 - t_i$ so that $g'_i = g^{-1}_{k-i}$ and $c'_i(t) = c_{k-i+1}(1-t)$.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- All paths are defined on [0, 1] from now on.
- Given two paths $c = (g_0, c_1, .., c_k, g_k)$ over $0 = t_0 \le t_1 \le ... \le t_k = 1$ and $c' = (g'_0, c'_1, .., c'_{k'}, g'_{k'})$ such that the terminal point of c equals the initial point of c', the composition c * c' is the *G*-path $c'' = (g''_0, c''_1, .., g''_{k+k'})$ so that

•
$$t''_i = t_i/2$$
 for $i = 0, ..., k$ and $t''_i = 1/2 + t'_{i-k}/2$ and

•
$$c_i''(t) = c_i(2t)$$
 for $i = 1, ..., k$ and $c_i''(t) = c_{i-k}'(2t-1)$ for

$$i = k + 1, ..., k + k'.$$

•
$$g_i'' = g_i$$
 for $i = 1, ..., k - 1$ and $g_k'' = g_k g_0', g_i'' = g_{i-k}'$ for $i = k + 1, ..., k + k'$.

► The inverse c^{-1} is $(g'_0, c'_1, ..., c'_k, g'_k)$ over the subdivision where $t'_i = 1 - t_i$ so that $g'_i = g^{-1}_{k-i}$ and $c'_i(t) = c_{k-i+1}(1-t)$.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- All paths are defined on [0, 1] from now on.
- Given two paths $c = (g_0, c_1, .., c_k, g_k)$ over $0 = t_0 \le t_1 \le ... \le t_k = 1$ and $c' = (g'_0, c'_1, .., c'_{k'}, g'_{k'})$ such that the terminal point of c equals the initial point of c', the composition c * c' is the *G*-path $c'' = (g''_0, c''_1, .., g''_{k+k'})$ so that

•
$$t_i'' = t_i/2$$
 for $i = 0, ..., k$ and $t_i'' = 1/2 + t_{i-k}'/2$ and

• $c_i''(t) = c_i(2t)$ for i = 1, ..., k and $c_i''(t) = c_{i-k}'(2t-1)$ for i = k + 1, ..., k + k'.

•
$$g_i'' = g_i$$
 for $i = 1, ..., k - 1$ and $g_k'' = g_k g_0', g_i'' = g_{i-k}'$ for $i = k + 1, ..., k + k'$.

► The inverse c^{-1} is $(g'_0, c'_1, ..., c'_k, g'_k)$ over the subdivision where $t'_i = 1 - t_i$ so that $g'_i = g^{-1}_{k-i}$ and $c'_i(t) = c_{k-i+1}(1-t)$.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- All paths are defined on [0, 1] from now on.
- Given two paths $c = (g_0, c_1, .., c_k, g_k)$ over $0 = t_0 \le t_1 \le ... \le t_k = 1$ and $c' = (g'_0, c'_1, .., c'_{k'}, g'_{k'})$ such that the terminal point of c equals the initial point of c', the composition c * c' is the *G*-path $c'' = (g''_0, c''_1, .., g''_{k+k'})$ so that

•
$$t''_i = t_i/2$$
 for $i = 0, ..., k$ and $t''_i = 1/2 + t'_{i-k}/2$ and

• $c_i''(t) = c_i(2t)$ for i = 1, ..., k and $c_i''(t) = c_{i-k}'(2t-1)$ for i = k + 1, ..., k + k'.

•
$$g_i'' = g_i$$
 for $i = 1, ..., k - 1$ and $g_k'' = g_k g_0', g_i'' = g_{i-k}'$ for $i = k + 1, ..., k + k'$

▶ The inverse c^{-1} is $(g'_0, c'_1, ..., c'_k, g'_k)$ over the subdivision where $t'_i = 1 - t_i$ so that $g'_i = g^{-1}_{k-i}$ and $c'_i(t) = c_{k-i+1}(1-t)$.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the universal covering spaces

- All paths are defined on [0, 1] from now on.
- Given two paths $c = (g_0, c_1, .., c_k, g_k)$ over $0 = t_0 \le t_1 \le ... \le t_k = 1$ and $c' = (g'_0, c'_1, .., c'_{k'}, g'_{k'})$ such that the terminal point of c equals the initial point of c', the composition c * c' is the *G*-path $c'' = (g''_0, c''_1, .., g''_{k+k'})$ so that

•
$$t''_i = t_i/2$$
 for $i = 0, ..., k$ and $t''_i = 1/2 + t'_{i-k}/2$ and

•
$$c_i''(t) = c_i(2t)$$
 for $i = 1, ..., k$ and $c_i''(t) = c_{i-k}'(2t-1)$ for $i = k + 1, ..., k + k'$.

