1 Introduction

Preliminary

• Course home page: http://math.kaist.ac.kr/~schoi/GT2010.html Old http://mathsci.kaist.ac.kr/~schoi/dgorb.htm

Some advanced references for the course

- W. Thurston, Lecture notes...: A chapter on orbifolds, 1977. (This is the principal source)
- W. Thurston, Three-dimensional geometry and topolgy, PUP, 1997
- R.W. Sharp, Differential geometry: Cartan's generalization of Klein's Erlangen program.
- T. Ivey and J.M. Landsberg, Cartan For Beginners: Differential geometry via moving frames and exterior differential systems, GSM, AMS
- G. Bredon, Introduction to compact transformation groups, Academic Press, 1972.
- M. Berger, Geometry I, Springer
- S. Kobayashi and Nomizu, Foundations of differential geometry, Springer.

Outline of the orbifolds part

- See the book introduction also.
- Manifolds and differentiable structures: Background materials..
- Lie groups and geometry: Geometry and discrete groups
- Topology of orbifolds: topology and covering spaces.
- The topology of 2-orbifolds: cutting and pasting, classification (not complete yet)
- The geometry of orbifolds
- The deformation space of hyperbolic structures on 2-orbifolds.
- Note that the notes are incomplete... I will try to correct as we go along. The orders may change...

Helpful preliminary knowledge for this chapter:

- Hatcher's "Algebraic topology" Chapters 0,1. (better with Chapter 2...) http: //www.math.cornell.edu/~hatcher/AT/ATpage.html
- "Introduction to differentiable manifolds" by Munkres
- "Foundations of differentiable manifolds and Lie groups," by F. Warner.
- "Riemannian manfolds" by Do Carmo.
- S. Kobayashi and Nomizu, Foundations of differential geometry, Springer.
- R. Bishop and R. Crittendon, Geometry of manifolds.
- W. Thurston, Three-dimensional geometry and topology, Princeton Univ. press.
- W. Thurston, Geometry and Topology of 3-manifolds http://www.msri. org/publications/books/gt3m
- Section 1: Manifolds and differentiable structures (Intuitive account)
 - Manifolds
 - Simplicial manifolds
 - Lie groups.
 - Pseudo-groups and *G*-structures.
 - Differential geometry and *G*-structures.
 - Principal bundles and connections, flat connections
- Section 2: Lie groups and geometry
 - Projective geometry and conformally flat geometry
 - Euclidean geometry
 - Spherical geometry
 - Hyperbolic geometry and three models
 - Discrete groups: examples

2 Manifolds and differentiable structures (Intuitive account)

2.1 Aim

• The following theories for manifolds will be transferred to the orbifolds. We will briefly mention them here as a "review" and will develop them for orbifolds later (mostly for 2-dimensional orbifolds).

- We follow coordinate-free approach to differential geometry. We do not need to actually compute curvatures and so on.
 - G-structures
 - Covering spaces
 - Riemanian manifolds and constant curvature manifolds
 - Lie groups and group actions
 - Principal bundles and connections, flat connections

2.2 Manifolds

Topological spaces.

- Quotient topology
- We will mostly use cell-complexes: Hatcher's AT P. 5-7 (Consider finite ones for now.)
- Operations: products, quotients, suspension, joins; AT P.8-10

Manifolds.

- A topological *n*-dimensional manifold (*n*-manifold) is a Hausdorff space with countable basis and charts to Euclidean spaces E^n ; e.g curves, surfaces, 3-manifolds.
- The charts could also go to a positive half-space H^n . Then the set of points mapping to R^{n-1} under charts is well-defined is said to be the boundary of the manifold. (By the invariance of domain theorem)
- \mathbb{R}^n , H^n themselves or open subsets of \mathbb{R}^n or H^n .
- \mathbf{S}^n the unit sphere in \mathbb{R}^{n+1} . (use http://en.wikipedia.org/wiki/ Stereographic_projection
- $\mathbb{R}P^n$ the real projective space. (use affine patches)

Manifolds.

