actions actions

Topology of orbifolds I: Compact group actions

S. Choi

¹Department of Mathematical Science KAIST, Daejeon, South Korea

Lectures at KAIST

Section 3: Topology of orbifolds: Compact group actions

- Compact group actions
- Orbit spaces.
- ► Tubes and slices.
- Path-lifting, covering homotopy
- Locally smooth actions
- Smooth actions
- Equivariant triangulations
- Newman's theorem

Section 3: Topology of orbifolds: Compact group actions

- Compact group actions
- Orbit spaces.
- ► Tubes and slices.
- Path-lifting, covering homotopy
- Locally smooth actions
- Smooth actions
- Equivariant triangulations
- Newman's theorem

Section 3: Topology of orbifolds: Compact group actions

- Compact group actions
- Orbit spaces.
- Tubes and slices
- Path-lifting, covering homotopy
- Locally smooth actions
- Smooth actions
- Equivariant triangulations
- Newman's theorem

- Section 3: Topology of orbifolds: Compact group actions
 - Compact group actions
 - Orbit spaces.
 - Tubes and slices.
 - Path-lifting, covering homotopy
 - Locally smooth actions
 - Smooth actions
 - Equivariant triangulations
 - Newman's theorem

- Section 3: Topology of orbifolds: Compact group actions
 - Compact group actions
 - Orbit spaces.
 - Tubes and slices.
 - Path-lifting, covering homotopy
 - Locally smooth actions
 - Smooth actions
 - Equivariant triangulations
 - Newman's theorem

Section 3: Topology of orbifolds: Compact group actions

- Compact group actions
- Orbit spaces.
- Tubes and slices.
- Path-lifting, covering homotopy
- Locally smooth actions
- Smooth actions
- Equivariant triangulations
- Newman's theorem

- Section 3: Topology of orbifolds: Compact group actions
 - Compact group actions
 - Orbit spaces.
 - Tubes and slices.
 - Path-lifting, covering homotopy
 - Locally smooth actions
 - Smooth actions
 - Equivariant triangulations
 - Newman's theorem

Comp action

- Section 3: Topology of orbifolds: Compact group actions
 - Compact group actions
 - Orbit spaces.
 - Tubes and slices.
 - Path-lifting, covering homotopy
 - Locally smooth actions
 - Smooth actions
 - Equivariant triangulations
 - Newman's theorem

Section 3: Topology of orbifolds: Compact group actions

- Compact group actions
- Orbit spaces.
- Tubes and slices.
- Path-lifting, covering homotopy
- Locally smooth actions
- Smooth actions
- Equivariant triangulations
- Newman's theorem

- Bredon, Introduction to compact transformation groups, Academic Press
- Hsiang, Cohomology theory of topological transformation group, Springer, 1975
- Soren Illman, Smooth equivariant triangulations of G-manifolds for G a finite group, Math. Ann. 233, 199–220 (1978)

Introduction

Compact group ctions

- Bredon, Introduction to compact transformation groups, Academic Press
- Hsiang, Cohomology theory of topological transformation group, Springer, 1975
- Soren Illman, Smooth equivariant triangulations of G-manifolds for G a finite group, Math. Ann. 233, 199–220 (1978)

Introduction

Compact group actions

- Bredon, Introduction to compact transformation groups, Academic Press
- Hsiang, Cohomology theory of topological transformation group, Springer, 1975
- Soren Illman, Smooth equivariant triangulations of G-manifolds for G a finite group, Math. Ann. 233, 199–220 (1978)

- ▶ A group action $G \times X \to X$ with e(x) = x for all x and gh(x) = g(h(x)). That is, $G \to Homeo(X)$ so that the product operation becomes compositions.
- We only need the result for finite group actions.
- An equivariant map $\phi: X \to Y$ between G-spaces is a map so that $\phi(g(x)) = g(\phi(x))$.
- ▶ An isotropy subgroup $G_X = \{g \in G | g(x) = x\}.$
- $G_{g(x)} = gG_xg^{-1}$. $G_x \subset G_{\phi(x)}$ for an equivariant map ϕ .
- ▶ Tietze-Gleason Theorem: G a compact group acting on X with a closed invariant set A. Let G also act linearly on \mathbb{R}^n . Then any equivariant $\phi: A \to \mathbb{R}^n$ extends to $\phi: X \to \mathbb{R}^n$.

- ▶ A group action $G \times X \to X$ with e(x) = x for all x and gh(x) = g(h(x)). That is, $G \to Homeo(X)$ so that the product operation becomes compositions.
- We only need the result for finite group actions.
- An equivariant map $\phi: X \to Y$ between G-spaces is a map so that $\phi(g(x)) = g(\phi(x))$.
- ▶ An isotropy subgroup $G_X = \{g \in G | g(x) = x\}.$
- $G_{g(x)} = gG_xg^{-1}$. $G_x \subset G_{\phi(x)}$ for an equivariant map ϕ .
- ▶ Tietze-Gleason Theorem: G a compact group acting on X with a closed invariant set A. Let G also act linearly on \mathbb{R}^n . Then any equivariant $\phi: A \to \mathbb{R}^n$ extends to $\phi: X \to \mathbb{R}^n$.

- ▶ A group action $G \times X \to X$ with e(x) = x for all x and gh(x) = g(h(x)). That is, $G \to Homeo(X)$ so that the product operation becomes compositions.
- We only need the result for finite group actions.
- ▶ An equivariant map $\phi: X \to Y$ between G-spaces is a map so that $\phi(g(x)) = g(\phi(x))$.
- ▶ An isotropy subgroup $G_X = \{g \in G | g(x) = x\}.$
- $G_{g(x)} = gG_xg^{-1}$. $G_x \subset G_{\phi(x)}$ for an equivariant map ϕ .
- ▶ Tietze-Gleason Theorem: G a compact group acting on X with a closed invariant set A. Let G also act linearly on \mathbb{R}^n . Then any equivariant $\phi: A \to \mathbb{R}^n$ extends to $\phi: X \to \mathbb{R}^n$.

- ▶ A group action $G \times X \to X$ with e(x) = x for all x and gh(x) = g(h(x)). That is, $G \to Homeo(X)$ so that the product operation becomes compositions.
- We only need the result for finite group actions.
- ▶ An equivariant map $\phi: X \to Y$ between G-spaces is a map so that $\phi(g(x)) = g(\phi(x))$.
- ▶ An isotropy subgroup $G_x = \{g \in G | g(x) = x\}.$
- $G_{g(x)} = gG_xg^{-1}$. $G_x \subset G_{\phi(x)}$ for an equivariant map ϕ .
- ► Tietze-Gleason Theorem: G a compact group acting on X with a closed invariant set A. Let G also act linearly on \mathbb{R}^n . Then any equivariant $\phi: A \to \mathbb{R}^n$ extends to $\phi: X \to \mathbb{R}^n$.

- ▶ A group action $G \times X \to X$ with e(x) = x for all x and gh(x) = g(h(x)). That is, $G \to Homeo(X)$ so that the product operation becomes compositions.
- We only need the result for finite group actions.
- ▶ An equivariant map $\phi: X \to Y$ between G-spaces is a map so that $\phi(g(x)) = g(\phi(x))$.
- ▶ An isotropy subgroup $G_x = \{g \in G | g(x) = x\}.$
- $G_{g(x)} = gG_xg^{-1}$. $G_x \subset G_{\phi(x)}$ for an equivariant map ϕ .
- ▶ Tietze-Gleason Theorem: G a compact group acting on X with a closed invariant set A. Let G also act linearly on \mathbb{R}^n . Then any equivariant $\phi: A \to \mathbb{R}^n$ extends to $\phi: X \to \mathbb{R}^n$.

- ▶ A group action $G \times X \to X$ with e(x) = x for all x and gh(x) = g(h(x)). That is, $G \to Homeo(X)$ so that the product operation becomes compositions.
- We only need the result for finite group actions.
- ▶ An equivariant map $\phi: X \to Y$ between G-spaces is a map so that $\phi(g(x)) = g(\phi(x))$.
- ▶ An isotropy subgroup $G_x = \{g \in G | g(x) = x\}.$
- $G_{g(x)} = gG_xg^{-1}$. $G_x \subset G_{\phi(x)}$ for an equivariant map ϕ .
- ▶ Tietze-Gleason Theorem: G a compact group acting on X with a closed invariant set A. Let G also act linearly on \mathbb{R}^n . Then any equivariant $\phi: A \to \mathbb{R}^n$ extends to $\phi: X \to \mathbb{R}^n$.

