
Geometric structures on 2-orbifolds
Section 1: Manifolds and differentiable structures

S. Choi

Department of Mathematical Science
KAIST, Daejeon, South Korea

2010 Fall, Lectures at KAIST

S. Choi (KAIST) Geometric structures on 2-orbifolds: Exploration of discrete symmetry2010 Fall Lectures 1 / 51



Introduction

Preliminary

Course home page:
http://math.kaist.ac.kr/~schoi/GT2010.html Old
http://mathsci.kaist.ac.kr/~schoi/dgorb.htm
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Introduction

Some advanced references for the course

W. Thurston, Lecture notes...: A chapter on orbifolds, 1977. (This
is the principal source)
W. Thurston, Three-dimensional geometry and topolgy, PUP, 1997
R.W. Sharp, Differential geometry: Cartan’s generalization of
Klein’s Erlangen program.
T. Ivey and J.M. Landsberg, Cartan For Beginners: Differential
geometry via moving frames and exterior differential systems,
GSM, AMS
G. Bredon, Introduction to compact transformation groups,
Academic Press, 1972.
M. Berger, Geometry I, Springer
S. Kobayashi and Nomizu, Foundations of differential geometry,
Springer.
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Introduction

Outline of the orbifolds part

See the book introduction also.
Manifolds and differentiable structures: Background materials..
Lie groups and geometry: Geometry and discrete groups
Topology of orbifolds: topology and covering spaces.
The topology of 2-orbifolds: cutting and pasting, classification (not
complete yet)
The geometry of orbifolds
The deformation space of hyperbolic structures on 2-orbifolds.
Note that the notes are incomplete... I will try to correct as we go
along. The orders may change...
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Introduction

Helpful preliminary knowledge for this chapter:
Hatcher’s "Algebraic topology" Chapters 0,1. (better with Chapter
2...) http:
//www.math.cornell.edu/~hatcher/AT/ATpage.html

"Introduction to differentiable manifolds" by Munkres
"Foundations of differentiable manifolds and Lie groups," by F.
Warner.
"Riemannian manfolds" by Do Carmo.
S. Kobayashi and Nomizu, Foundations of differential geometry,
Springer.
R. Bishop and R. Crittendon, Geometry of manifolds.
W. Thurston, Three-dimensional geometry and topology,
Princeton Univ. press.
W. Thurston, Geometry and Topology of 3-manifolds
http://www.msri.org/publications/books/gt3m
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Introduction

Part I. Geometry and groups

Section 1: Manifolds and differentiable structures (Intuitive
account)

I Manifolds
I Simplicial manifolds
I Lie groups.
I Pseudo-groups and G-structures.
I Differential geometry and G-structures.
I Principal bundles and connections, flat connections

Section 2: Lie groups and geometry
I Projective geometry and conformally flat geometry
I Euclidean geometry
I Spherical geometry
I Hyperbolic geometry and three models
I Discrete groups: examples
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Manifolds and differentiable structures (Intuitive account) Aim

Section 1: Manifolds and differentiable structures
(Intuitive account)

The following theories for manifolds will be transfered to the
orbifolds. We will briefly mention them here as a "review" and will
develop them for orbifolds later (mostly for 2-dimensional
orbifolds).
We follow coordinate-free approach to differential geometry. We
do not need to actually compute curvatures and so on.

I G-structures
I Covering spaces
I Riemanian manifolds and constant curvature manifolds
I Lie groups and group actions
I Principal bundles and connections, flat connections
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Manifolds and differentiable structures (Intuitive account) Manifolds

Topological spaces.

Quotient topology
We will mostly use cell-complexes: Hatcher’s AT P. 5-7 (Consider
finite ones for now.)
Operations: products, quotients, suspension, joins; AT P.8-10
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Manifolds and differentiable structures (Intuitive account) Manifolds

Manifolds.