- An *n*-ball is a manifold with boundary. The boundary is the unit sphere S^{n-1} .
- Given two manifolds M_1 and M_2 of dimensions m and n respectively. The product space $M_1 \times M_2$ is a manifold of dimension m + n.
- An annulus is a disk removed with the interior of a smaller disk. It is also homeomorphic to a circle times a closed interval.
- The *n*-dimensional torus T^n is homeomorphic to the product of *n* circles S^1 .
- 2-torus: http://en.wikipedia.org/wiki/Torus

More examples

- Let T_n be a group of translations generated by $T_i : x \mapsto x + e_i$ for each i = 1, 2, ..., n. Then \mathbb{R}^n/T_n is homeomorphic to T^n .
- A connected sum of two *n*-manifolds M_1 and M_2 . Remove the interiors of two closed balls from M_i for each *i*. Then each M_i has a boundary component homeomorphic to \mathbf{S}^{n-1} . We identify the spheres.
- Take many 2-dimensional tori or projective plane and do connected sums. Also remove the interiors of some disks. We can obtain all compact surfaces in this way. http://en.wikipedia.org/wiki/Surface

2.3 Discrete group actions

Some homotopy theory (from Hatchers AT)

- X, Y topological spaces. A homotopy is a $f : X \times I \to Y$.
- Maps f and $g: X \to Y$ are homotopic if f(x) = F(x, 0) and g(x) = F(x, 1) for all x. The homotopic property is an equivalence relation.
- Homotopy equivalences of two spaces X and Y is a map f : X → Y with a map g : Y → X so that f ∘ g and g ∘ f are homotopic to I_X and I_Y respectively.

Fundamental group (from Hatchers AT)

- A path is a map $f: I \to X$.
- A linear homotopy in \mathbb{R}^n for any two paths.
- A homotopy class is an equivalence class of homotopic map relative to endpoints.
- The fundamental group π(X, x₀) is the set of homotopy class of path with endpoints x₀.
- The product exists by joining. The product gives us a group.
- A change of base-points gives us an isomorphism (not canonical)
- The fundamental group of a circle is \mathbb{Z} . Brouwer fixed point theorem
- Induced homomorphisms. $f: X \to Y$ with $f(x_0) = y_0$ induces $f_*: \pi(X, x_0) \to \pi(Y, y_0)$.

Van Kampen Theorem (AT page 43-50)

- Given a space X covered by open subsets A_i such that any two or three of them meet at a path-connected set, π(X,*) is a quotient group of the free product *π(A_i,*).
- The kernel is generated by $i_i^*(a)i_k^*(a)$ for any a in $\pi(A_i \cap A_j, *)$.
- For cell-complexes, these are useful for computing the fundamental group.
- If a space Y is obtained from X by attaching the boundary of 2-cells. Then $\pi(Y,*) = \pi(X,*)/N$ where N is the normal subgroup generated by "boundary curves" of the attaching maps.
- Bouquet of circles, surfaces,...

Covering spaces and discrete group actions

- Given a manifold M, a covering map p: M → M from another manifold M is an onto map such that each point of M has a neighborhood O s.t. p|p⁻¹(O) : p⁻¹(O) → O is a homeomorphism for each component of p⁻¹(O).
- The coverings of a circle.
- Consider a disk with interiors of disjoint smaller disks removed. Cut remove edges and consider...
- The join of two circles example: See Hatcher AT P.56–58
- Homotopy lifting: Given two homotopic maps to M, if one lifts to \tilde{M} and so does the other.
- Given a map $f: Y \to M$ with $f(y_0) = x_0$, f lifts to $\tilde{f}: Y \to \tilde{M}$ so that $\tilde{f}(y_0) = \tilde{x}_0$ if $f_*(\pi(Y, y_0)) \subset p_*(\pi_*(\tilde{M}, \tilde{x}_0))$.