Orbit spaces

- ▶ An orbit of x is $G(x) = \{g(x) | g \in G\}$.
- ▶ $G/G_X \rightarrow G(X)$ is one-to-one onto continuous function.
- An *orbit type* is given by the conjugacy class of G_x in G. The orbit types form a partially ordered set.
- Denote by X/G the space of orbits with quotient topology.
- ▶ For $A \subset X$, $G(A) = \bigcup_{g \in G} g(A)$ is the *saturation* of A.
- Properties:
 - \blacktriangleright $\pi: X \to X/G$ is an open, closed, and proper map.
 - ➤ X/G is Hausdorff
 - ➤ X is compact iff X/G is compact.
 - X is locally compact iff X/G is locally compact.

- ▶ An orbit of x is $G(x) = \{g(x) | g \in G\}$.
- ▶ $G/G_X \rightarrow G(X)$ is one-to-one onto continuous function.
- An *orbit type* is given by the conjugacy class of G_x in G. The orbit types form a partially ordered set.
- Denote by X/G the space of orbits with quotient topology.
- ▶ For $A \subset X$, $G(A) = \bigcup_{g \in G} g(A)$ is the *saturation* of A.
- Properties:
 - $\blacktriangleright \pi: X \to X/G$ is an open, closed, and proper map.
 - ➤ X/G is Hausdorff
 - ► X is compact iff X/G is compact
 - X is locally compact iff X/G is locally compact.

- ▶ An orbit of x is $G(x) = \{g(x) | g \in G\}$.
- ▶ $G/G_X \rightarrow G(X)$ is one-to-one onto continuous function.
- ► An *orbit type* is given by the conjugacy class of G_x in G. The orbit types form a partially ordered set.
- Denote by X/G the space of orbits with quotient topology.
- ▶ For $A \subset X$, $G(A) = \bigcup_{g \in G} g(A)$ is the *saturation* of A.
- Properties:
 - ▶ $\pi: X \to X/G$ is an open, closed, and proper map.
 - X/G is Hausdorff
 - X is compact iff X/G is compact.
 - X is locally compact iff X/G is locally compact.

- ▶ An orbit of x is $G(x) = \{g(x) | g \in G\}$.
- ▶ $G/G_x \rightarrow G(x)$ is one-to-one onto continuous function.
- ► An *orbit type* is given by the conjugacy class of G_x in G. The orbit types form a partially ordered set.
- Denote by X/G the space of orbits with quotient topology.
- ▶ For $A \subset X$, $G(A) = \bigcup_{g \in G} g(A)$ is the *saturation* of A.
- Properties:
 - $\pi: X \to X/G$ is an open, closed, and proper map.
 - Vis compact iff V/G is compa
 - \triangleright X is compact iff X/G is compact.
 - X is locally compact iff X/G is locally compact.

- ▶ An orbit of x is $G(x) = \{g(x) | g \in G\}$.
- ▶ $G/G_X \rightarrow G(X)$ is one-to-one onto continuous function.
- ► An *orbit type* is given by the conjugacy class of G_x in G. The orbit types form a partially ordered set.
- Denote by X/G the space of orbits with quotient topology.
- ▶ For $A \subset X$, $G(A) = \bigcup_{g \in G} g(A)$ is the saturation of A.
- Properties:
 - π: X → X/G is an open, closed, and proper map.
 X/G is Hausdorff.
 - X is compact iff X/G is compact.
 - X is locally compact iff X / G is locally compact.

- ▶ An orbit of x is $G(x) = \{g(x) | g \in G\}$.
- ▶ $G/G_X \rightarrow G(X)$ is one-to-one onto continuous function.
- An *orbit type* is given by the conjugacy class of G_x in G. The orbit types form a partially ordered set.
- Denote by X/G the space of orbits with quotient topology.
- ▶ For $A \subset X$, $G(A) = \bigcup_{g \in G} g(A)$ is the saturation of A.
- Properties:
 - ▶ $\pi: X \to X/G$ is an open, closed, and proper map.
 - \triangleright X/G is Hausdorff.
 - ightharpoonup X is compact iff X/G is compact.
 - ightharpoonup X is locally compact iff X/G is locally compact.

- ▶ An orbit of x is $G(x) = \{g(x) | g \in G\}$.
- ▶ $G/G_X \rightarrow G(X)$ is one-to-one onto continuous function.
- ► An *orbit type* is given by the conjugacy class of G_x in G. The orbit types form a partially ordered set.
- Denote by X/G the space of orbits with quotient topology.
- ▶ For $A \subset X$, $G(A) = \bigcup_{g \in G} g(A)$ is the saturation of A.
- Properties:
 - ▶ $\pi: X \to X/G$ is an open, closed, and proper map.
 - \triangleright X/G is Hausdorff.
 - \triangleright *X* is compact iff *X*/*G* is compact.
 - \triangleright *X* is locally compact iff *X*/*G* is locally compact.

- ▶ An orbit of x is $G(x) = \{g(x) | g \in G\}$.
- ▶ $G/G_X \rightarrow G(X)$ is one-to-one onto continuous function.
- An orbit type is given by the conjugacy class of G_x in G. The orbit types form a partially ordered set.
- Denote by X/G the space of orbits with quotient topology.
- ▶ For $A \subset X$, $G(A) = \bigcup_{g \in G} g(A)$ is the saturation of A.
- Properties:
 - ▶ $\pi: X \to X/G$ is an open, closed, and proper map.
 - X/G is Hausdorff.
 - \triangleright *X* is compact iff *X*/*G* is compact.
 - \triangleright *X* is locally compact iff *X*/*G* is locally compact.

- ▶ An orbit of x is $G(x) = \{g(x) | g \in G\}$.
- ▶ $G/G_X \rightarrow G(X)$ is one-to-one onto continuous function.
- An orbit type is given by the conjugacy class of G_x in G. The orbit types form a partially ordered set.
- Denote by X/G the space of orbits with quotient topology.
- ▶ For $A \subset X$, $G(A) = \bigcup_{g \in G} g(A)$ is the saturation of A.
- Properties:
 - ▶ $\pi: X \to X/G$ is an open, closed, and proper map.
 - X/G is Hausdorff.
 - X is compact iff X/G is compact.
 - ightharpoonup X is locally compact iff X/G is locally compact.

- ▶ An orbit of x is $G(x) = \{g(x) | g \in G\}$.
- ▶ $G/G_X \rightarrow G(X)$ is one-to-one onto continuous function.
- ► An *orbit type* is given by the conjugacy class of G_x in G. The orbit types form a partially ordered set.
- Denote by X/G the space of orbits with quotient topology.
- ▶ For $A \subset X$, $G(A) = \bigcup_{g \in G} g(A)$ is the saturation of A.
- Properties:
 - ▶ $\pi: X \to X/G$ is an open, closed, and proper map.
 - ➤ X/G is Hausdorff.
 - ▶ *X* is compact iff *X*/*G* is compact.
 - ightharpoonup X is locally compact iff X/G is locally compact.

- Let $X = G \times Y$ and G acts as a product.
- For k, q relatively prime, the action of Z_k on S^3 in C^2 generated by a matrix

$$\begin{bmatrix} e^{2\pi i/k} & 0 \\ 0 & e^{2\pi qi/k} \end{bmatrix}$$

giving us a Lens space.

ightharpoonup We can also consider S^1 -actions given by

$$\begin{bmatrix} e^{2\pi ki\theta} & 0 \\ 0 & e^{2\pi qi\theta} \end{bmatrix}$$

Then it has three orbit types.

 Consider in general the action of torus Tⁿ-action on Cⁿ given by

$$(c_1,...,c_n)(y_1,...,y_n)=(c_1y_1,...,c_ny_n), |c_i|=1, y_i\in C.$$

- ▶ Let $X = G \times Y$ and G acts as a product.
- For k, q relatively prime, the action of Z_k on S^3 in C^2 generated by a matrix

$$\left[\begin{array}{cc} e^{2\pi i/k} & 0 \\ 0 & e^{2\pi qi/k} \end{array}\right]$$

giving us a Lens space.

▶ We can also consider S^1 -actions given by

$$\begin{bmatrix} e^{2\pi ki\theta} & 0 \\ 0 & e^{2\pi qi\theta} \end{bmatrix}$$

Then it has three orbit types.

 Consider in general the action of torus Tⁿ-action on Cⁿ given by

$$(c_1,...,c_n)(y_1,...,y_n)=(c_1y_1,...,c_ny_n), |c_i|=1, y_i\in C.$$

- ▶ Let $X = G \times Y$ and G acts as a product.
- For k, q relatively prime, the action of Z_k on S^3 in C^2 generated by a matrix

$$\left[\begin{array}{cc} e^{2\pi i/k} & 0 \\ 0 & e^{2\pi qi/k} \end{array}\right]$$

giving us a Lens space.

▶ We can also consider S¹-actions given by

$$\left[\begin{array}{cc} e^{2\pi k i \theta} & 0 \\ 0 & e^{2\pi q i \theta} \end{array}\right]$$

Then it has three orbit types.