•
$$g_i'' = g_i$$
 for $i = 1, ..., k - 1$ and $g_k'' = g_k g_0', g_i'' = g_{i-k}'$ for $i = k + 1, ..., k + k'$.

・ コット (雪) ・ (目) ・ 日)

► The inverse c^{-1} is $(g'_0, c'_1, ..., c'_k, g'_k)$ over the subdivision where $t'_i = 1 - t_i$ so that $g'_i = g^{-1}_{k-i}$ and $c'_i(t) = c_{k-i+1}(1-t)$.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

There are two types

- equivalences
- An elementary homotopy is a family of *G*-paths c^s = (g^s₀, c^s₁, ..., g^s_k) over the subdivision 0 = t^s₀ ≤ t^s₁ ≤ ... ≤ t^s_k = 1 so that t^s_k, g^s_i, c^s_i depends continously on s.
- A homotopy class of c is denoted [c].
- [c ∗ c'] is well-defined in the homotopy classes [c] and [c']. Hence, we define [c] ∗ [c'].
- [C * (C' * C'')] = [(C * C') * C''].
- The constant path e_x = (1_x, x, 1_x). Then [c ∗ c⁻¹] = [e_x] if the initial point of c is x and [c⁻¹ ∗ c] = [e_y] if the terminal point of c is y. Thus, [c]⁻¹ = [c⁻¹].

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

There are two types

equivalences

- An elementary homotopy is a family of G-paths c^s = (g^s₀, c^s₁, ..., g^s_k) over the subdivision 0 = t^s₀ ≤ t^s₁ ≤ ... ≤ t^s_k = 1 so that t^s_k, g^s_i, c^s_i depends continously on s.
- A homotopy class of c is denoted [c].
- [c ∗ c'] is well-defined in the homotopy classes [c] and [c']. Hence, we define [c] ∗ [c'].
- [C * (C' * C'')] = [(C * C') * C''].
- The constant path e_x = (1_x, x, 1_x). Then [c ∗ c⁻¹] = [e_x] if the initial point of c is x and [c⁻¹ ∗ c] = [e_y] if the terminal point of c is y. Thus, [c]⁻¹ = [c⁻¹].

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

There are two types

- equivalences
- An elementary homotopy is a family of *G*-paths c^s = (g^s₅, c^s₁, ..., g^s_k) over the subdivision 0 = t^s₀ ≤ t^s₁ ≤ ... ≤ t^s_k = 1 so that t^s_k, g^s_i, c^s_i depends continously on *s*.
- A homotopy class of c is denoted [c].
- [c ∗ c'] is well-defined in the homotopy classes [c] and [c']. Hence, we define [c] ∗ [c'].
- [C * (C' * C'')] = [(C * C') * C''].
- The constant path e_x = (1_x, x, 1_x). Then [c ∗ c⁻¹] = [e_x] if the initial point of c is x and [c⁻¹ ∗ c] = [e_y] if the terminal point of c is y. Thus, [c]⁻¹ = [c⁻¹].

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- There are two types
 - equivalences
 - An elementary homotopy is a family of *G*-paths c^s = (g^s₀, c^s₁, ..., g^s_k) over the subdivision 0 = t^s₀ ≤ t^s₁ ≤ ... ≤ t^s_k = 1 so that t^s_k, g^s_i, c^s_i depends continously on *s*.
 - A homotopy class of c is denoted [c].
 - [c ∗ c'] is well-defined in the homotopy classes [c] and [c']. Hence, we define [c] ∗ [c'].
 - [C * (C' * C'')] = [(C * C') * C''].
 - The constant path e_x = (1_x, x, 1_x). Then [c ∗ c⁻¹] = [e_x] if the initial point of c is x and [c⁻¹ ∗ c] = [e_y] if the terminal point of c is y. Thus, [c]⁻¹ = [c⁻¹].

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- There are two types
 - equivalences
 - An elementary homotopy is a family of *G*-paths c^s = (g^s₀, c^s₁, ..., g^s_k) over the subdivision 0 = t^s₀ ≤ t^s₁ ≤ ... ≤ t^s_k = 1 so that t^s_k, g^s_i, c^s_i depends continously on *s*.
 - A homotopy class of c is denoted [c].
 - [c * c'] is well-defined in the homotopy classes [c] and [c']. Hence, we define
 [c] * [c'].
 - [C * (C' * C'')] = [(C * C') * C''].
 - The constant path e_x = (1_x, x, 1_x). Then [c ∗ c⁻¹] = [e_x] if the initial point of c is x and [c⁻¹ ∗ c] = [e_y] if the terminal point of c is y. Thus, [c]⁻¹ = [c⁻¹].