Covering spaces and discrete group actions

- The automorphism group of a covering map *p* : *M*′ → *M* is a group of homeomorphisms *f* : *M*′ → *M*′ so that *p* ∘ *f* = *f*. (also called deck transformation group.)
- $\pi_1(M)$ acts on \tilde{M} on the right by path-liftings.
- A covering is *regular* if the covering map p : M' → M is a quotient map under the action of a discrete group Γ acting properly discontinuously and freely. Here M is homeomorphic to M'/Γ.
- One can classify covering spaces of M by the subgroups of π(M, x₀). That is, two coverings of M are equal iff the subgroups are the same.
- Covering spaces are ordered by subgroup inclusion relations.
- If the subgroup is normal, the corresponding covering is regular.

- A manifold has a *universal covering*, i.e., a covering whose space has a trivial fundamental group. A universal cover covers every other coverings of a given manifold.
- *M̃* has the covering automorphism group Γ isomorphic to π₁(M). A manifold
 M equals *M̃*/Γ for its universal cover *M̃*. Γ is a subgroup of the deck transformation group.
 - Let \tilde{M} be \mathbb{R}^2 and T^2 be a torus. Then there is a map $p : \mathbb{R}^2 \to T^2$ sending (x, y) to ([x], [y]) where $[x] = x \mod 2\pi$ and $[y] = y \mod 2\pi$.
 - Let M be a surface of genus 2. \tilde{M} is homeomorphic to a disk. The deck transformation group can be realized as isometries of a hyperbolic plane.

2.4 Simplicial manifolds

Simplicial manifolds

- An *n*-simplex is a convex hull of n + 1-points (affinely independent). An *n*-simplex is homeomorphic to B^n .
- A simplicial complex is a locally finite collection S of simplices so that any face of a simplex is a simplex in S and the intersection of two elements of S is an element of S. The union is a topological set, a *polyhedron*.
- We can define barycentric subdivisions and so on.
- A link of a simplex σ is the simplicial complex made up of simplicies opposite σ in a simplex containing σ .

- An *n*-manifold X can be constructed by gluing *n*-simplices by face-identifications. Suppose X is an *n*-dimensional triangulated space. If the link of every *p*-simplex is homeomorphic to a sphere of (n - p - 1)-dimension, then X is an *n*-manifold.
- If X is a simplicial *n*-manifold, we say X is orientable if we can give an orientations on each simplex so that over the common faces they extend each other.

2.5 Surfaces

Surfaces

Canonical construction

Given a polygon with even number of sides, we assign identification by labeling by alphabets $a_1, a_2, ..., a_1^{-1}, a_2^{-1}, ..., s_i$ that a_i means an edge labelled by a_i oriented counter-clockwise and a_i^{-1} means an edge labelled by a_i oriented clockwise. If a pair a_i and a_i or a_i^{-1} occur, then we identify them respecting the orientations.

- A bigon: We divide the boundary into two edges and identify by labels a, a^{-1} .
- A bigon: We divide the boundary into two edges and identify by labels a, a.
- A square: We identify the top segment with the bottom one and the right side with the left side. The result is a 2-torus.
- Any closed surface can be represented in this manner.
- A 4n-gon. We label edges

 $a_1, b_1, a_1^{-1}, b_1^{-1}, a_2, b_2, a_2^{-1}, b_2^{-1}, \dots a_n, b_n, a_n^{-1}, b_n^{-1}.$

The result is a connected sum of n tori and is orientable. The genus of such a surface is n.

- A 2*n*-gon. We label edges $a_1a_1a_2a_2...a_nb_n$. The result is a connected sum of *n* projective planes and is not orientable. The genus of such a surface is *n*.
- The results are topological surfaces and a 2-dimensional simplicial manifold.
- We can remove the interiors of disjoint closed balls from the surfaces. The results are surfaces with boundary.

• The fundamental group of a surface can now be computed. A surface is a cell complex starting from a 1-complex which is a bouquet of circles and attached with a cell. (See AT P.51)

 $\pi(S) = \{a_1, b_1, \dots, a_g, b_g | [a_1, b_1] [a_2, b_2] \dots [a_g, b_g] \}$

for orientable S of genus g.