A topological n-dimensional manifold (n-manifold) is a Hausdorff
space with countable basis and charts to Euclidean spaces En;
e.g curves, surfaces, 3-manifolds.
The charts could also go to a positive half-space Hn. Then the set
of points mapping to Rn−1 under charts is well-defined and is said
to be the boundary of the manifold. (By the invariance of domain
theorem)
Rn, Hn themselves or open subsets of Rn or Hn.
Sn the unit sphere in Rn+1. (use http:
//en.wikipedia.org/wiki/Stereographic_projection

RPn the real projective space. (use affine patches)
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Manifolds and differentiable structures (Intuitive account) Manifolds

Manifolds.

An n-ball is a manifold with boundary. The boundary is the unit
sphere Sn−1.
Given two manifolds M1 and M2 of dimensions m and n
respectively. The product space M1 ×M2 is a manifold of
dimension m + n.
An annulus is a disk removed with the interior of a smaller disk. It
is also homeomorphic to a circle times a closed interval.
The n-dimensional torus T n is homeomorphic to the product of n
circles S1.
2-torus: http://en.wikipedia.org/wiki/Torus
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Manifolds and differentiable structures (Intuitive account) Manifolds

More examples

Let Tn be a group of translations generated by Ti : x 7→ x + ei for
each i = 1,2, ..,n. Then Rn/Tn is homeomorphic to T n.
A connected sum of two n-manifolds M1 and M2. Remove the
interiors of two closed balls from Mi for each i . Then each Mi has
a boundary component homeomorphic to Sn−1. We identify the
spheres.
Take many 2-dimensional tori or projective plane and do
connected sums. Also remove the interiors of some disks. We can
obtain all compact surfaces in this way.
http://en.wikipedia.org/wiki/Surface
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Manifolds and differentiable structures (Intuitive account) Discrete group actions

Some homotopy theory (from Hatchers AT)

X ,Y topological spaes. A homotopy is a f : X × I → Y .
Maps f and g : X → Y are homotopic if f (x) = F (x ,0) and
g(x) = F (x ,1) for all x . The homotopic property is an equivalence
relation.
Homotopy equivalences of two spaces X and Y is a map
f : X → Y with a map g : Y → X so that f ◦ g and g ◦ f are
homotopic to IX and IY respectively.

S. Choi (KAIST) Geometric structures on 2-orbifolds: Exploration of discrete symmetry2010 Fall Lectures 12 / 51



Manifolds and differentiable structures (Intuitive account) Discrete group actions

Fundamental group (from Hatchers AT)

A path is a map f : I → X .
A linear homotopy in Rn for any two paths.
A homotopy class is an equivalence class of homotopic map
relative to endpoints.
The fundamental group π(X , x0) is the set of homotopy class of
path with endpoints x0.
The product exists by joining. The product gives us a group.
A change of base-points gives us an isomorphism (not canonical)
The fundamental group of a circle is Z. Brouwer fixed point
theorem
Induced homomorphisms. f : X → Y with f (x0) = y0 induces
f∗ : π(X , x0)→ π(Y , y0).
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Manifolds and differentiable structures (Intuitive account) Discrete group actions

Van Kampen Theorem (AT page 43–50)

Given a space X covered by open subsets Ai such that any two or
three of them meet at a path-connected set, π(X , ∗) is a quotient
group of the free product ∗π(Ai , ∗).
The kernel is generated by paths of form i∗j (a)i∗k (a−1) for a in
π(Ai ∩ Aj , ∗).
For cell-complexes, these are useful for computing the
fundamental group.
If a space Y is obtained from X by attaching the boundary of
2-cells. Then π(Y , ∗) = π(X , ∗)/N where N is the normal
subgroup generated by "boundary curves" of the attaching maps.
Bouquet of circles, surfaces,...
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Manifolds and differentiable structures (Intuitive account) Discrete group actions

Covering spaces and discrete group actions

Given a manifold M, a covering map p : M̃ → M from another
manifold M̃ is an onto map such that each point of M has a
neighborhood O s.t. p|p−1(O) : p−1(O)→ O is a homeomorphism
for each component of p−1(O).
The coverings of a circle.
Consider a disk with interiors of disjoint smaller disks removed.
Cut remove edges and consider...
The join of two circles example: See Hatcher AT P.56–58
Homotopy lifting: Given two homotopic maps to M, if one lifts to M̃
and so does the other.
Given a map f : Y → M with f (y0) = x0, f lifts to f̃ : Y → M̃ so that
f̃ (y0) = x̃0 if f∗(π(Y , y0)) ⊂ p∗(π∗(M̃, x̃0)).