 Consider in general the action of torus Tⁿ-action on Cⁿ given by

$$(c_1,...,c_n)(y_1,...,y_n)=(c_1y_1,...,c_ny_n), |c_i|=1, y_i\in C.$$

- Let $X = G \times Y$ and G acts as a product.
- For k, g relatively prime, the action of Z_k on S^3 in C^2 generated by a matrix

$$\left[\begin{array}{cc} e^{2\pi i/k} & 0 \\ 0 & e^{2\pi qi/k} \end{array}\right]$$

giving us a Lens space.

▶ We can also consider S¹-actions given by

$$\left[\begin{array}{cc} e^{2\pi k i \theta} & 0 \\ 0 & e^{2\pi q i \theta} \end{array}\right]$$

Then it has three orbit types.

Consider in general the action of torus Tⁿ-action on C^n given by

$$(c_1,...,c_n)(y_1,...,y_n)=(c_1y_1,...,c_ny_n), |c_i|=1,y_i\in C.$$

▶ Then there is a homeomorphism $h: \mathbb{C}^n/\mathbb{T}^n \to (\mathbb{R}^+)^n$ given by sending

$$(y_1,...,y_n) \mapsto (|y_1|^2,...,|y_n|^2).$$

The interiors of sides represent different orbit types.

- ► H a closed subgroup of Lie group G. The left-coset space G/H where G acts on the right also.
- ▶ $G/G_X \to G(X)$ is given by $gG_X \mapsto g(X)$ is a homeomorphism if G is compact.
- ► Twisted product: X a right G-space, Y a left G-space. A left action is given by $g(x,y) = (xg^{-1}, gy)$. The twisted product $X \times_G Y$ is the quotient space.
- p: X → B is a principal bundle with G acting on the left. F a right G-space. Then F ×_G X is the associated bundle.

▶ Then there is a homeomorphism $h: \mathbb{C}^n/\mathbb{T}^n \to (\mathbb{R}^+)^n$ given by sending

$$(y_1,...,y_n) \mapsto (|y_1|^2,...,|y_n|^2).$$

The interiors of sides represent different orbit types.

- ► *H* a closed subgroup of Lie group *G*. The left-coset space *G/H* where *G* acts on the right also.
- ▶ $G/G_X \to G(X)$ is given by $gG_X \mapsto g(X)$ is a homeomorphism if G is compact.
- ► Twisted product: X a right G-space, Y a left G-space. A left action is given by $g(x,y) = (xg^{-1}, gy)$. The twisted product $X \times_G Y$ is the quotient space.
- ▶ $p: X \to B$ is a principal bundle with G acting on the left. F a right G-space. Then $F \times_G X$ is the associated bundle.

▶ Then there is a homeomorphism $h: \mathbb{C}^n/\mathbb{T}^n \to (\mathbb{R}^+)^n$ given by sending

$$(y_1,...,y_n) \mapsto (|y_1|^2,...,|y_n|^2).$$

The interiors of sides represent different orbit types.

- ► *H* a closed subgroup of Lie group *G*. The left-coset space *G/H* where *G* acts on the right also.
- ▶ $G/G_x \rightarrow G(x)$ is given by $gG_x \mapsto g(x)$ is a homeomorphism if G is compact.
- ► Twisted product: X a right G-space, Y a left G-space. A left action is given by $g(x,y) = (xg^{-1}, gy)$. The twisted product $X \times_G Y$ is the quotient space.
- p: X → B is a principal bundle with G acting on the left. F a right G-space. Then F ×_G X is the associated bundle.

Orbit spaces: Examples

▶ Then there is a homeomorphism $h: \mathbb{C}^n/\mathbb{T}^n \to (\mathbb{R}^+)^n$ given by sending

$$(y_1,...,y_n)\mapsto (|y_1|^2,...,|y_n|^2).$$

The interiors of sides represent different orbit types.

- ► *H* a closed subgroup of Lie group *G*. The left-coset space *G/H* where *G* acts on the right also.
- ▶ $G/G_x \to G(x)$ is given by $gG_x \mapsto g(x)$ is a homeomorphism if G is compact.
- ► Twisted product: X a right G-space, Y a left G-space. A left action is given by $g(x,y) = (xg^{-1}, gy)$. The twisted product $X \times_G Y$ is the quotient space.
- p: X → B is a principal bundle with G acting on the left. F a right G-space. Then F ×_G X is the associated bundle.

Orbit spaces: Examples

▶ Then there is a homeomorphism $h: \mathbb{C}^n/\mathbb{T}^n \to (\mathbb{R}^+)^n$ given by sending

$$(y_1,...,y_n) \mapsto (|y_1|^2,...,|y_n|^2).$$

The interiors of sides represent different orbit types.

- ► *H* a closed subgroup of Lie group *G*. The left-coset space *G/H* where *G* acts on the right also.
- ▶ $G/G_x \rightarrow G(x)$ is given by $gG_x \mapsto g(x)$ is a homeomorphism if G is compact.
- Twisted product: X a right G-space, Y a left G-space. A left action is given by g(x, y) = (xg⁻¹, gy). The twisted product X ×_G Y is the quotient space.
- p: X → B is a principal bundle with G acting on the left. F a right G-space. Then F ×_G X is the associated bundle.

▶ The Conner-Floyd example: There is an action of Z_r for r = pq, p, q relatively prime, on an Euclidean space of large dimensions without stationary points.

- Proof:
 - Find a simplicial action Z_{pq} on $S^3 = S^1 * S^1$ without stationary points obtained by joining action of Z_p on S^1 and Z_q on the second S^1 .
 - ► Find an equivariant simplicial map $h: S^{\circ} \to S^{\circ}$ which is homotopically trivial.
 - Build the infinite mapping cylinder which is contactible and imbed it in an Euclidean space of high-dimensions where Z_{pa} acts orthogonally.
 - Find the contractible neighborhood. Taking the product with the real line makes it into a Euclidean space.

▶ The Conner-Floyd example: There is an action of Z_r for r = pq, p, q relatively prime, on an Euclidean space of large dimensions without stationary points.

Proof:

- ► Find a simplicial action Z_{pq} on $S^3 = S^1 * S^1$ without stationary points obtained by joining action of Z_p on S^1 and Z_q on the second S^1 .
- Find an equivariant simplicial map $h: S^3 \to S^3$ which is homotopically trivial.
- Build the infinite mapping cylinder which is contactible and imbed it in an Euclidean space of high-dimensions where Z_{pq} acts orthogonally.
- Find the contractible neighborhood. Taking the product with the real line makes it into a Euclidean space.

- ▶ The Conner-Floyd example: There is an action of Z_r for r = pq, p, q relatively prime, on an Euclidean space of large dimensions without stationary points.
- Proof:
 - ▶ Find a simplicial action Z_{pq} on $S^3 = S^1 * S^1$ without stationary points obtained by joining action of Z_p on S^1 and Z_q on the second S^1 .
 - Find an equivariant simplicial map $h: S^3 \to S^3$ which is homotopically trivial.
 - Build the infinite mapping cylinder which is contactible and imbed it in an Euclidean space of high-dimensions where Z_{pq} acts orthogonally.
 - Find the contractible neighborhood. Taking the product with the real line makes it into a Euclidean space.

- ▶ The Conner-Floyd example: There is an action of Z_r for r = pq, p, q relatively prime, on an Euclidean space of large dimensions without stationary points.
- Proof:
 - ▶ Find a simplicial action Z_{pq} on $S^3 = S^1 * S^1$ without stationary points obtained by joining action of Z_p on S^1 and Z_q on the second S^1 .
 - Find an equivariant simplicial map $h: S^3 \to S^3$ which is homotopically trivial.
 - Build the infinite mapping cylinder which is contactible and imbed it in an Euclidean space of high-dimensions where Z_{pq} acts orthogonally.
 - Find the contractible neighborhood. Taking the product with the real line makes it into a Euclidean space.

- ▶ The Conner-Floyd example: There is an action of Z_r for r = pq, p, q relatively prime, on an Euclidean space of large dimensions without stationary points.
- Proof:
 - ▶ Find a simplicial action Z_{pq} on $S^3 = S^1 * S^1$ without stationary points obtained by joining action of Z_p on S^1 and Z_q on the second S^1 .
 - ► Find an equivariant simplicial map $h: S^3 \to S^3$ which is homotopically trivial.
 - Build the infinite mapping cylinder which is contactible and imbed it in an Euclidean space of high-dimensions where Z_{pq} acts orthogonally.
 - Find the contractible neighborhood. Taking the product with the real line makes it into a Euclidean space.