- An Euler characteristic of a simplicial complex is given by E F + V. This is a topological invariant. We can show that the Euler characteristic of an orientable compact surface of genus g with n boundary components is 2 2g n.
- In fact, a closed orientable surface contains 3g 3 disjoint simple closed curves so that the complement of its union is a disjoint union of pairs of pants, i.e., spheres with three holes. Thus, a pair of pants is an "elementary" surface.

2.6 Lie groups

Section 1: Lie groups

- A Lie group is a space of symmetries of some space. More formally, a Lie group is a manifold with a group operation $\circ : G \times G \rightarrow G$ that satisfies
 - \circ is smooth.
 - the inverse $\iota: G \to G$ is smooth also.
- Examples:
 - The permutation group of a finite set form a 0-dimensional manifold, which is a finite set.
 - \mathbb{R} , \mathbb{C} with + as an operation. (\mathbb{R}^+ with + is merely a Lie semigroup.)
 - $\mathbb{R} \{O\}, \mathbb{C} \{O\}$ with * as an operation.
 - $T^n = \mathbb{R}^n / \Gamma$ with + as an operation and O as the equivalence class of (0, 0, ..., 0). (The three are abelian ones.)
- $-GL(n,\mathbb{R}) = \{A \in M_n(\mathbb{R}) | \det(A) \neq 0\}$: the general linear group.
 - $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) | det(A) = 1\}$: the special linear group.
 - $O(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) | A^T A = I\}$: the orthogonal group.
 - $Isom(\mathbb{R}^n) = \{T : \mathbb{R}^n \to \mathbb{R}^n | T(x) = Ax + b \text{ for } A \in O(n-1,\mathbb{R}), b \in \mathbb{R}^n\}.$
 - Proofs: One can express the operations as polynomials or rational functions.
- Products of Lie groups are Lie groups.
- A covering space of a connected Lie group form a Lie group.
- A *Lie subgroup* of a Lie group is a subgroup that is a Lie group with the induced operation and is a submanifold.

-
$$O(n) \subset SL(n, \mathbb{R}) \subset GL(n, \mathbb{R}).$$

- $O(n-1) \subset Isom(\mathbb{R}^n).$

- A homomorphism *f* : *G* → *H* of two Lie groups *G*, *H* is a smooth map that is a group homomorphism. The above inclusion maps are homomorphisms.
- The kernel of a homomorphism is a closed normal subgroup. Hence it is a Lie subgroup also.
- If G, H are simply connected, f induces a unique homomorphism of Lie algebra of G to that of H which is Df and conversely.

2.7 Lie algebras

Lie algebras

- A Lie algebra is a vector space V with an operation $[,]: V \times V \to V$ that satisfies:
 - [x, x] = 0 for $x \in L$. (Thus, [x, y] = -[y, x].)
 - Jacobi identity [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.
- Examples:
 - Sending $V \times V$ to O is a Lie algebra (abelian ones.)
 - Direct sums of Lie algebras is a Lie algebra.
 - A subalgebra is a subspace closed under [,].
 - An ideal K of L is a subalgebra such that $[x, y] \in K$ for $x \in K$ and $y \in L$.
- A homomorphism of a Lie algebra is a linear map preserving [,].
- The kernel of a homomorphism is an ideal.

Lie groups and Lie algebras

- Let G be a Lie group. A left translation $L_q: G \to G$ is given by $x \mapsto g(x)$.
- A left-invariant vector field of G is a vector field so that the left translation leaves it invariant, i.e., dL_g(X(h)) = X(gh) for g, h ∈ G.
- The set of left-invariant vector fields form a vector space under addition and scalar multiplication and is vector-space isomorphic to the tangent space at I. Moreover, [,] is defined as vector-fields brackets. This forms a Lie algebra.
- The Lie algebra of G is the the Lie algebra of the left-invariant vector fields on G.
- Example: The Lie algebra of $GL(n, \mathbb{R})$ is isomorphic to $gl(n, \mathbb{R})$:
 - For X in the Lie algebra of $GL(n, \mathbb{R})$, we can define a flow generated by X and a path X(t) along it where X(0) = I.
 - We obtain an element of $gl(n, \mathbb{R})$ by taking the derivative of X(t) at 0 seen as a matrix.
 - The brackets are preserved.
 - A Lie algebra of an abelian Lie group is abelian.