S. Choi (KAIST) Geometric structures on 2-orbifolds: Exploration of discrete symmetry2010 Fall Lectures 15 / 51



Manifolds and differentiable structures (Intuitive account) Discrete group actions

Covering spaces and discrete group actions

Given a manifold M, a covering map p : M̃ → M from another
manifold M̃ is an onto map such that each point of M has a
neighborhood O s.t. p|p−1(O) : p−1(O)→ O is a homeomorphism
for each component of p−1(O).
The coverings of a circle.
Consider a disk with interiors of disjoint smaller disks removed.
Cut remove edges and consider...
The join of two circles example: See Hatcher AT P.56–58
Homotopy lifting: Given two homotopic maps to M, if one lifts to M̃
and so does the other.
Given a map f : Y → M with f (y0) = x0, f lifts to f̃ : Y → M̃ so that
f̃ (y0) = x̃0 if f∗(π(Y , y0)) ⊂ p∗(π∗(M̃, x̃0)).

S. Choi (KAIST) Geometric structures on 2-orbifolds: Exploration of discrete symmetry2010 Fall Lectures 15 / 51



Manifolds and differentiable structures (Intuitive account) Discrete group actions

Covering spaces and discrete group actions

Given a manifold M, a covering map p : M̃ → M from another
manifold M̃ is an onto map such that each point of M has a
neighborhood O s.t. p|p−1(O) : p−1(O)→ O is a homeomorphism
for each component of p−1(O).
The coverings of a circle.
Consider a disk with interiors of disjoint smaller disks removed.
Cut remove edges and consider...
The join of two circles example: See Hatcher AT P.56–58
Homotopy lifting: Given two homotopic maps to M, if one lifts to M̃
and so does the other.
Given a map f : Y → M with f (y0) = x0, f lifts to f̃ : Y → M̃ so that
f̃ (y0) = x̃0 if f∗(π(Y , y0)) ⊂ p∗(π∗(M̃, x̃0)).

S. Choi (KAIST) Geometric structures on 2-orbifolds: Exploration of discrete symmetry2010 Fall Lectures 15 / 51



Manifolds and differentiable structures (Intuitive account) Discrete group actions

Covering spaces and discrete group actions

The automorphism group of a covering map p : M ′ → M is a
group of homeomorphisms f : M ′ → M ′ so that p ◦ f = f . (also
called deck transformation group.)
π1(M) acts on M̃ on the right by path-liftings.
A covering is regular if the covering map p : M ′ → M is a quotient
map under the action of a discrete group Γ acting properly
discontinuously and freely. Here M is homeomorphic to M ′/Γ.
One can classify covering spaces of M by the subgroups of
π(M, x0). That is, two coverings of M are equal iff the subgroups
are the same.
Covering spaces are ordered by subgroup inclusion relations.
If the subgroup is normal, the corresponding covering is regular.
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Manifolds and differentiable structures (Intuitive account) Discrete group actions

A manifold has a universal covering, i.e., a covering whose space
has a trivial fundamental group. A universal cover covers every
other coverings of a given manifold.
M̃ has the covering automorphism group Γ isomorphic to π1(M). A
manifold M equals M̃/Γ for its universal cover M̃. Γ is a subgroup
of the deck transformation group.

I Let M̃ be R2 and T 2 be a torus. Then there is a map p : R2 → T 2

sending (x , y) to ([x ], [y ]) where [x ] = x mod 2π and [y ] = y
mod 2π.