- ▶ The Conner-Floyd example: There is an action of Z_r for r = pq, p, q relatively prime, on an Euclidean space of large dimensions without stationary points.
- Proof:
 - ▶ Find a simplicial action Z_{pq} on $S^3 = S^1 * S^1$ without stationary points obtained by joining action of Z_p on S^1 and Z_q on the second S^1 .
 - Find an equivariant simplicial map $h: S^3 \to S^3$ which is homotopically trivial.
 - Build the infinite mapping cylinder which is contactible and imbed it in an Euclidean space of high-dimensions where Z_{pq} acts orthogonally.
 - Find the contractible neighborhood. Taking the product with the real line makes it into a Euclidean space.

Orbit spaces: Bad examples

Section 3: Topology of orbifolds

S. Choi

Introduction

Compact group actions

► Hsiang-Hsiang: If G is any compact, connected, nonabelian Lie group, then there is an action of G on any euclidean space of sufficiently high dimension for which the fixed point set F has any given homotopy type. (F could be empty.)

- ▶ *G* a compact subgroup, *X* right *G*-space and *Y* left *G*-space. $X \times_G Y$ is the quotient space of $X \times Y$ where $[xg, y] \sim [x, gy]$ for $g \in G$.
- ▶ *H* a closed subgroup of $G G \times_H Y$ is a left G-space by the action g[g', a] = [gg', a]. This sends equivalence classes to themselves.
- The inclusion A → G ×_H A induces a homeomorphism A/H → (G ×_H A)/G.
- The isotropy subgroup at [e, a]: $[e, a] = g[e, a] = [g, a] = [h^{-1}, h(a)]$. Thus, $G_{[e,a]} = H_a$.
- Example: Let $G = S^1$ and A be the unit-disk and $H = \mathbb{Z}_3$ generated by $e^{2\pi/3}$. G and H acts in a standard way in A. Then consider $G \times_H A$.

- ▶ *G* a compact subgroup, *X* right *G*-space and *Y* left *G*-space. $X \times_G Y$ is the quotient space of $X \times Y$ where $[xg, y] \sim [x, gy]$ for $g \in G$.
- ▶ *H* a closed subgroup of $G G \times_H Y$ is a left G-space by the action g[g', a] = [gg', a]. This sends equivalence classes to themselves.
- The inclusion A → G ×_H A induces a homeomorphism A/H → (G ×_H A)/G.
- The isotropy subgroup at [e, a]: $[e, a] = g[e, a] = [g, a] = [h^{-1}, h(a)]$. Thus, $G_{[e, a]} = H_a$.
- Example: Let $G = S^1$ and A be the unit-disk and $H = \mathbb{Z}_3$ generated by $e^{2\pi/3}$. G and H acts in a standard way in A. Then consider $G \times_H A$.

- ▶ G a compact subgroup, X right G-space and Y left G-space. $X \times_G Y$ is the quotient space of $X \times Y$ where $[xg, y] \sim [x, gy]$ for $g \in G$.
- ▶ *H* a closed subgroup of $G G \times_H Y$ is a left G-space by the action g[g', a] = [gg', a]. This sends equivalence classes to themselves.
- The inclusion A → G ×_H A induces a homeomorphism A/H → (G ×_H A)/G.
- The isotropy subgroup at [e, a]: $[e, a] = g[e, a] = [g, a] = [h^{-1}, h(a)]$. Thus, $G_{[e,a]} = H_a$.
- Example: Let $G = S^1$ and A be the unit-disk and $H = \mathbb{Z}_3$ generated by $e^{2\pi/3}$. G and H acts in a standard way in A. Then consider $G \times_H A$.

- ▶ G a compact subgroup, X right G-space and Y left G-space. $X \times_G Y$ is the quotient space of $X \times Y$ where $[xg, y] \sim [x, gy]$ for $g \in G$.
- ▶ *H* a closed subgroup of $G G \times_H Y$ is a left G-space by the action g[g', a] = [gg', a]. This sends equivalence classes to themselves.
- The inclusion A → G ×_H A induces a homeomorphism A/H → (G ×_H A)/G.
- ► The isotropy subgroup at [e, a]: $[e, a] = g[e, a] = [g, a] = [h^{-1}, h(a)]$. Thus, $G_{[e,a]} = H_a$.
- Example: Let $G = S^1$ and A be the unit-disk and $H = \mathbb{Z}_3$ generated by $e^{2\pi/3}$. G and H acts in a standard way in A. Then consider $G \times_H A$.

- ▶ G a compact subgroup, X right G-space and Y left G-space. $X \times_G Y$ is the quotient space of $X \times Y$ where $[xg, y] \sim [x, gy]$ for $g \in G$.
- ▶ H a closed subgroup of G $G \times_H Y$ is a left G-space by the action g[g', a] = [gg', a]. This sends equivalence classes to themselves.
- The inclusion A → G ×_H A induces a homeomorphism A/H → (G ×_H A)/G.
- ► The isotropy subgroup at [e, a]: $[e, a] = g[e, a] = [g, a] = [h^{-1}, h(a)]$. Thus, $G_{[e, a]} = H_a$.
- Example: Let $G = S^1$ and A be the unit-disk and $H = \mathbb{Z}_3$ generated by $e^{2\pi/3}$. G and H acts in a standard way in A. Then consider $G \times_H A$.

- ▶ X a G-space. P an orbit of type G/H.
- A tube about P is a G-equivariant imbedding G ×_H A → X onto an open neighborhood of P where A is a some space where H acts on.
- ▶ Every orbit passes the image of $e \times A$.
- ▶ In general $G_X = H_{a'} \subset H$ for X = [e, a'].
- ▶ We have for above orbit P = G(x) for x = [e, a].
- ► Then $G_X = H_a \subset H$ as X = [e, a]. But G_X is conjugate to H. Thus, $H = H_a$.
- ► *a* is the stationary point of *H* in *A*.
- ▶ A slice: Let $x \in X$, a set S such that $x \in S$, $G_x(S) = S$. Then S is a slice if $G \times_{G_x} S \to X$ so that $[g, s] \to g(s)$ is a tube about G_x .

- \triangleright X a G-space. P an orbit of type G/H.
- A tube about P is a G-equivariant imbedding G ×_H A → X onto an open neighborhood of P where A is a some space where H acts on.
- ▶ Every orbit passes the image of $e \times A$.
- ▶ In general $G_X = H_{a'} \subset H$ for X = [e, a'].
- ▶ We have for above orbit P = G(x) for x = [e, a].
- ▶ Then $G_X = H_a \subset H$ as X = [e, a]. But G_X is conjugate to H. Thus, $H = H_a$.
- ► *a* is the stationary point of *H* in *A*.
- ▶ A slice: Let $x \in X$, a set S such that $x \in S$, $G_x(S) = S$. Then S is a *slice* if $G \times_{G_x} S \to X$ so that $[g, s] \to g(s)$ is a tube about G_x .

- \triangleright X a G-space. P an orbit of type G/H.
- A tube about P is a G-equivariant imbedding G ×_H A → X onto an open neighborhood of P where A is a some space where H acts on.
- ▶ Every orbit passes the image of $e \times A$.
- ▶ In general $G_X = H_{a'} \subset H$ for X = [e, a'].
- ▶ We have for above orbit P = G(x) for x = [e, a].
- ▶ Then $G_X = H_a \subset H$ as X = [e, a]. But G_X is conjugate to H. Thus, $H = H_a$.
- ▶ a is the stationary point of H in A.
- A slice: Let $x \in X$, a set S such that $x \in S$, $G_x(S) = S$. Then S is a slice if $G \times_{G_x} S \to X$ so that $[g, s] \to g(s)$ is a tube about G_x .

- \triangleright X a G-space. P an orbit of type G/H.
- A tube about P is a G-equivariant imbedding G ×_H A → X onto an open neighborhood of P where A is a some space where H acts on.
- ▶ Every orbit passes the image of $e \times A$.
- ▶ In general $G_x = H_{a'} \subset H$ for x = [e, a'].
- ▶ We have for above orbit P = G(x) for x = [e, a].
- ► Then $G_X = H_a \subset H$ as X = [e, a]. But G_X is conjugate to H. Thus, $H = H_a$.
- ▶ a is the stationary point of H in A.
- A slice: Let $x \in X$, a set S such that $x \in S$, $G_x(S) = S$. Then S is a *slice* if $G \times_{G_x} S \to X$ so that $[g, s] \to g(s)$ is a tube about G_x .

- \blacktriangleright X a G-space. P an orbit of type G/H.
- A tube about P is a G-equivariant imbedding G ×_H A → X onto an open neighborhood of P where A is a some space where H acts on.
- ▶ Every orbit passes the image of $e \times A$.
- ▶ In general $G_x = H_{a'} \subset H$ for x = [e, a'].
- We have for above orbit P = G(x) for x = [e, a].
- ▶ Then $G_X = H_a \subset H$ as X = [e, a]. But G_X is conjugate to H. Thus, $H = H_a$.
- ▶ a is the stationary point of H in A.
- ▶ A slice: Let $x \in X$, a set S such that $x \in S$, $G_X(S) = S$. Then S is a *slice* if $G \times_{G_X} S \to X$ so that $[g, s] \to g(s)$ is a tube about G_X .