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- There are two types
 - equivalences
 - An elementary homotopy is a family of *G*-paths c^s = (g^s₀, c^s₁, ..., g^s_k) over the subdivision 0 = t^s₀ ≤ t^s₁ ≤ ... ≤ t^s_k = 1 so that t^s_k, g^s_i, c^s_i depends continously on *s*.
 - A homotopy class of c is denoted [c].
 - [c * c'] is well-defined in the homotopy classes [c] and [c']. Hence, we define
 [c] * [c'].
 - [c * (c' * c'')] = [(c * c') * c''].
 - The constant path e_x = (1_x, x, 1_x). Then [c ∗ c⁻¹] = [e_x] if the initial point of c is x and [c⁻¹ ∗ c] = [e_y] if the terminal point of c is y. Thus, [c]⁻¹ = [c⁻¹].

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- There are two types
 - equivalences
 - An elementary homotopy is a family of *G*-paths c^s = (g^s₀, c^s₁, ..., g^s_k) over the subdivision 0 = t^s₀ ≤ t^s₁ ≤ ... ≤ t^s_k = 1 so that t^s_k, g^s_i, c^s_i depends continously on *s*.
 - A homotopy class of c is denoted [c].
 - [c * c'] is well-defined in the homotopy classes [c] and [c']. Hence, we define
 [c] * [c'].
 - [c * (c' * c'')] = [(c * c') * c''].
 - ► The constant path e_x = (1_x, x, 1_x). Then [c * c⁻¹] = [e_x] if the initial point of c is x and [c⁻¹ * c] = [e_y] if the terminal point of c is y. Thus, [c]⁻¹ = [c⁻¹].

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Fundamental group $\pi_1(X, x_0)$

The fundamental group π₁(X, x₀) based at x₀ ∈ X₀ is the group of loops based at x₀.

- A continuous homomorphism $f : X \to Y$ induces a homomorphism $f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0)).$
- This is well-defined up to conjuations.
- An equivalence induces an isomorphism.
- ▶ Seifert-Van Kampen theorem: *X* an orifold. $X_0 = U \cup V$ where *U* and *V* are open and $U \cap V = W$. Assume that the groupoid restrictions G_U , G_V , G_W to U, V, W are connected. And let $x_0 \in W$. Then $\pi_1(X, x_0)$ is the quotient group of the free product $\pi_1(G_U, x_0) * \pi_1(G_V, x_0)$ by the normal subgroup generated by $j_U(\gamma)j_W(\gamma^{-1})$ for $\gamma \in \pi_1(G_W, x_0)$ for j_U the induced homomorphism $\pi_1(G_W, x_0) \to \pi_1(G_U, x_0)$ and j_V the induced homomorphism $\pi_1(G_W, x_0) \to \pi_1(G_V, x_0)$.

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- The fundamental group π₁(X, x₀) based at x₀ ∈ X₀ is the group of loops based at x₀.
- A continuous homomorphism $f : X \to Y$ induces a homomorphism $f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$.
- This is well-defined up to conjuations.
- An equivalence induces an isomorphism.
- ▶ Seifert-Van Kampen theorem: *X* an orifold. $X_0 = U \cup V$ where *U* and *V* are open and $U \cap V = W$. Assume that the groupoid restrictions G_U , G_V , G_W to U, V, W are connected. And let $x_0 \in W$. Then $\pi_1(X, x_0)$ is the quotient group of the free product $\pi_1(G_U, x_0) * \pi_1(G_V, x_0)$ by the normal subgroup generated by $j_U(\gamma)j_W(\gamma^{-1})$ for $\gamma \in \pi_1(G_W, x_0)$ for j_U the induced homomorphism $\pi_1(G_W, x_0) \to \pi_1(G_U, x_0)$.

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

pology of 2-orbifolds mooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- The fundamental group π₁(X, x₀) based at x₀ ∈ X₀ is the group of loops based at x₀.
- A continuous homomorphism $f : X \to Y$ induces a homomorphism $f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$.
- This is well-defined up to conjustions.
- An equivalence induces an isomorphism.
- ▶ Seifert-Van Kampen theorem: *X* an orifold. $X_0 = U \cup V$ where *U* and *V* are open and $U \cap V = W$. Assume that the groupoid restrictions G_U , G_V , G_W to U, V, W are connected. And let $x_0 \in W$. Then $\pi_1(X, x_0)$ is the quotient group of the free product $\pi_1(G_U, x_0) * \pi_1(G_V, x_0)$ by the normal subgroup generated by $j_U(\gamma)j_W(\gamma^{-1})$ for $\gamma \in \pi_1(G_W, x_0)$ for j_U the induced homomorphism $\pi_1(G_W, x_0) \to \pi_1(G_U, x_0)$ and j_V the induced homomorphism $\pi_1(G_W, x_0) \to \pi_1(G_V, x_0)$.