I Let M be a surface of genus 2. M̃ is homeomorphic to a disk. The
deck transformation group can be realized as isometries of a
hyperbolic plane.
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Manifolds and differentiable structures (Intuitive account) Discrete group actions
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Manifolds and differentiable structures (Intuitive account) Simplicial manifolds

Simplicial manifolds

An n-simplex is a convex hull of n + 1-points (affinely
independent). An n-simplex is homeomorphic to Bn.
A simplicial complex is a locally finite collection S of simplices so
that any face of a simplex is a simplex in S and the intersection of
two elements of S is an element of S. The union is a topological
set, a polyhedron.
We can define barycentric subdivisions and so on.
A link of a simplex σ is the simplicial complex made up of
simplicies opposite σ in a simplex containing σ.
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Manifolds and differentiable structures (Intuitive account) Simplicial manifolds

An n-manifold X can be constructed by gluing n-simplices by
face-identifications. Suppose X is an n-dimensional triangulated
space. If the link of every p-simplex is homeomorphic to a sphere
of (n − p − 1)-dimension, then X is an n-manifold.
If X is a simplicial n-manifold, we say X is orientable if we can give
an orientations on each simplex so that over the common faces
they extend each other.
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Manifolds and differentiable structures (Intuitive account) Surfaces

Surfaces

Canonical construction
Given a polygon with even number of sides, we assign identification by
labeling by alphabets a1,a2, ..,a−1

1 ,a−1
2 , , , , so that ai means an edge

labelled by ai oriented counter-clockwise and a−1
i means an edge

labelled by ai oriented clockwise. If a pair ai and ai or a−1
i occur, then

we identify them respecting the orientations.

A bigon: We divide the boundary into two edges and identify by
labels a,a−1.
A bigon: We divide the boundary into two edges and identify by
labels a,a.
A square: We identify the top segment with the bottom one and
the right side with the left side. The result is a 2-torus.
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i occur, then

we identify them respecting the orientations.

A bigon: We divide the boundary into two edges and identify by
labels a,a−1.
A bigon: We divide the boundary into two edges and identify by
labels a,a.
A square: We identify the top segment with the bottom one and
the right side with the left side. The result is a 2-torus.
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Manifolds and differentiable structures (Intuitive account) Surfaces

Any closed surface can be represented in this manner.
A 4n-gon. We label edges

a1,b1,a−1
1 ,b−1

1 ,a2,b2,a−1
2 ,b−1

2 , ...an,bn,a−1
n ,b−1

n .

The result is a connected sum of n tori and is orientable. The
genus of such a surface is n.
A 2n-gon. We label edges a1a1a2a2....anbn. The result is a
connected sum of n projective planes and is not orientable. The
genus of such a surface is n.
The results are topological surfaces and a 2-dimensional
simplicial manifold.
We can remove the interiors of disjoint closed balls from the
surfaces. The results are surfaces with boundary.
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Manifolds and differentiable structures (Intuitive account) Surfaces

The fundamental group of a surface can now be computed. A
surface is a cell complex starting from a 1-complex which is a
bouquet of circles and attached with a cell. (See AT P.51)

π(S) = {a1,b1, ...,ag ,bg |[a1,b1][a2,b2]...[ag ,bg]}

for orientable S of genus g.
An Euler characteristic of a simplicial complex is given by
E − F + V . This is a topological invariant. We can show that the
Euler characteristic of an orientable compact surface of genus g
with n boundary components is 2− 2g − n.
In fact, a closed orientable surface contains 3g − 3 disjoint simple
closed curves so that the complement of its union is a disjoint
union of pairs of pants, i.e., spheres with three holes. Thus, a pair
of pants is an "elementary" surface.
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Manifolds and differentiable structures (Intuitive account) Surfaces

b1

a1

b2'

a2'

b2

a2

b1'

a1'

A
B

C

D

E

F

G

H

K

<)b1a1'= 0.248
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Manifolds and differentiable structures (Intuitive account) Surfaces
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Manifolds and differentiable structures (Intuitive account) Lie groups

Section 2: Lie groups

A Lie group is a space of symmetries of some space. More
formally, a Lie group is a manifold with a group operation
◦ : G ×G→ G that satisfies

I ◦ is smooth.
I the inverse ι : G→ G is smooth also.

Examples:
I The permutation group of a finite set form a 0-dimensional

manifold, which is a finite set.
I R,C with + as an operation. (R+ with + is merely a Lie semigroup.)
I R− {O},C− {O} with ∗ as an operation.
I T n = Rn/Γ with + as an operation and O as the equivalence class

of (0,0, ...,0). (The three are abelian ones.)