Lie group actions

- A Lie group G-action on a smooth manifold X is given by a smooth map $G \times X \to X$ so that (gh)(x) = (g(h(x)) and I(x) = x. (left action)
- A right action satisfies (x)(gh) = ((x)g)h.
- Each Lie algebra element correspond to a vector field on X by using a vector field.
- The action is faithful if g(x) = x for all x, then g is the identity element of G.
- The action is transitive if given two points $x, y \in X$, there is $g \in G$ such that g(x) = y.
- Example:
 - $GL(n, \mathbb{R})$ acting on \mathbb{R}^n .
 - $PGL(n+1,\mathbb{R})$ acting on $\mathbb{R}P^n$.

Lie algebras

- Given X in the Lie algebra g of G, there is an integral curve X(t) through I. We define the exponential map exp : g → G by sending X to X(1).
- The exponential map is defined everywhere, smooth, and is a diffeomorphism near O.
- The matrix exponential defined by

$$A \mapsto e^A = \sum_{i=0}^{\infty} \frac{1}{k!} A^k$$

is the exponential map $gl(n, \mathbb{R}) \to GL(n, \mathbb{R})$.

3 Pseudo-group and *G*-structures

Pseudo-groups

- In this section, we introduce pseudo-groups.
- However, we are mainly interested in classical geometries, Clifford-Klein geometries. We will be concerned with Lie group G acting on a manifold M.
- Most obvious ones are euclidean geometry where G is the group of rigid motions acting on the euclidean space ℝⁿ. The spherical geometry is one where G is the group O(n + 1) of orthogonal transformations acting on the unit sphere Sⁿ.

Pseudo-groups

- Topological manifolds form too large a category to handle.
- To restrict the local property more, we introduce *pseudo-groups*. A *pseudo-group* G on a topological space X is the set of homeomorphisms between open sets of X so that
 - The domains of $g \in \mathcal{G}$ cover X.
 - The restriction of $g \in \mathcal{G}$ to an open subset of its domain is also in \mathcal{G} .
 - The composition of two elements of \mathcal{G} when defined is in \mathcal{G} .
 - The inverse of an element of \mathcal{G} is in \mathcal{G} .
 - If g: U → V is a homeomorphism for U, V open subsets of X. If U is a union of open sets U_α for α ∈ I for some index set I such that g|U_α is in G for each α, then g is in G.
- The trivial pseudo-group is one where every element is a restriction of the identity *X* → *X*.
- Any pseudo-group contains a trivial pseudo-group.
- The maximal pseudo-group of \mathbb{R}^n is TOP, the set of all homeomorphisms between open subsets of \mathbb{R}^n .
- The pseudo-group C^r , $r \ge 1$, of the set of C^r -diffeomorphisms between open subsets of \mathbb{R}^n .
- The pseudo-group PL of piecewise linear homeomorphisms between open subsets of \mathbb{R}^n .
- (G, X)-pseudo group. Let G be a Lie group acting on a manifold X. Then we define the pseudo-group as the set of all pairs (g|U, U) where U is the set of all open subsets of X.
- The group isom(ℝⁿ) of rigid motions acting on ℝⁿ or orthogonal group O(n + 1, ℝ) acting on Sⁿ give examples.

3.1 *G*-manifold

\mathcal{G} -manifold

 \mathcal{G} -manifold is obtained as a manifold glued with special type of gluings only in \mathcal{G} .

Let G be a pseudo-group on ℝⁿ. A G-manifold is a n-manifold M with a maximal G-atlas.

A G-atlas is a collection of charts (imbeddings) φ : U → ℝⁿ where U is an open subset of M such that whose domains cover M and any two charts are G-compatible.

- Two charts $(U, \phi), (V, \psi)$ are *G*-compatible if the transition map

 $\gamma = \psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V) \in \mathcal{G}.$

- One can choose a locally finite *G*-atlas from a given maximal one and conversely.
- A G-map f : M → N for two G-manifolds is a local homeomorphism so that if f sends a domain of a chart φ into a domain of a chart ψ, then

 $\psi \circ f \circ \phi^{-1} \in \mathcal{G}.$

That is, f is an element of \mathcal{G} locally up to charts.