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

pology of 2-orbifolds mooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- The fundamental group π₁(X, x₀) based at x₀ ∈ X₀ is the group of loops based at x₀.
- A continuous homomorphism $f : X \to Y$ induces a homomorphism $f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$.
- This is well-defined up to conjustions.
- An equivalence induces an isomorphism.

▶ Seifert-Van Kampen theorem: *X* an orifold. $X_0 = U \cup V$ where *U* and *V* are open and $U \cap V = W$. Assume that the groupoid restrictions G_U , G_V , G_W to U, V, W are connected. And let $x_0 \in W$. Then $\pi_1(X, x_0)$ is the quotient group of the free product $\pi_1(G_U, x_0) * \pi_1(G_V, x_0)$ by the normal subgroup generated by $j_U(\gamma)j_W(\gamma^{-1})$ for $\gamma \in \pi_1(G_W, x_0)$ for j_U the induced homomorphism $\pi_1(G_W, x_0) \to \pi_1(G_U, x_0)$.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

pology of 2-orbifolds mooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- The fundamental group π₁(X, x₀) based at x₀ ∈ X₀ is the group of loops based at x₀.
- A continuous homomorphism $f : X \to Y$ induces a homomorphism $f_* : \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$.
- This is well-defined up to conjustions.
- An equivalence induces an isomorphism.
- ▶ Seifert-Van Kampen theorem: *X* an orifold. $X_0 = U \cup V$ where *U* and *V* are open and $U \cap V = W$. Assume that the groupoid restrictions G_U , G_V , G_W to U, V, W are connected. And let $x_0 \in W$. Then $\pi_1(X, x_0)$ is the quotient group of the free product $\pi_1(G_U, x_0) * \pi_1(G_V, x_0)$ by the normal subgroup generated by $j_U(\gamma)j_W(\gamma^{-1})$ for $\gamma \in \pi_1(G_W, x_0)$ for j_U the induced homomorphism $\pi_1(G_W, x_0) \to \pi_1(G_U, x_0)$ and j_V the induced homomorphism $\pi_1(G_W, x_0) \to \pi_1(G_V, x_0)$.

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

pology of 2-orbifolds mooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

Let a discrete group Γ act on a connected manifold X₀ properly discontinuously. Then (Γ, X₀) has an orbifold structure. Any loop can be made into a *G*-path (1_x, c, γ) so that γ(x) = c(1). and c(0) = x. Thus, there is an exact sequence

 $1 \rightarrow \pi_1(X_0, x_0) \rightarrow \pi_1((\Gamma, X_0), x_0) \rightarrow \Gamma \rightarrow 1$

- A two-orbifold that is a disk with an arc silvered has the fundamental group isomorphic to Z₂.
- A two-dimensional orbifold with cone-points which is boundaryless and with no silvered point. (use Van Kampen)
- A tear drop: A sphere with one cone-point of order *n* has the trivial fundamental group (use Van Kampen)

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Let a discrete group Γ act on a connected manifold X₀ properly discontinuously. Then (Γ, X₀) has an orbifold structure. Any loop can be made into a *G*-path (1_x, c, γ) so that γ(x) = c(1). and c(0) = x. Thus, there is an exact sequence

 $1 \rightarrow \pi_1(X_0, x_0) \rightarrow \pi_1((\Gamma, X_0), x_0) \rightarrow \Gamma \rightarrow 1$

- ► A two-orbifold that is a disk with an arc silvered has the fundamental group isomorphic to *Z*₂.
- A two-dimensional orbifold with cone-points which is boundaryless and with no silvered point. (use Van Kampen)
- A tear drop: A sphere with one cone-point of order *n* has the trivial fundamental group (use Van Kampen)

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Let a discrete group Γ act on a connected manifold X₀ properly discontinuously. Then (Γ, X₀) has an orbifold structure. Any loop can be made into a *G*-path (1_x, c, γ) so that γ(x) = c(1). and c(0) = x. Thus, there is an exact sequence

 $1 \rightarrow \pi_1(X_0, x_0) \rightarrow \pi_1((\Gamma, X_0), x_0) \rightarrow \Gamma \rightarrow 1$

- ► A two-orbifold that is a disk with an arc silvered has the fundamental group isomorphic to *Z*₂.
- A two-dimensional orbifold with cone-points which is boundaryless and with no silvered point. (use Van Kampen)
- A tear drop: A sphere with one cone-point of order n has the trivial fundamental group (use Van Kampen)