S. Choi (KAIST) Geometric structures on 2-orbifolds: Exploration of discrete symmetry2010 Fall Lectures 26 / 51



Manifolds and differentiable structures (Intuitive account) Lie groups

Section 2: Lie groups

A Lie group is a space of symmetries of some space. More
formally, a Lie group is a manifold with a group operation
◦ : G ×G→ G that satisfies

I ◦ is smooth.
I the inverse ι : G→ G is smooth also.

Examples:
I The permutation group of a finite set form a 0-dimensional

manifold, which is a finite set.
I R,C with + as an operation. (R+ with + is merely a Lie semigroup.)
I R− {O},C− {O} with ∗ as an operation.
I T n = Rn/Γ with + as an operation and O as the equivalence class

of (0,0, ...,0). (The three are abelian ones.)

S. Choi (KAIST) Geometric structures on 2-orbifolds: Exploration of discrete symmetry2010 Fall Lectures 26 / 51



Manifolds and differentiable structures (Intuitive account) Lie groups

Section 2: Lie groups

A Lie group is a space of symmetries of some space. More
formally, a Lie group is a manifold with a group operation
◦ : G ×G→ G that satisfies

I ◦ is smooth.
I the inverse ι : G→ G is smooth also.

Examples:
I The permutation group of a finite set form a 0-dimensional

manifold, which is a finite set.
I R,C with + as an operation. (R+ with + is merely a Lie semigroup.)
I R− {O},C− {O} with ∗ as an operation.
I T n = Rn/Γ with + as an operation and O as the equivalence class

of (0,0, ...,0). (The three are abelian ones.)

S. Choi (KAIST) Geometric structures on 2-orbifolds: Exploration of discrete symmetry2010 Fall Lectures 26 / 51



Manifolds and differentiable structures (Intuitive account) Lie groups

I GL(n,R) = {A ∈ Mn(R)|det(A) 6= 0}: the general linear group.
SL(n,R) = {A ∈ GL(n,R)|det(A) = 1}: the special linear group.
O(n,R) = {A ∈ GL(n,R)|AT A = I}: the orthogonal group.
Isom(Rn) = {T : Rn → Rn|T (x) = Ax + b for A ∈ O(n,R),b ∈ Rn}.
Proofs: One can express the operations as polynomials or rational
functions.

I I I I Products of Lie groups are Lie groups.
A covering space of a connected Lie group form a Lie group.
A Lie subgroup of a Lie group is a subgroup that is a Lie group
with the induced operation and is a submanifold.

I O(n) ⊂ SL(n,R) ⊂ GL(n,R).
I O(n − 1) ⊂ Isom(Rn).
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Manifolds and differentiable structures (Intuitive account) Lie groups

A homomorphism f : G→ H of two Lie groups G,H is a smooth
map that is a group homomorphism. The above inclusion maps
are homomorphisms.
The kernel of a homomorphism is a closed normal subgroup.
Hence it is a Lie subgroup also.
If G,H are simply connected, f induces a unique homomorphism
of Lie algebra of G to that of H which is Df and conversely.
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Manifolds and differentiable structures (Intuitive account) Lie groups

Lie group actions

A Lie group G-action on a smooth manifold X is given by a smooth
map G × X → X so that (gh)(x) = (g(h(x)) and I(x) = x . (left
action)
A right action satisfies (x)(gh) = ((x)g)h.
The action is faithful if g(x) = x for all x , then g is the identity
element of G.
The action is transitive if given two points x , y ∈ X , there is g ∈ G
such that g(x) = y .
Example:

I GL(n,R) acting on Rn.
I PGL(n + 1,R) acting on RPn.
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Manifolds and differentiable structures (Intuitive account) Lie algebras

Lie algebras

A Lie algebra is a vector space V with an operation
[, ] : V × V → V that satisfies:

I [x , x ] = 0 for x ∈ L. (Thus, [x , y ] = −[y , x ].)
I Jacobi identity [x , [y , z]] + [z, [x , y ]] + [y , [z, x ]] = 0.