3.2 Examples

Examples

- \mathbb{R}^n is a \mathcal{G} -manifold if \mathcal{G} is a pseudo-group on \mathbb{R}^n .
- f: M → N be a local homeomorphism. If N has a G-structure, then so does M so that the map in a G-map. (A class of examples such as θ-annuli and π-annuli.)
- Let Γ be a discrete group of G-homeomorphisms of M acting properly and freely. Then M/Γ has a G-structure. The charts will be the charts of the lifted open sets.
- T^n has a C^r -structure and a PL-structure.
- Given (G, X) as above, a (G, X)-manifold is a \mathcal{G} -manifold where \mathcal{G} is the restricted pseudo-group.
- A euclidean manifold is a $(isom(\mathbb{R}^n), \mathbb{R}^n)$ -manifold.
- A spherical manifold is a $(O(n+1), \mathbf{S}^n)$ -manifold.

4 Differential geometry and *G*-structures

Differential geometry and *G*-structures

- We wish to understand geometric structures in terms of differential geometric setting; i.e., using bundles, connections, and so on.
- Such an understanding help us to see the issues in different ways.
- Actually, this is not central to the lectures. However, we should try to relate to the traditional fields where our subject can be studied in another way.
- We will say more details later on.

4.1 Riemannian manifolds

Riemanian manifolds and constant curvature manifolds.

- A differentiable manifold has a Riemannian metric, i.e., inner-product at each tangent space smooth with respect coordinate charts. Such a manifold is said to be a Riemannian manifold.
- An isometric immersion (imbedding) of a Riemannian manifold to another one is a (one-to-one) map that preserve the Riemannian metric.
- We will be concerned with isometric imbedding of M into itself usually.
- A length of an arc is the value of an integral of the norm of tangent vectors to the arc. This gives us a metric on a manifold. An isometric imbedding of M into itself is an isometry always.
- A geodesic is an arc minimizing length locally.
- A constant curvature manifold is one where the sectional curvature is identical to a constant in every planar direction at every point.
- Examples:
 - A euclidean space E^n with the standard norm metric has a constant curvature = 0.
 - A sphere \mathbf{S}^n with the standard induced metric from \mathbb{R}^{n+1} has a constant curature = 1.
 - Find a discrete torsion-free subgroup Γ of the isometry group of E^n (resp. \mathbf{S}^n). Then E^n/Γ (resp. \mathbf{S}^n/Γ) has constant curvature = 0 (resp. 1).

4.2 Lie groups and group actions

Lie groups and group actions.

- A Lie group is a smooth manifold G with an associative smooth product map G × G → G with identity and a smooth inverse map ι : G → G. (A Lie group is often the set of symmetries of certain types of mathematical objects.)
- For example, the set of isometries of S^n form a Lie group O(n+1), which is a classical group called an orthogonal group.
- The set of isometries of the euclidean space ℝⁿ form a Lie group ℝⁿ · O(n), i.e., an extension of O(n) by a translation group in ℝⁿ.

- Simple Lie groups are classified. Examples $GL(n, \mathbb{R})$, $SL(n, \mathbb{R})$, $O(n, \mathbb{R})$, O(n, m), $GL(n, \mathbb{C})$, U(n), SU(n), $SP(2n, \mathbb{R})$, Spin(n),....
- An action of a Lie group G on a space X is a map $G \times X \to X$ so that (gh)(x) = g(h(x)).
- For each g ∈ G, g gives us a map g : X → X where the identity element correspond to the identity map of X.
- Examples: $\mathbb{R}^n \cdot O(n)$ on \mathbb{R}^n and O(n) on \mathbf{S}^n .