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Let a discrete group Γ act on a connected manifold X₀ properly discontinuously. Then (Γ, X₀) has an orbifold structure. Any loop can be made into a *G*-path (1_x, c, γ) so that γ(x) = c(1). and c(0) = x. Thus, there is an exact sequence

 $1 \rightarrow \pi_1(X_0, x_0) \rightarrow \pi_1((\Gamma, X_0), x_0) \rightarrow \Gamma \rightarrow 1$

- ► A two-orbifold that is a disk with an arc silvered has the fundamental group isomorphic to *Z*₂.
- A two-dimensional orbifold with cone-points which is boundaryless and with no silvered point. (use Van Kampen)
- A tear drop: A sphere with one cone-point of order n has the trivial fundamental group (use Van Kampen)

Section 3: Topology of orbifolds

S. Choi

Introductior

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- An annulus with one boundary component silvered has a fundamental group isomorphic to Z × Z₂. The fundamental group can be computed by removing open-ball neighborhoods of the cone-points and using Van-Kampen theorem.
- Suppose that a two-dimensional orbifold has boundary and silvered points. Then remove open-ball neighborhoods of the cone-points and corner-reflector points. Then the fundamental group of remaining part can be computed by Van-Kampen theorem by taking open neighborhoods of silvered boundary arcs. Finally, adding the open-ball neighborhoods, we compute the fundamental group.
- The fundamental group of a three-dimensional orbifold can be computed similarly.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- An annulus with one boundary component silvered has a fundamental group isomorphic to Z × Z₂. The fundamental group can be computed by removing open-ball neighborhoods of the cone-points and using Van-Kampen theorem.
- Suppose that a two-dimensional orbifold has boundary and silvered points. Then remove open-ball neighborhoods of the cone-points and corner-reflector points. Then the fundamental group of remaining part can be computed by Van-Kampen theorem by taking open neighborhoods of silvered boundary arcs. Finally, adding the open-ball neighborhoods, we compute the fundamental group.
- The fundamental group of a three-dimensional orbifold can be computed similarly.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- An annulus with one boundary component silvered has a fundamental group isomorphic to Z × Z₂. The fundamental group can be computed by removing open-ball neighborhoods of the cone-points and using Van-Kampen theorem.
- Suppose that a two-dimensional orbifold has boundary and silvered points. Then remove open-ball neighborhoods of the cone-points and corner-reflector points. Then the fundamental group of remaining part can be computed by Van-Kampen theorem by taking open neighborhoods of silvered boundary arcs. Finally, adding the open-ball neighborhoods, we compute the fundamental group.
- The fundamental group of a three-dimensional orbifold can be computed similarly.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

▶ We can obtain a 2-orbifold from a Seifert fibered 3-manifold M.

- X₀ will be the union of patches transversal to the fibers.
- X_1 will be the arrows obtained by the flow.
- The orbifold X will be a 2-dimensional one with cone-points whose orders are obtained as the numerators of the fiber-order.
- ► The fundamental group of X is then the quotient of the ordinary fundamental group $\pi_1(M)$ by the central cyclic group \mathbb{Z} generated by the generic fiber.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- ▶ We can obtain a 2-orbifold from a Seifert fibered 3-manifold M.
- X_0 will be the union of patches transversal to the fibers.
- X_1 will be the arrows obtained by the flow.
- ► The orbifold *X* will be a 2-dimensional one with cone-points whose orders are obtained as the numerators of the fiber-order.
- The fundamental group of X is then the quotient of the ordinary fundamental group $\pi_1(M)$ by the central cyclic group \mathbb{Z} generated by the generic fiber.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- We can obtain a 2-orbifold from a Seifert fibered 3-manifold M.
- X_0 will be the union of patches transversal to the fibers.
- ► X₁ will be the arrows obtained by the flow.
- The orbifold X will be a 2-dimensional one with cone-points whose orders are obtained as the numerators of the fiber-order.
- The fundamental group of X is then the quotient of the ordinary fundamental group π₁(M) by the central cyclic group Z generated by the generic fiber.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- ▶ We can obtain a 2-orbifold from a Seifert fibered 3-manifold M.
- ► X₀ will be the union of patches transversal to the fibers.
- ► X₁ will be the arrows obtained by the flow.
- The orbifold X will be a 2-dimensional one with cone-points whose orders are obtained as the numerators of the fiber-order.
- The fundamental group of X is then the quotient of the ordinary fundamental group π₁(M) by the central cyclic group Z generated by the generic fiber.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- ▶ We can obtain a 2-orbifold from a Seifert fibered 3-manifold M.
- ► *X*₀ will be the union of patches transversal to the fibers.
- ► *X*₁ will be the arrows obtained by the flow.
- The orbifold X will be a 2-dimensional one with cone-points whose orders are obtained as the numerators of the fiber-order.
- The fundamental group of X is then the quotient of the ordinary fundamental group π₁(M) by the central cyclic group Z generated by the generic fiber.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

One can build the theory of covering spaces using the fundamental group.