Examples:
I Sending V × V to O is a Lie algebra (abelian ones.)
I Direct sums of Lie algebras is a Lie algebra.
I A subalgebra is a subspace closed under [, ].
I An ideal K of L is a subalgebra such that [x , y ] ∈ K for x ∈ K and

y ∈ L.

A homomorphism of a Lie algebra is a linear map preserving [, ].
The kernel of a homomorphism is an ideal.
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Manifolds and differentiable structures (Intuitive account) Lie algebras

Lie groups and Lie algebras

Let G be a Lie group. A left translation Lg : G→ G is given by
x 7→ g(x).
A left-invariant vector field of G is a vector field so that the left
translation leaves it invariant, i.e., dLg(X (h)) = X (gh) for g,h ∈ G.
The set of left-invariant vector fields form a vector space under
addition and scalar multiplication and is vector-space isomorphic
to the tangent space at I. Moreover, [, ] is defined as vector-fields
brackets. This forms a Lie algebra.
The Lie algebra of G is the the Lie algebra of the left-invariant
vector fields on G.
If G,H are simply connected and f : G→ H is a homomorphism, f
induces a unique homomorphism of Lie algebra of G to the Lie
algebra of H.
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Manifolds and differentiable structures (Intuitive account) Lie algebras

Example: The Lie algebra of GL(n,R) is isomorphic to gl(n,R):
I For X in the Lie algebra of GL(n,R), we can define a flow

generated by X and a path X (t) along it where X (0) = I.
I We obtain an element of gl(n,R) by taking the derivative of X (t) at

0 seen as a matrix.
I The brackets are preserved.
I A Lie algebra of an abelian Lie group is abelian.
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Manifolds and differentiable structures (Intuitive account) Lie algebras

Lie algebras

Given X in the Lie algebra g of G, there is an integral curve X (t)
through I. We define the exponential map exp : g→ G by sending
X to X (1).
The exponential map is defined everywhere, smooth, and is a
diffeomorphism near O.
The matrix exponential defined by

A 7→ eA =
∞∑

i=0

1
k !

Ak

is the exponential map gl(n,R)→ GL(n,R).
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Pseudo-group and G-structures

Pseudo-groups

In this section, we introduce pseudo-groups.
However, we are mainly interested in classical geometries,
Clifford-Klein geometries. We will be concerned with Lie group G
acting on a manifold M.
Most obvious ones are euclidean geometry where G is the group
of rigid motions acting on the euclidean space Rn. The spherical
geometry is one where G is the group O(n + 1) of orthogonal
transformations acting on the unit sphere Sn.
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Pseudo-group and G-structures

Pseudo-groups

Topological manifolds form too large a category to handle.
To restrict the local property more, we introduce pseudo-groups. A
pseudo-group G on a topological space X is the set of
homeomorphisms between open sets of X so that

I The domains of g ∈ G cover X .
I The restriction of g ∈ G to an open subset of its domain is also in G.
I The composition of two elements of G when defined is in G.
I The inverse of an element of G is in G.
I If g : U → V is a homeomorphism for U,V open subsets of X . If U

is a union of open sets Uα for α ∈ I for some index set I such that
g|Uα is in G for each α, then g is in G.
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Pseudo-group and G-structures

The trivial pseudo-group is one where every element is a
restriction of the identity X → X .
Any pseudo-group contains a trivial pseudo-group.
The maximal pseudo-group of Rn is TOP, the set of all
homeomorphisms between open subsets of Rn.
The pseudo-group Cr , r ≥ 1, of the set of Cr -diffeomorphisms
between open subsets of Rn.
The pseudo-group PL of piecewise linear homeomorphisms
between open subsets of Rn.
(G,X )-pseudo group. Let G be a Lie group acting on a manifold
X . Then we define the pseudo-group as the set of all pairs
(g|U,U) where U is the set of all open subsets of X .
The group isom(Rn) of rigid motions acting on Rn or orthogonal
group O(n + 1,R) acting on Sn give examples.
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Pseudo-group and G-structures G-manifold

G-manifold

A G-manifold is obtained as a manifold glued with special type of
gluings only in G.
Let G be a pseudo-group on Rn. A G-manifold is a n-manifold M
with a maximal G-atlas.
A G-atlas is a collection of charts (imbeddings) φ : U → Rn where
U is an open subset of M such that whose domains cover M and
any two charts are G-compatible.