4.3 Principal bundles and connections, flat connections

Principal bundles and connections, flat connections

- Let *M* be a manifold and *G* a Lie group. A principal fiber bundle *P* over *M* with a group *G*:
 - P is a manifold.
 - G acts freely on P on the right. $P \times G \rightarrow P$.
 - M = P/G. $\pi : P \to M$ is differentiable.
 - P is locally trivial. $\phi: \pi^{-1}(U) \to U \times G$.
- Example 1: L(M) the set of frames of T(M). $GL(n, \mathbb{R})$ acts freely on L(M). $\pi : L(M) \to M$ is a principal bundle.
- P a bundle space, M the base space. $\pi^{-1}(x)$ a fiber.
- $\pi^{-1}(x) = \{ug | g \in G\}.$
- A bundle can be constructed by mappings

$$\{\phi_{\beta,\alpha}: U_{\alpha} \cap U_{\beta} \to G | U_{\alpha}, U_{\beta}$$
"trivial" open subsets of $M\}$

so that

$$\phi_{\gamma,\alpha} = \phi_{\gamma,\beta} \circ \phi_{\beta,\alpha}$$

for any triple $U_{\alpha}, U_{\beta}, U_{\gamma}$.

- G', G Lie groups. $f : G' \to G$ a monomorphism. $P(G', M) \to P(G, M)$ inducing identity $M \to M$ is called a reduction of the structure group G to G'. There maybe many reductions for given G' and G.
- P(G, M) is reducible to P(G', M) if and only if φ_{α,β} can be taken to be in G'.
 (See Kobayashi-Nomizu, Bishop-Crittendon for details.)

Associated bundles

- Associated bundle: Let F be a manifold with a left-action of G.
- G acts on $P \times F$ on the right by

$$g: (u, x) \to (ug, g^{-1}(x)), g \in G, u \in M, x \in F.$$

- The quotient space $E = P \times_G F$.
- π_E is induced and $\pi_E^{-1}(U) = U \times F$. The structure group is the same.
- Example: Tangent bundle T(M). $GL(n, \mathbb{R})$ acts on \mathbb{R}^n . Let $F = \mathbb{R}^n$. Obtain $L(M) \times_{GL(n,\mathbb{R})} \mathbb{R}^n$.
- Example: Tensor bundles $T_s^r(M)$. $GL(n, \mathbb{R})$ acts on $T_s^r(\mathbb{R})$. Let $F = T_s^r(\mathbb{R})$.

Connections

- P(M,G) a principal bundle.
- A connection decomposes each $T_u(P)$ for each $u \in P$ into
 - $T_u(P) = G_u \oplus Q_u$ where G_u is a subspace tangent to the fiber. (G_u the vertical space, Q_u the horizontal space.)
 - $Q_{uq} = (R_q)_* Q_u$ for each $g \in G$ and $u \in P$.
 - Q_u depend smoothly on u.
- A *horizontal* lift of a piecewise-smooth path τ on M is a piecewise-smooth path τ' lifting τ so that the tangent vectors are all horizontal.
- A horizontal lift is determined once the initial point is given.
- Given a curve on M with two endpoints, the lifts defines a parallel displacement between fibers above the two endpoints. (commuting with G-actions).
- Fixing a point x_0 on M, this defines a holonomy group.
- The curvature of a connection is a measure of how much a horizontal lift of small loop in M is a loop in P.
- The flat connection: In this case, we can lift homotopically trivial loops in M^n to loops in P. Thus, the flatness is equivalent to local lifting of coordinate chart of M to horizontal sections in P.
- A flat connection on P gives us a smooth foliation of dimension n transversal to the fibers.

- The associated bundle E also inherits a connection and hence horizontal lifings.
- The flatness is also equivalent to the local lifting property.
- The flat connection on E gives us a smooth foliation of dimension n transversal to the fibers.
- Summary: A connection gives us a way to identify fibers given paths on Xbundles over M. The flatness gives us locally consistent identifications.

The principal bundles and G-structures.

- Given a manifold M of dimension n, a Lie group G acting on a manifold X of dimension n.
- We form a principal bundle P and then the associated bundle E fibered by X with a flat connection.
- A section $f: M \to E$ which is transverse everywhere to the foliation given by the flat connection.
- This gives us a (G, X)-structure and coversely a (G, X)-structure gives us P, E, f and the flat connection.