- \triangleright X a G-space. P an orbit of type G/H.
- A tube about P is a G-equivariant imbedding G ×_H A → X onto an open neighborhood of P where A is a some space where H acts on.
- Every orbit passes the image of $e \times A$.
- ▶ In general $G_x = H_{a'} \subset H$ for x = [e, a'].
- We have for above orbit P = G(x) for x = [e, a].
- ▶ Then $G_x = H_a \subset H$ as x = [e, a]. But G_x is conjugate to H. Thus, $H = H_a$.
- ► *a* is the stationary point of *H* in *A*.
- ▶ A slice: Let $x \in X$, a set S such that $x \in S$, $G_x(S) = S$. Then S is a *slice* if $G \times_{G_x} S \to X$ so that $[g, s] \to g(s)$ is a tube about G_x .

- \blacktriangleright X a G-space. P an orbit of type G/H.
- A tube about P is a G-equivariant imbedding G ×_H A → X onto an open neighborhood of P where A is a some space where H acts on.
- ▶ Every orbit passes the image of $e \times A$.
- ▶ In general $G_x = H_{a'} \subset H$ for x = [e, a'].
- We have for above orbit P = G(x) for x = [e, a].
- ▶ Then $G_x = H_a \subset H$ as x = [e, a]. But G_x is conjugate to H. Thus, $H = H_a$.
- a is the stationary point of H in A.
- ▶ A slice: Let $x \in X$, a set S such that $x \in S$, $G_x(S) = S$. Then S is a slice if $G \times_{G_x} S \to X$ so that $[g, s] \to g(s)$ is a tube about G_x .

- \blacktriangleright X a G-space. P an orbit of type G/H.
- A tube about P is a G-equivariant imbedding G ×_H A → X onto an open neighborhood of P where A is a some space where H acts on.
- ▶ Every orbit passes the image of $e \times A$.
- ▶ In general $G_x = H_{a'} \subset H$ for x = [e, a'].
- We have for above orbit P = G(x) for x = [e, a].
- ▶ Then $G_x = H_a \subset H$ as x = [e, a]. But G_x is conjugate to H. Thus, $H = H_a$.
- ▶ a is the stationary point of H in A.
- ▶ A slice: Let $x \in X$, a set S such that $x \in S$, $G_x(S) = S$. Then S is a *slice* if $G \times_{G_x} S \to X$ so that $[g, s] \to g(s)$ is a tube about G_x .

Let $x \in S$ and $H = G_x$. Then the following are equivalent:

- ▶ There is a tube ϕ : $G \times_H A \to X$ about G(x) such that $\phi([e,A]) = S$.
- S is a slice at x.
- ▶ G(S) is an open neighborhood of G(x) and there is an equivariant retraction $f: G(S) \to G(x)$ with $f^{-1}(x) = S$.
- It would be a good exercise to apply these theories to above examples....

actions

Compact group

- Let $x \in S$ and $H = G_x$. Then the following are equivalent:
 - ► There is a tube ϕ : $G \times_H A \to X$ about G(x) such that $\phi([e,A]) = S$.
 - S is a slice at x
 - ▶ G(S) is an open neighborhood of G(x) and there is an equivariant retraction $f: G(S) \to G(x)$ with $f^{-1}(x) = S$.
- It would be a good exercise to apply these theories to above examples....

- Let $x \in S$ and $H = G_x$. Then the following are equivalent:
 - ▶ There is a tube ϕ : $G \times_H A \to X$ about G(x) such that $\phi([e,A]) = S$.
 - S is a slice at x.
 - ▶ G(S) is an open neighborhood of G(x) and there is an equivariant retraction $f: G(S) \to G(x)$ with $f^{-1}(x) = S$.
- It would be a good exercise to apply these theories to above examples....

- Let $x \in S$ and $H = G_x$. Then the following are equivalent:
 - ► There is a tube ϕ : $G \times_H A \to X$ about G(x) such that $\phi([e,A]) = S$.
 - S is a slice at x.
 - ▶ G(S) is an open neighborhood of G(x) and there is an equivariant retraction $f: G(S) \to G(x)$ with $f^{-1}(x) = S$.
- It would be a good exercise to apply these theories to above examples....

- Let $x \in S$ and $H = G_x$. Then the following are equivalent:
 - ▶ There is a tube ϕ : $G \times_H A \to X$ about G(x) such that $\phi([e,A]) = S$.
 - S is a slice at x.
 - ▶ G(S) is an open neighborhood of G(x) and there is an equivariant retraction $f: G(S) \to G(x)$ with $f^{-1}(x) = S$.
- It would be a good exercise to apply these theories to above examples....

- ► Let *X* be a completely regular *G*-space. There is a tube about any orbit of a complete regular *G*-space with *G* compact. (Mostow)
- ► Proof:
 - ▶ Let x_0 have an isotropy group H in G.
 - Find an orthogonal representation of G in \mathbb{R}^n with a point v_0 whose isotropy group is H.
 - In the region is an equivalence $G(x_0)$ and $G(v_0)$. Extend this to a neighborhood.
 - For \mathbb{R}^n , we can find the equivariant retraction. Transfer this on X.
- ▶ If G is a finite group acting on a manifold, then a tube is a union of disjoint open sets and a slice is an open subset where G_x acts on.

- Proof:
 - ▶ Let x_0 have an isotropy group H in G.
 - Find an orthogonal representation of G in \mathbb{R}^n with a point v_0 whose isotropy group is H.
 - ► There is an equivalence $G(x_0)$ and $G(v_0)$. Extend this to a neighborhood.
 - For \mathbb{R}^n , we can find the equivariant retraction. Transfer this on X.
- ▶ If G is a finite group acting on a manifold, then a tube is a union of disjoint open sets and a slice is an open subset where G_x acts on.

- ► Let *X* be a completely regular *G*-space. There is a tube about any orbit of a complete regular *G*-space with *G* compact. (Mostow)
- Proof:
 - ▶ Let x₀ have an isotropy group H in G.
 - Find an orthogonal representation of G in \mathbb{R}^n with a point v_0 whose isotropy group is H.
 - ► There is an equivalence $G(x_0)$ and $G(v_0)$. Extend this to a neighborhood.
 - For \mathbb{R}^n , we can find the equivariant retraction. Transfer this on X.
- ▶ If G is a finite group acting on a manifold, then a tube is a union of disjoint open sets and a slice is an open subset where G_X acts on.

- ► Let *X* be a completely regular *G*-space. There is a tube about any orbit of a complete regular *G*-space with *G* compact. (Mostow)
- Proof:
 - ▶ Let x₀ have an isotropy group H in G.
 - ► Find an orthogonal representation of G in \mathbb{R}^n with a point v_0 whose isotropy group is H.
 - ► There is an equivalence $G(x_0)$ and $G(v_0)$. Extend this to a neighborhood.
 - For \mathbb{R}^n , we can find the equivariant retraction. Transfer this on X.
- ▶ If G is a finite group acting on a manifold, then a tube is a union of disjoint open sets and a slice is an open subset where G_X acts on.

- Proof:
 - ▶ Let x₀ have an isotropy group H in G.
 - ► Find an orthogonal representation of G in \mathbb{R}^n with a point v_0 whose isotropy group is H.
 - ► There is an equivalence $G(x_0)$ and $G(v_0)$. Extend this to a neighborhood.
 - For \mathbb{R}^n , we can find the equivariant retraction. Transfer this on X.
- ▶ If G is a finite group acting on a manifold, then a tube is a union of disjoint open sets and a slice is an open subset where G_X acts on.

- Proof:
 - ▶ Let x₀ have an isotropy group H in G.
 - ► Find an orthogonal representation of G in \mathbb{R}^n with a point v_0 whose isotropy group is H.
 - ► There is an equivalence $G(x_0)$ and $G(v_0)$. Extend this to a neighborhood.
 - For \mathbb{R}^n , we can find the equivariant retraction. Transfer this on X.
- ▶ If G is a finite group acting on a manifold, then a tube is a union of disjoint open sets and a slice is an open subset where G_X acts on.

- Proof:
 - ▶ Let x₀ have an isotropy group H in G.
 - ► Find an orthogonal representation of G in \mathbb{R}^n with a point v_0 whose isotropy group is H.
 - ► There is an equivalence $G(x_0)$ and $G(v_0)$. Extend this to a neighborhood.
 - For \mathbb{R}^n , we can find the equivariant retraction. Transfer this on X.
- ▶ If G is a finite group acting on a manifold, then a tube is a union of disjoint open sets and a slice is an open subset where G_x acts on.