I Two charts (U, φ), (V , ψ) are G-compatible if the transition map

γ = ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) ∈ G.
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U is an open subset of M such that whose domains cover M and
any two charts are G-compatible.

I Two charts (U, φ), (V , ψ) are G-compatible if the transition map

γ = ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) ∈ G.
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Pseudo-group and G-structures G-manifold

One can choose a locally finite G-atlas from a given maximal one
and conversely.
A G-map f : M → N for two G-manifolds is a local homeomorphism
so that if f sends a domain of a chart φ into a domain of a chart ψ,
then

ψ ◦ f ◦ φ−1 ∈ G.

That is, f is an element of G locally up to charts.
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Pseudo-group and G-structures Examples

Examples

Rn is a G-manifold if G is a pseudo-group on Rn.
f : M → N be a local homeomorphism. If N has a G-structure,
then so does M so that the map in a G-map. (A class of examples
such as θ-annuli and π-annuli.)
Let Γ be a discrete group of G-homeomorphisms of M acting
properly and freely. Then M/Γ has a G-structure. The charts will
be the charts of the lifted open sets.
T n has a Cr -structure and a PL-structure.
Given (G,X ) as above, a (G,X )-manifold is a G-manifold where G
is the restricted pseudo-group.
A euclidean manifold is a (isom(Rn),Rn)-manifold.
A spherical manifold is a (O(n + 1),Sn)-manifold.
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Differential geometry and G-structures

Differential geometry and G-structures

We wish to understand geometric structures in terms of differential
geometric setting; i.e., using bundles, connections, and so on.
Such an understanding help us to see the issues in different ways.
Actually, this is not central to the lectures. However, we should try
to relate to the traditional fields where our subject can be studied
in another way.
We will say more details later on.
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Differential geometry and G-structures Riemannian manifolds

Riemanian manifolds and constant curvature
manifolds.

A differentiable manifold has a Riemannian metric, i.e.,
inner-product at each tangent space smooth with respect
coordinate charts. Such a manifold is said to be a Riemannian
manifold.
An isometric immersion (imbedding) of a Riemannian manifold to
another one is a (one-to-one) map that preserve the Riemannian
metric.
We will be concerned with isometric imbedding of M into itself
usually.
A length of an arc is the value of an integral of the norm of tangent
vectors to the arc. This gives us a metric on a manifold. An
isometric imbedding of M into itself is an isometry always.
A geodesic is an arc minimizing length locally.
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Differential geometry and G-structures Riemannian manifolds

A constant curvature manifold is one where the sectional
curvature is identical to a constant in every planar direction at
every point.
Examples:

I A euclidean space En with the standard norm metric has a constant
curvature = 0.

I A sphere Sn with the standard induced metric from Rn+1 has a
constant curature = 1.

I Find a discrete torsion-free subgroup Γ of the isometry group of En

(resp. Sn). Then En/Γ (resp. Sn/Γ) has constant curvature = 0
(resp. 1).
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Differential geometry and G-structures Lie groups and group actions

Lie groups and group actions.

A Lie group is a smooth manifold G with an associative smooth
product map G ×G→ G with identity and a smooth inverse map
ι : G→ G. (A Lie group is often the set of symmetries of certain
types of mathematical objects.)
For example, the set of isometries of Sn form a Lie group
O(n + 1), which is a classical group called an orthogonal group.
The set of isometries of the euclidean space Rn form a Lie group
Rn ·O(n), i.e., an extension of O(n) by a translation group in Rn.
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Differential geometry and G-structures Lie groups and group actions

Simple Lie groups are classified. Examples GL(n,R), SL(n,R),
O(n,R), O(n,m), GL(n,C), U(n), SU(n), SP(2n,R), Spin(n),....
An action of a Lie group G on a space X is a map G × X → X so
that (gh)(x) = g(h(x)).
For each g ∈ G, g gives us a map g : X → X where the identity
element correspond to the identity map of X .
Examples: Rn ·O(n) on Rn and O(n) on Sn.
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Differential geometry and G-structures Principal bundles and connections, flat connections

Principal bundles and connections, flat connections

Let M be a manifold and G a Lie group. A principal fiber bundle P
over M with a group G:

I P is a manifold.
I G acts freely on P on the right. P ×G→ P.
I M = P/G. π : P → M is differentiable.
I P is locally trivial. φ : π−1(U)→ U ×G.