• Given a covering $X' \to X$:

- For every G-path c in X, there is a lift G-path in X'. If we assign the initial point the lift is unique.
- If c' is homotopic to c, then the lift of c' is also homotopic to the lift of c provided the initial points are the same.
- $\pi_1(X', x_0') \rightarrow \pi_1(X, x_0)$ is injective.
- A map from a simply connected orbifold to an orbifold lifts to a cover. The lift is unique if the base-point lift is assigned. Thus, a simply connected cover of an orbifold covers any cover of the given orbifold.
- From this, we can show that the fiber-product construction is simply-connected and hence is a universal cover.
- Two simply-connected coverings of an orbifold are isomorphic and if base-points are given, we can find an isomorphism preserving the base-points.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

pology of 2-orbifolds mooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

One can build the theory of covering spaces using the fundamental group.

• Given a covering $X' \to X$:

- For every G-path c in X, there is a lift G-path in X'. If we assign the initial point, the lift is unique.
- If c' is homotopic to c, then the lift of c' is also homotopic to the lift of c provided the initial points are the same.
- $\pi_1(X', x'_0) \rightarrow \pi_1(X, x_0)$ is injective.
- A map from a simply connected orbifold to an orbifold lifts to a cover. The lift is unique if the base-point lift is assigned. Thus, a simply connected cover of an orbifold covers any cover of the given orbifold.
- From this, we can show that the fiber-product construction is simply-connected and hence is a universal cover.
- Two simply-connected coverings of an orbifold are isomorphic and if base-points are given, we can find an isomorphism preserving the base-points.

Section 3: Topology of orbifolds

S. Choi

Introductior

Topology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- One can build the theory of covering spaces using the fundamental group.
- Given a covering $X' \to X$:
 - ▶ For every *G*-path *c* in *X*, there is a lift *G*-path in *X'*. If we assign the initial point, the lift is unique.
 - If c' is homotopic to c, then the lift of c' is also homotopic to the lift of c provided the initial points are the same.
 - $\pi_1(X', x'_0) \rightarrow \pi_1(X, x_0)$ is injective.
 - A map from a simply connected orbifold to an orbifold lifts to a cover. The lift is unique if the base-point lift is assigned. Thus, a simply connected cover of an orbifold covers any cover of the given orbifold.
 - From this, we can show that the fiber-product construction is simply-connected and hence is a universal cover.
 - Two simply-connected coverings of an orbifold are isomorphic and if base-points are given, we can find an isomorphism preserving the base-points.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- One can build the theory of covering spaces using the fundamental group.
- Given a covering $X' \to X$:
 - ▶ For every *G*-path *c* in *X*, there is a lift *G*-path in *X'*. If we assign the initial point, the lift is unique.
 - If c' is homotopic to c, then the lift of c' is also homotopic to the lift of c provided the initial points are the same.
 - $\pi_1(X', x'_0) \rightarrow \pi_1(X, x_0)$ is injective.
 - A map from a simply connected orbifold to an orbifold lifts to a cover. The lift is unique if the base-point lift is assigned. Thus, a simply connected cover of an orbifold covers any cover of the given orbifold.
 - From this, we can show that the fiber-product construction is simply-connected and hence is a universal cover.
 - Two simply-connected coverings of an orbifold are isomorphic and if base-points are given, we can find an isomorphism preserving the base-points.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

pology of 2-orbifolds mooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- One can build the theory of covering spaces using the fundamental group.
- Given a covering $X' \to X$:
 - For every G-path c in X, there is a lift G-path in X'. If we assign the initial point, the lift is unique.
 - If c' is homotopic to c, then the lift of c' is also homotopic to the lift of c provided the initial points are the same.
 - $\pi_1(X', x'_0) \rightarrow \pi_1(X, x_0)$ is injective.
 - A map from a simply connected orbifold to an orbifold lifts to a cover. The lift is unique if the base-point lift is assigned. Thus, a simply connected cover of an orbifold covers any cover of the given orbifold.
 - From this, we can show that the fiber-product construction is simply-connected and hence is a universal cover.
 - Two simply-connected coverings of an orbifold are isomorphic and if base-points are given, we can find an isomorphism preserving the base-points.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