- ▶ Let X be a G-space, G a compact Lie group, and $f: I \to X/G$ any path. Then there exists a lifting $f': I \to X$ so that $\pi \circ f' = f$.
- Let f: X → Y be an equivariant map. Let f': X/G → Y/G be an induced map. Let F': X/G × I → Y/G be a homotopy preserving orbit types that starts at f'. Then there is an equivariant F: X × I → Y lifting F' starting at f.
- ▶ If *G* is finite and *X* a smooth manifold with a smooth *G*-action and if the functions are smooth, then the lifts can be chosen to be also smooth.

- ▶ Let X be a G-space, G a compact Lie group, and $f: I \to X/G$ any path. Then there exists a lifting $f': I \to X$ so that $\pi \circ f' = f$.
- Let f: X → Y be an equivariant map. Let f': X/G → Y/G be an induced map. Let F': X/G × I → Y/G be a homotopy preserving orbit types that starts at f'. Then there is an equivariant F: X × I → Y lifting F' starting at f.
- ▶ If *G* is finite and *X* a smooth manifold with a smooth *G*-action and if the functions are smooth, then the lifts can be chosen to be also smooth.

- ▶ Let X be a G-space, G a compact Lie group, and $f: I \to X/G$ any path. Then there exists a lifting $f': I \to X$ so that $\pi \circ f' = f$.
- Let f: X → Y be an equivariant map. Let f': X/G → Y/G be an induced map. Let F': X/G × I → Y/G be a homotopy preserving orbit types that starts at f'. Then there is an equivariant F: X × I → Y lifting F' starting at f.
- ▶ If *G* is finite and *X* a smooth manifold with a smooth *G*-action and if the functions are smooth, then the lifts can be chosen to be also smooth.

- M a G-space, G a compact Lie group, P an orbit of type G/H. V a vector space where H acts orthogonally. Then a linear tube in M is a tube of the form φ: G×H V → M.
- ► Example: A disk with S^1 -action fixing O. $S^1 \times_{S^1} \mathbb{R}^2$.
- Let S be a slice. S is a *linear slice* if $G \times_{G_X} S \to M$ given by $[g, s] \to g(s)$ is equivalent to a linear slice. (If G_X -space S is equivalent to the orthogonal G_X -space.)
- ▶ If there is a linear tube about each orbit, then *M* is said to be *locally smooth*.

- M a G-space, G a compact Lie group, P an orbit of type G/H. V a vector space where H acts orthogonally. Then a linear tube in M is a tube of the form φ: G×H V → M.
- ► Example: A disk with S^1 -action fixing O. $S^1 \times_{S^1} \mathbb{R}^2$.
- Let S be a slice. S is a *linear slice* if $G \times_{G_X} S \to M$ given by $[g,s] \to g(s)$ is equivalent to a linear slice. (If G_X -space S is equivalent to the orthogonal G_X -space.)
- ▶ If there is a linear tube about each orbit, then *M* is said to be *locally smooth*.

- M a G-space, G a compact Lie group, P an orbit of type G/H. V a vector space where H acts orthogonally. Then a linear tube in M is a tube of the form φ : G ×_H V → M.
- ► Example: A disk with S^1 -action fixing O. $S^1 \times_{S^1} \mathbb{R}^2$.
- Let S be a slice. S is a *linear slice* if $G \times_{G_x} S \to M$ given by $[g, s] \to g(s)$ is equivalent to a linear slice. (If G_x -space S is equivalent to the orthogonal G_x -space.)
- ▶ If there is a linear tube about each orbit, then *M* is said to be *locally smooth*.

- M a G-space, G a compact Lie group, P an orbit of type G/H. V a vector space where H acts orthogonally. Then a linear tube in M is a tube of the form φ : G ×_H V → M.
- ▶ Example: A disk with S^1 -action fixing O. $S^1 \times_{S^1} \mathbb{R}^2$.
- Let S be a slice. S is a *linear slice* if $G \times_{G_x} S \to M$ given by $[g, s] \to g(s)$ is equivalent to a linear slice. (If G_x -space S is equivalent to the orthogonal G_x -space.)
- ▶ If there is a linear tube about each orbit, then *M* is said to be *locally smooth*.

- ► There exists a maximum orbit type G/H for G. (That is, H is conjugate to a subgroup of each isotropy group.)
- ► Proof:
 - Near each tube, we find the maximal orbit types has to be dense and open.
- ► The maximal orbits so obtained are called *principal* orbits.
- ▶ If *M* is a smooth manifold and compact Lie *G* acts smoothly, this is true.

- ► There exists a maximum orbit type *G/H* for *G*. (That is, *H* is conjugate to a subgroup of each isotropy group.)
- Proof:
 - Near each tube, we find the maximal orbit types has to be dense and open.
- ► The maximal orbits so obtained are called *principal* orbits.
- ▶ If *M* is a smooth manifold and compact Lie *G* acts smoothly, this is true.

- ► There exists a maximum orbit type *G/H* for *G*. (That is, *H* is conjugate to a subgroup of each isotropy group.)
- Proof:
 - Near each tube, we find the maximal orbit types has to be dense and open.
- The maximal orbits so obtained are called *principal* orbits.
- ▶ If *M* is a smooth manifold and compact Lie *G* acts smoothly, this is true.

- ► There exists a maximum orbit type *G/H* for *G*. (That is, *H* is conjugate to a subgroup of each isotropy group.)
- Proof:
 - Near each tube, we find the maximal orbit types has to be dense and open.
- The maximal orbits so obtained are called principal orbits.
- ▶ If *M* is a smooth manifold and compact Lie *G* acts smoothly, this is true.

- ► There exists a maximum orbit type *G/H* for *G*. (That is, *H* is conjugate to a subgroup of each isotropy group.)
- Proof:
 - Near each tube, we find the maximal orbit types has to be dense and open.
- The maximal orbits so obtained are called principal orbits.
- ▶ If *M* is a smooth manifold and compact Lie *G* acts smoothly, this is true.

actions

► *M* a smooth manifold, *G* a compact Lie group acting smoothly on *M*.

- ▶ If *G* is finite, then this is equivalent to the fact that each $i_g: M \to M$ given by $x \mapsto g(x)$ is a diffeomorphism.
- ▶ Let *n* be the dimension of *M* and *d* the dimension of the maximal orbit.
- ▶ $M^* = M/G$ is a manifold with boundary if $n d \le 2$.

- ► *M* a smooth manifold, *G* a compact Lie group acting smoothly on *M*.
- If G is finite, then this is equivalent to the fact that each i_g : M → M given by x → g(x) is a diffeomorphism.
- ▶ Let *n* be the dimension of *M* and *d* the dimension of the maximal orbit.
- ▶ $M^* = M/G$ is a manifold with boundary if $n d \le 2$.

- ► *M* a smooth manifold, *G* a compact Lie group acting smoothly on *M*.
- If G is finite, then this is equivalent to the fact that each i_g : M → M given by x → g(x) is a diffeomorphism.
- ▶ Let *n* be the dimension of *M* and *d* the dimension of the maximal orbit.
- ▶ $M^* = M/G$ is a manifold with boundary if $n d \le 2$.

- ► *M* a smooth manifold, *G* a compact Lie group acting smoothly on *M*.
- If G is finite, then this is equivalent to the fact that each i_g : M → M given by x → g(x) is a diffeomorphism.
- ▶ Let *n* be the dimension of *M* and *d* the dimension of the maximal orbit.
- ▶ $M^* = M/G$ is a manifold with boundary if $n d \le 2$.

- Let k = n d, the codimension of the principal orbits.
- ▶ Consider a linear tube $G \times_K V$. The orbit space $(G \times_K V)^* \cong V^*$.
- Let S be the unit sphere in V. Then V^* is a cone over S^* .
- ▶ $\dim M^* = \dim V^* = \dim S^* + 1$.
- If k = 0, then M^* is discrete.
- If M is a sphere, then M^* is one or two points. (allowing disconnected M.)
- If k = 1, then M^* is locally a cone over one or two points. Hence M^* is a 1-manifold (with boundary).
- If k = 2, then M* is locally a cone over an arc or a circle. (as S* is a 1-manifold by the previous step.)
- Example: The standard S^1 -action on S^2 : the quotient is a segment. \mathbb{Z}_2 action on \mathbb{R}^3 generated by the antipodal map: The result is not a manifold.