Example 1: L(M) the set of frames of T (M). GL(n,R) acts freely
on L(M). π : L(M)→ M is a principal bundle.
P a bundle space, M the base space. π−1(x) a fiber.
π−1(x) = {ug|g ∈ G}.
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Differential geometry and G-structures Principal bundles and connections, flat connections

A bundle can be constructed by mappings

{φβ,α : Uα ∩ Uβ → G|Uα,Uβ"trivial" open subsets ofM}

so that
φγ,α = φγ,β ◦ φβ,α

for any triple Uα,Uβ,Uγ .
G′,G Lie groups. f : G′ → G a monomorphism.
P(G′,M)→ P(G,M) inducing identity M → M is called a
reduction of the structure group G to G′. There maybe many
reductions for given G′ and G.
P(G,M) is reducible to P(G′,M) if and only if φα,β can be taken to
be in G′. (See Kobayashi-Nomizu, Bishop-Crittendon for details.)
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Differential geometry and G-structures Principal bundles and connections, flat connections

Associated bundles

Associated bundle: Let F be a manifold with a left-action of G.
G acts on P × F on the right by

g : (u, x)→ (ug,g−1(x)),g ∈ G,u ∈ M, x ∈ F .

The quotient space E = P ×G F .
πE is induced and π−1

E (U) = U × F . The structure group is the
same.
Example: Tangent bundle T (M). GL(n,R) acts on Rn. Let F = Rn.
Obtain L(M)×GL(n,R) Rn.
Example: Tensor bundles T r

s (M). GL(n,R) acts on T r
s (R). Let

F = T r
s (R).
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Differential geometry and G-structures Principal bundles and connections, flat connections

Connections

P(M,G) a principal bundle.
A connection decomposes each Tu(P) for each u ∈ P into

I Tu(P) = Gu ⊕Qu where Gu is a subspace tangent to the fiber. (Gu
the vertical space, Qu the horizontal space.)

I Qug = (Rg)∗Qu for each g ∈ G and u ∈ P.
I Qu depend smoothly on u.

A horizontal lift of a piecewise-smooth path τ on M is a
piecewise-smooth path τ ′ lifting τ so that the tangent vectors are
all horizontal.
A horizontal lift is determined once the initial point is given.
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Differential geometry and G-structures Principal bundles and connections, flat connections

Given a curve on M with two endpoints, the lifts defines a parallel
displacement between fibers above the two endpoints.
(commuting with G-actions).
Fixing a point x0 on M, this defines a holonomy group.
The curvature of a connection is a measure of how much a
horizontal lift of small loop in M is a loop in P.
The flat connection: In this case, we can lift homotopically trivial
loops in Mn to loops in P. Thus, the flatness is equivalent to local
lifting of coordinate chart of M to horizontal sections in P.
A flat connection on P gives us a smooth foliation of dimension n
transversal to the fibers.
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Differential geometry and G-structures Principal bundles and connections, flat connections

The associated bundle E also inherits a connection and hence
horizontal lifings.
The flatness is also equivalent to the local lifting property.
The flat connection on E gives us a smooth foliation of dimension
n transversal to the fibers.
Summary: A connection gives us a way to identify fibers given
paths on X -bundles over M. The flatness gives us locally
consistent identifications.
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Differential geometry and G-structures Principal bundles and connections, flat connections

The principal bundles and G-structures.

Given a manifold M of dimension n, a Lie group G acting on a
manifold X of dimension n.
We form a principal bundle P and then the associated bundle E
fibered by X with a flat connection.
A section f : M → E which is transverse everywhere to the
foliation given by the flat connection.
This gives us a (G,X )-structure and conversely a (G,X )-structure
gives us P,E , f and the flat connection.
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