pology of 2-orbifolds mooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- One can build the theory of covering spaces using the fundamental group.
- Given a covering $X' \to X$:
 - ▶ For every G-path c in X, there is a lift G-path in X'. If we assign the initial point, the lift is unique.
 - If c' is homotopic to c, then the lift of c' is also homotopic to the lift of c provided the initial points are the same.
 - $\pi_1(X', x'_0) \rightarrow \pi_1(X, x_0)$ is injective.
 - A map from a simply connected orbifold to an orbifold lifts to a cover. The lift is unique if the base-point lift is assigned. Thus, a simply connected cover of an orbifold covers any cover of the given orbifold.
 - From this, we can show that the fiber-product construction is simply-connected and hence is a universal cover.
 - Two simply-connected coverings of an orbifold are isomorphic and if base-points are given, we can find an isomorphism preserving the base-points.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

pology of 2-orbifolds mooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- One can build the theory of covering spaces using the fundamental group.
- Given a covering $X' \to X$:
 - ▶ For every *G*-path *c* in *X*, there is a lift *G*-path in *X'*. If we assign the initial point, the lift is unique.
 - If c' is homotopic to c, then the lift of c' is also homotopic to the lift of c provided the initial points are the same.
 - $\pi_1(X', x'_0) \rightarrow \pi_1(X, x_0)$ is injective.
 - A map from a simply connected orbifold to an orbifold lifts to a cover. The lift is unique if the base-point lift is assigned. Thus, a simply connected cover of an orbifold covers any cover of the given orbifold.
 - From this, we can show that the fiber-product construction is simply-connected and hence is a universal cover.
 - Two simply-connected coverings of an orbifold are isomorphic and if base-points are given, we can find an isomorphism preserving the base-points.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- One can build the theory of covering spaces using the fundamental group.
- Given a covering $X' \to X$:
 - ▶ For every *G*-path *c* in *X*, there is a lift *G*-path in *X'*. If we assign the initial point, the lift is unique.
 - If c' is homotopic to c, then the lift of c' is also homotopic to the lift of c provided the initial points are the same.
 - $\pi_1(X', x'_0) \rightarrow \pi_1(X, x_0)$ is injective.
 - A map from a simply connected orbifold to an orbifold lifts to a cover. The lift is unique if the base-point lift is assigned. Thus, a simply connected cover of an orbifold covers any cover of the given orbifold.
 - From this, we can show that the fiber-product construction is simply-connected and hence is a universal cover.
 - Two simply-connected coverings of an orbifold are isomorphic and if base-points are given, we can find an isomorphism preserving the base-points.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds mooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the universal covering spaces

A simply-connected covering of an orbifold X is a Galois-covering with the Galois-group isomorphic to $\pi_1(X, x_0)$.

Proof: Consider $p^{-1}(x_0)$. Choose a base-point \tilde{x}_0 in it. Given a point of $p^{-1}(x_0)$, connected it with \tilde{x}_0 by a path. The paths map to the fundamental group. The Galois-group acts transitively on $p^{-1}(x)$. Hence the Galois-group is isomorphic to the fundamental group.

- A simply-connected covering of an orbifold X is a Galois-covering with the Galois-group isomorphic to $\pi_1(X, x_0)$.
- Proof: Consider p⁻¹(x₀). Choose a base-point x̃₀ in it. Given a point of p⁻¹(x₀), connected it with x̃₀ by a path. The paths map to the fundamental group. The Galois-group acts transitively on p⁻¹(x). Hence the Galois-group is isomorphic to the fundamental group.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

Topology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

Path-approach to the universal covering spaces

The construction follows that of the ordinary covering space theory.