Section 3:

- ▶ Let k = n d, the codimension of the principal orbits.
- ▶ Consider a linear tube $G \times_K V$. The orbit space $(G \times_K V)^* \cong V^*$.
- ▶ Let *S* be the unit sphere in *V*. Then *V** is a cone over *S**.
- ▶ $\dim M^* = \dim V^* = \dim S^* + 1$.
- ▶ If k = 0, then M^* is discrete.
- If M is a sphere, then M^* is one or two points. (allowing disconnected M.)
- If k = 1, then M^* is locally a cone over one or two points. Hence M^* is a 1-manifold (with boundary).
- If k = 2, then M* is locally a cone over an arc or a circle. (as S* is a 1-manifold by the previous step.)
- Example: The standard S^1 -action on S^2 : the quotient is a segment. \mathbb{Z}_2 action on \mathbb{R}^3 generated by the antipodal map: The result is not a manifold.

- Let k = n d, the codimension of the principal orbits.
- ▶ Consider a linear tube $G \times_K V$. The orbit space $(G \times_K V)^* \cong V^*$.
- ▶ Let *S* be the unit sphere in *V*. Then *V** is a cone over *S**.
- ▶ $\dim M^* = \dim V^* = \dim S^* + 1$.
- If k = 0, then M^* is discrete.
- ► If *M* is a sphere, then *M** is one or two points. (allowing disconnected *M*.)
- If k = 1, then M* is locally a cone over one or two points. Hence M* is a 1-manifold (with boundary).
- If k = 2, then M* is locally a cone over an arc or a circle. (as S* is a 1-manifold by the previous step.)
- Example: The standard S^1 -action on S^2 : the quotient is a segment. \mathbb{Z}_2 action on \mathbb{R}^3 generated by the antipodal map: The result is not a manifold.

- Let k = n d, the codimension of the principal orbits.
- ▶ Consider a linear tube $G \times_K V$. The orbit space $(G \times_{\kappa} V)^* \cong V^*$.
- Let S be the unit sphere in V. Then V^* is a cone over S^* .
- If k = 0, then M^* is discrete.

- If k = 2, then M^* is locally a cone over an arc or a
- ► Example: The standard S¹-action on S²: the quotient

- Let k = n d, the codimension of the principal orbits.
- ▶ Consider a linear tube $G \times_K V$. The orbit space $(G \times_K V)^* \cong V^*$.
- ▶ Let *S* be the unit sphere in *V*. Then *V** is a cone over *S**.
- $\qquad \qquad \mathsf{dim}\, M^* = \mathsf{dim}\, V^* = \mathsf{dim}\, \mathcal{S}^* + 1.$
- If k = 0, then M^* is discrete.
- If M is a sphere, then M^* is one or two points. (allowing disconnected M.)
- If k = 1, then M* is locally a cone over one or two points. Hence M* is a 1-manifold (with boundary).
- If k = 2, then M* is locally a cone over an arc or a circle. (as S* is a 1-manifold by the previous step.)
- Example: The standard S^1 -action on S^2 : the quotient is a segment. \mathbb{Z}_2 action on \mathbb{R}^3 generated by the antipodal map: The result is not a manifold.

- Let k = n d, the codimension of the principal orbits.
- ▶ Consider a linear tube $G \times_K V$. The orbit space $(G \times_K V)^* \cong V^*$.
- ▶ Let *S* be the unit sphere in *V*. Then *V** is a cone over *S**.
- $\qquad \qquad \mathsf{dim}\, M^* = \mathsf{dim}\, V^* = \mathsf{dim}\, \mathcal{S}^* + 1.$
- If k = 0, then M^* is discrete.
- ▶ If *M* is a sphere, then *M** is one or two points. (allowing disconnected *M*.)
- If k = 1, then M* is locally a cone over one or two points. Hence M* is a 1-manifold (with boundary).
- If k = 2, then M* is locally a cone over an arc or a circle. (as S* is a 1-manifold by the previous step.)
- Example: The standard S^1 -action on S^2 : the quotient is a segment. \mathbb{Z}_2 action on \mathbb{R}^3 generated by the antipodal map: The result is not a manifold.

- Let k = n d, the codimension of the principal orbits.
- ▶ Consider a linear tube $G \times_K V$. The orbit space $(G \times_{\kappa} V)^* \cong V^*$.
- Let S be the unit sphere in V. Then V^* is a cone over S^* .
- $ightharpoonup \dim M^* = \dim V^* = \dim S^* + 1.$
- If k = 0, then M^* is discrete.
- If M is a sphere, then M* is one or two points. (allowing disconnected M.)
- If k = 1, then M^* is locally a cone over one or two
- ► Example: The standard S¹-action on S²: the quotient

- Let k = n d, the codimension of the principal orbits.
- ▶ Consider a linear tube $G \times_K V$. The orbit space $(G \times_K V)^* \cong V^*$.
- ▶ Let *S* be the unit sphere in *V*. Then *V** is a cone over *S**.
- $\qquad \qquad \mathsf{dim}\, M^* = \mathsf{dim}\, V^* = \mathsf{dim}\, \mathcal{S}^* + 1.$
- If k = 0, then M^* is discrete.
- ▶ If *M* is a sphere, then *M** is one or two points. (allowing disconnected *M*.)
- If k = 1, then M* is locally a cone over one or two points. Hence M* is a 1-manifold (with boundary).
- If k = 2, then M* is locally a cone over an arc or a circle. (as S* is a 1-manifold by the previous step.)
- Example: The standard S^1 -action on S^2 : the quotient is a segment. \mathbb{Z}_2 action on \mathbb{R}^3 generated by the antipodal map: The result is not a manifold.

- Let k = n d, the codimension of the principal orbits.
- ▶ Consider a linear tube $G \times_K V$. The orbit space $(G \times_K V)^* \cong V^*$.
- ▶ Let *S* be the unit sphere in *V*. Then *V** is a cone over *S**.
- $\dim M^* = \dim V^* = \dim S^* + 1$.
- If k = 0, then M^* is discrete.
- ▶ If *M* is a sphere, then *M** is one or two points. (allowing disconnected *M*.)
- If k = 1, then M* is locally a cone over one or two points. Hence M* is a 1-manifold (with boundary).
- If k = 2, then M* is locally a cone over an arc or a circle. (as S* is a 1-manifold by the previous step.)
- Example: The standard S^1 -action on S^2 : the quotient is a segment. \mathbb{Z}_2 action on \mathbb{R}^3 generated by the antipodal map: The result is not a manifold.

- Let k = n d, the codimension of the principal orbits.
- ▶ Consider a linear tube $G \times_K V$. The orbit space $(G \times_K V)^* \cong V^*$.
- ▶ Let *S* be the unit sphere in *V*. Then *V** is a cone over *S**.
- $\qquad \qquad \mathsf{dim}\, M^* = \mathsf{dim}\, V^* = \mathsf{dim}\, \mathcal{S}^* + 1.$
- If k = 0, then M^* is discrete.
- ▶ If *M* is a sphere, then *M** is one or two points. (allowing disconnected *M*.)
- If k = 1, then M* is locally a cone over one or two points. Hence M* is a 1-manifold (with boundary).
- If k = 2, then M* is locally a cone over an arc or a circle. (as S* is a 1-manifold by the previous step.)
- ▶ Example: The standard S^1 -action on S^2 : the quotient is a segment. \mathbb{Z}_2 action on \mathbb{R}^3 generated by the antipodal map: The result is not a manifold.

Smooth actions

- Recall smooth actions.
- ► *G*-compact Lie group acting smoothly on *M*. Then there exists an invariant Riemannian metric on *M*.
- ▶ G(x) is a smooth manifold. $G/G_X \to G(x)$ is a diffeomorphism.
- Exponential map: For $X \in T_pM$, there is a unique geodesic γ_X with tangent vector at p equal to X. The exponential map $\exp: T_pM \to M$ is defined by $X \mapsto \gamma_X(1)$.
- ▶ If *A* is an invariant smooth submanifold, then *A* has an open invariant tubular neighborhood.
- The smooth action of a compact Lie group is locally smooth.
- ▶ Proof:
 - ► Use the fact that orbits are smooth submanifolds and the above items.

- Recall smooth actions.
- ► *G*-compact Lie group acting smoothly on *M*. Then there exists an invariant Riemannian metric on *M*.
- ▶ G(x) is a smooth manifold. $G/G_X \to G(x)$ is a diffeomorphism.
- Exponential map: For $X \in T_pM$, there is a unique geodesic γ_X with tangent vector at p equal to X. The exponential map $\exp: T_pM \to M$ is defined by $X \mapsto \gamma_X(1)$.
- ▶ If *A* is an invariant smooth submanifold, then *A* has an open invariant tubular neighborhood.
- The smooth action of a compact Lie group is locally smooth.
- ► Proof:
 - ► Use the fact that orbits are smooth submanifolds and the above items.

- Recall smooth actions.
- ► *G*-compact Lie group acting smoothly on *M*. Then there exists an invariant Riemannian metric on *M*.
- ▶ G(x) is a smooth manifold. $G/G_x \to G(x)$ is a diffeomorphism.
- Exponential map: For $X \in T_pM$, there is a unique geodesic γ_X with tangent vector at p equal to X. The exponential map $\exp: T_pM \to M$ is defined by $X \mapsto \gamma_X(1)$.
- ▶ If *A* is an invariant smooth submanifold, then *A* has an open invariant tubular neighborhood.
- The smooth action of a compact Lie group is locally smooth.
- ▶ Proof:
 - ► Use the fact that orbits are smooth submanifolds and the above items.

- Recall smooth actions.
- ► *G*-compact Lie group acting smoothly on *M*. Then there exists an invariant Riemannian metric on *M*.
- ▶ G(x) is a smooth manifold. $G/G_X \to G(x)$ is a diffeomorphism.
- Exponential map: For $X \in T_pM$, there is a unique geodesic γ_X with tangent vector at p equal to X. The exponential map $\exp: T_pM \to M$ is defined by $X \mapsto \gamma_X(1)$.
- ▶ If A is an invariant smooth submanifold, then A has an open invariant tubular neighborhood.
- The smooth action of a compact Lie group is locally smooth.
- ► Proof:
 - Use the fact that orbits are smooth submanifolds and the above items.

- Recall smooth actions.
- ► *G*-compact Lie group acting smoothly on *M*. Then there exists an invariant Riemannian metric on *M*.
- ▶ G(x) is a smooth manifold. $G/G_x \to G(x)$ is a diffeomorphism.
- Exponential map: For $X \in T_pM$, there is a unique geodesic γ_X with tangent vector at p equal to X. The exponential map $\exp: T_pM \to M$ is defined by $X \mapsto \gamma_X(1)$.
- ▶ If A is an invariant smooth submanifold, then A has an open invariant tubular neighborhood.
- The smooth action of a compact Lie group is locally smooth.
- ► Proof:
 - Use the fact that orbits are smooth submanifolds and the above items.

- Recall smooth actions.
- ► *G*-compact Lie group acting smoothly on *M*. Then there exists an invariant Riemannian metric on *M*.
- ▶ G(x) is a smooth manifold. $G/G_x \to G(x)$ is a diffeomorphism.
- Exponential map: For $X \in T_pM$, there is a unique geodesic γ_X with tangent vector at p equal to X. The exponential map $\exp: T_pM \to M$ is defined by $X \mapsto \gamma_X(1)$.
- ▶ If A is an invariant smooth submanifold, then A has an open invariant tubular neighborhood.
- The smooth action of a compact Lie group is locally smooth.
- ► Proof:

Use the fact that orbits are smooth submanifolds and the above items.

- Recall smooth actions.
- ► *G*-compact Lie group acting smoothly on *M*. Then there exists an invariant Riemannian metric on *M*.
- ▶ G(x) is a smooth manifold. $G/G_x \to G(x)$ is a diffeomorphism.
- Exponential map: For $X \in T_pM$, there is a unique geodesic γ_X with tangent vector at p equal to X. The exponential map $\exp: T_pM \to M$ is defined by $X \mapsto \gamma_X(1)$.
- ▶ If A is an invariant smooth submanifold, then A has an open invariant tubular neighborhood.
- The smooth action of a compact Lie group is locally smooth.
- Proof:
 - ► Use the fact that orbits are smooth submanifolds and the above items.

- Recall smooth actions.
- ► G-compact Lie group acting smoothly on M. Then there exists an invariant Riemannian metric on M.
- ▶ G(x) is a smooth manifold. $G/G_x \to G(x)$ is a diffeomorphism.
- Exponential map: For $X \in T_pM$, there is a unique geodesic γ_X with tangent vector at p equal to X. The exponential map $\exp: T_pM \to M$ is defined by $X \mapsto \gamma_X(1)$.
- ▶ If A is an invariant smooth submanifold, then A has an open invariant tubular neighborhood.
- The smooth action of a compact Lie group is locally smooth.
- Proof:
 - Use the fact that orbits are smooth submanifolds and the above items.

- ► The subspace M_(H) of same orbit type G/H is a smooth locally-closed submanifold of M. (Corollary 2.5 Ch VI and Theorem 3.3 Ch. IV Bredon)
- ▶ The closure $M_{(K)}$ consists of orbits of type less than or equal to type G/K. (Theorem 3.3 Ch. IV Bredon)
- A a closed invariant submanifold. Then any two open (resp. closed) invariant tubular neighborhoods are equivariantly isotopic. (Theorem 2.6 Ch VI Bredon)

- The subspace M_(H) of same orbit type G/H is a smooth locally-closed submanifold of M. (Corollary 2.5 Ch VI and Theorem 3.3 Ch. IV Bredon)
- ▶ The closure $\overline{M_{(K)}}$ consists of orbits of type less than or equal to type G/K. (Theorem 3.3 Ch. IV Bredon)
- A a closed invariant submanifold. Then any two open (resp. closed) invariant tubular neighborhoods are equivariantly isotopic. (Theorem 2.6 Ch VI Bredon)

- ► The subspace M_(H) of same orbit type G/H is a smooth locally-closed submanifold of M. (Corollary 2.5 Ch VI and Theorem 3.3 Ch. IV Bredon)
- ▶ The closure $\overline{M_{(K)}}$ consists of orbits of type less than or equal to type G/K. (Theorem 3.3 Ch. IV Bredon)
- A a closed invariant submanifold. Then any two open (resp. closed) invariant tubular neighborhoods are equivariantly isotopic. (Theorem 2.6 Ch VI Bredon)

- Let M be a connected topological n-manifold. Then there is a finite open covering \mathcal{U} of the one-point compactification of M such that there is no effective action of a compact Lie group with each orbit contained in some member of \mathcal{U} . (Proof: algebraic topology)
- If G is a compact Lie group acting effectively on M, then M^G is nowhere dense.

- Let M be a connected topological n-manifold. Then there is a finite open covering \mathcal{U} of the one-point compactification of M such that there is no effective action of a compact Lie group with each orbit contained in some member of \mathcal{U} . (Proof: algebraic topology)
- If G is a compact Lie group acting effectively on M, then M^G is nowhere dense.

actions

► Sören Illman proved:

- ▶ Let G be a finite group. Let M be a smooth G-manifold with or without boundary. Then we have
 - There exists an equivariant simplicial complex K and a smooth equivariant triangulation h : K → M.
 - If h: K → M and h₁: L → M are smooth triangulations of M, there exist equivariant subdivisions K' and L' of K and L, respectively, such that K' and L' are G-isomorphic.
- This result was widely used once a proof by Yang (1963) was given. But an error was discovered by Siebenmann (1970) and proved in 1977.

actions

Compact group

- Sören Illman proved:
- ► Let *G* be a finite group. Let *M* be a smooth *G*-manifold with or without boundary. Then we have:
 - ► There exists an equivariant simplicial complex K and a smooth equivariant triangulation $h: K \to M$.
 - If h: K → M and h₁: L → M are smooth triangulations of M, there exist equivariant subdivisions K' and L' of K and L, respectively, such that K' and L' are G-isomorphic.
- This result was widely used once a proof by Yang (1963) was given. But an error was discovered by Siebenmann (1970) and proved in 1977.

- ► Sören Illman proved:
- ► Let *G* be a finite group. Let *M* be a smooth *G*-manifold with or without boundary. Then we have:
 - ► There exists an equivariant simplicial complex K and a smooth equivariant triangulation $h: K \to M$.
 - If $h: K \to M$ and $h_1: L \to M$ are smooth triangulations of M, there exist equivariant subdivisions K' and L' of K and L, respectively, such that K' and L' are G-isomorphic.
- This result was widely used once a proof by Yang (1963) was given. But an error was discovered by Siebenmann (1970) and proved in 1977.

- Sören Illman proved:
- ► Let *G* be a finite group. Let *M* be a smooth *G*-manifold with or without boundary. Then we have:
 - ► There exists an equivariant simplicial complex K and a smooth equivariant triangulation $h: K \to M$.
 - If h: K → M and h₁: L → M are smooth triangulations of M, there exist equivariant subdivisions K' and L' of K and L, respectively, such that K' and L' are G-isomorphic.
- This result was widely used once a proof by Yang (1963) was given. But an error was discovered by Siebenmann (1970) and proved in 1977.

- Sören Illman proved:
- ► Let *G* be a finite group. Let *M* be a smooth *G*-manifold with or without boundary. Then we have:
 - ► There exists an equivariant simplicial complex K and a smooth equivariant triangulation $h: K \to M$.
 - If h: K → M and h₁: L → M are smooth triangulations of M, there exist equivariant subdivisions K' and L' of K and L, respectively, such that K' and L' are G-isomorphic.
- ► This result was widely used once a proof by Yang (1963) was given. But an error was discovered by Siebenmann (1970) and proved in 1977.