- Let X be the set of homotopy classes [c] of G-paths in X with a fixed starting point x₀.
- We define a topology on X by open set U_[c] that is the set of paths ending at a simply-connected open subset U of X with homotopy class c * d for a path d in U.
- Define a map $\hat{X} \to X$ sending [c] to its endpoint other than x_0 .
- Define a map X × X₁ → X given by ([c], g) → [c * g]. This defines a right G-action on X̂. This makes X̂ into a bundle.
- Define a left action of $\pi_1(X, x_0)$ on \hat{X} given by [c] * [c'] = [c * c'] for $[c'] \in \pi_1(X, x_0)$. This is transitive on fibers.
- We show that \hat{X} is a simply connected orbifold.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- The construction follows that of the ordinary covering space theory.
 - Let X̂ be the set of homotopy classes [c] of G-paths in X with a fixed starting point x₀.
 - We define a topology on X by open set U_[c] that is the set of paths ending at a simply-connected open subset U of X with homotopy class c * d for a path d in U.
 - Define a map $\hat{X} \to X$ sending [c] to its endpoint other than x_0 .
 - Define a map X × X₁ → X given by ([c], g) → [c * g]. This defines a right G-action on X̂. This makes X̂ into a bundle.
 - Define a left action of $\pi_1(X, x_0)$ on \hat{X} given by [c] * [c'] = [c * c'] for $[c'] \in \pi_1(X, x_0)$. This is transitive on fibers.
 - We show that \hat{X} is a simply connected orbifold.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- The construction follows that of the ordinary covering space theory.
 - Let X̂ be the set of homotopy classes [c] of G-paths in X with a fixed starting point x₀.
 - We define a topology on X̂ by open set U_[c] that is the set of paths ending at a simply-connected open subset U of X with homotopy class c * d for a path d in U.
 - Define a map X̂ → X sending [c] to its endpoint other than x₀.
 - Define a map X
 × X₁ → X
 given by ([c], g) → [c * g]. This defines a right G-action on X
 . This makes X
 into a bundle.
 - Define a left action of $\pi_1(X, x_0)$ on \hat{X} given by [c] * [c'] = [c * c'] for $[c'] \in \pi_1(X, x_0)$. This is transitive on fibers.
 - We show that \hat{X} is a simply connected orbifold.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- The construction follows that of the ordinary covering space theory.
 - Let X̂ be the set of homotopy classes [c] of G-paths in X with a fixed starting point x₀.
 - We define a topology on X̂ by open set U_[c] that is the set of paths ending at a simply-connected open subset U of X with homotopy class c * d for a path d in U.
 - Define a map X̂ → X sending [c] to its endpoint other than x₀.
 - Define a map X × X₁ → X given by ([c], g) → [c * g]. This defines a right G-action on X̂. This makes X̂ into a bundle.
 - Define a left action of $\pi_1(X, x_0)$ on \hat{X} given by [c] * [c'] = [c * c'] for $[c'] \in \pi_1(X, x_0)$. This is transitive on fibers.
 - We show that \hat{X} is a simply connected orbifold.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- The construction follows that of the ordinary covering space theory.
 - Let X̂ be the set of homotopy classes [c] of G-paths in X with a fixed starting point x₀.
 - We define a topology on X̂ by open set U_[c] that is the set of paths ending at a simply-connected open subset U of X with homotopy class c * d for a path d in U.
 - Define a map $\hat{X} \to X$ sending [c] to its endpoint other than x_0 .
 - Define a map X̂ × X₁ → X̂ given by ([c], g) → [c * g]. This defines a right G-action on X̂. This makes X̂ into a bundle.
 - Define a left action of $\pi_1(X, x_0)$ on \hat{X} given by [c] * [c'] = [c * c'] for $[c'] \in \pi_1(X, x_0)$. This is transitive on fibers.
 - We show that \hat{X} is a simply connected orbifold.

Section 3: Topology of orbifolds

S. Choi

Introduction

Topology of 2-orbifolds

opology of 2-orbifolds smooth 2-orbifolds and iangulations

Covering spaces of orbifolds

Fiber-product approach

- The construction follows that of the ordinary covering space theory.
 - Let X̂ be the set of homotopy classes [c] of G-paths in X with a fixed starting point x₀.
 - We define a topology on X̂ by open set U_[c] that is the set of paths ending at a simply-connected open subset U of X with homotopy class c * d for a path d in U.
 - Define a map $\hat{X} \to X$ sending [c] to its endpoint other than x_0 .
 - Define a map X̂ × X₁ → X̂ given by ([c], g) → [c * g]. This defines a right G-action on X̂. This makes X̂ into a bundle.
 - Define a left action of $\pi_1(X, x_0)$ on \hat{X} given by [c] * [c'] = [c * c'] for $[c'] \in \pi_1(X, x_0)$. This is transitive on fibers.

• We show that \hat{X} is a simply connected orbifold.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach

- The construction follows that of the ordinary covering space theory.
 - Let X̂ be the set of homotopy classes [c] of G-paths in X with a fixed starting point x₀.
 - We define a topology on X̂ by open set U_[c] that is the set of paths ending at a simply-connected open subset U of X with homotopy class c * d for a path d in U.
 - Define a map $\hat{X} \to X$ sending [c] to its endpoint other than x_0 .
 - Define a map X̂ × X₁ → X̂ given by ([c], g) → [c * g]. This defines a right G-action on X̂. This makes X̂ into a bundle.
 - Define a left action of $\pi_1(X, x_0)$ on \hat{X} given by [c] * [c'] = [c * c'] for $[c'] \in \pi_1(X, x_0)$. This is transitive on fibers.
 - We show that \hat{X} is a simply connected orbifold.

Section 3: Topology of orbifolds

S. Choi

Introduction

opology of 2-orbifolds

opology of 2-orbifolds Smooth 2-orbifolds and riangulations

Covering spaces of orbifolds

Fiber-product approach