Geometric structures on 2-orbifolds
 Lie groups and geometry I

S. Choi
${ }^{1}$ Department of Mathematical Science
KAIST, Daejeon, South Korea

Lectures at KAIST

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions - Hyperbolic geometry

Discrete groups: examples

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions - Hyperbolic geometry
- Discrete groups: examples

Outline

- Geometries
- Euclidean geometry
- Spherical geometry

```
* Aftine geometry
* Projective geometry
* Conformal geometry: Foincare extensions
> Hyperbolic geometry
```

- Discrete groups: examples

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions - Hyperbolic geometry

- Discrete groups: examples

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions - Hyperbolic geometry

- Discrete groups: examples

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions - Hyperbolic geometry
- Discrete groups: examples

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions
- Hyperbolic geometry
- Lorentz group
- Geometry of hyperbolic space
- Beltrami-Klein model
- Conformal ball model
- The upper-half space model
- Discrete groups: examples

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions
- Hyperbolic geometry
- Lorentz group
- Geometry of hyperbolic space
- Beltrami-Klein model
- Conformal ball model
- The upper-half space model
- Discrete groups: examples

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions
- Hyperbolic geometry
- Lorentz group
- Geometry of hyperbolic space
- Beltrami-Klein model
- Conformal ball model
- The upper-half space model
- Discrete groups: examples

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions
- Hyperbolic geometry
- Lorentz group
- Geometry of hyperbolic space
- Beltrami-Klein model
- Conformal ball model
- The upper-half space model
- Discrete groups: examples

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions
- Hyperbolic geometry
- Lorentz group
- Geometry of hyperbolic space
- Beltrami-Klein model
- Conformal ball model
- The upper-half space model
- Discrete groups: examples

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions
- Hyperbolic geometry
- Lorentz group
- Geometry of hyperbolic space
- Beltrami-Klein model
- Conformal ball model
- The upper-half space model
- Discrete groups: examples

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions
- Hyperbolic geometry
- Lorentz group
- Geometry of hyperbolic space
- Beltrami-Klein model
- Conformal ball model
- The upper-half space model
- Discrete groups: examples
- Discrete group actions
- Convex polyhedrons
- Side pairings and the fundamental theorem
- Crystallographic groups

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions
- Hyperbolic geometry
- Lorentz group
- Geometry of hyperbolic space
- Beltrami-Klein model
- Conformal ball model
- The upper-half space model
- Discrete groups: examples
- Discrete group actions
- Convex polyhedrons
- Side pairings and the fundamental theorem
- Crystallographic groups

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions
- Hyperbolic geometry
- Lorentz group
- Geometry of hyperbolic space
- Beltrami-Klein model
- Conformal ball model
- The upper-half space model
- Discrete groups: examples
- Discrete group actions
- Convex polyhedrons
- Side pairings and the fundamental theorem
- Crystallographic groups

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions
- Hyperbolic geometry
- Lorentz group
- Geometry of hyperbolic space
- Beltrami-Klein model
- Conformal ball model
- The upper-half space model
- Discrete groups: examples
- Discrete group actions
- Convex polyhedrons
- Side pairings and the fundamental theorem

Outline

- Geometries
- Euclidean geometry
- Spherical geometry
- Affine geometry
- Projective geometry
- Conformal geometry: Poincare extensions
- Hyperbolic geometry
- Lorentz group
- Geometry of hyperbolic space
- Beltrami-Klein model
- Conformal ball model
- The upper-half space model
- Discrete groups: examples
- Discrete group actions
- Convex polyhedrons
- Side pairings and the fundamental theorem
- Crystallographic groups

Some helpful references

- W. Thurston, Lecture notes...: A chapter on orbifolds, 1977. (This is the principal source)
- W. Thurston, Three-dimensional geometry and topolgy, PUP, 1997
- M. Berger, Geometry I, Springer
- J. Ratcliffe, Foundations of hyperbolic manifolds, Springer
- M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhauser.

Some helpful references

- W. Thurston, Lecture notes...: A chapter on orbifolds, 1977. (This is the principal source)
- W. Thurston, Three-dimensional geometry and topolgy, PUP, 1997
- M. Berger, Geometry I, Springer
- J. Ratcliffe, Foundations of hyperbolic manifolds, Springer
- M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhauser.

Some helpful references

- W. Thurston, Lecture notes...: A chapter on orbifolds, 1977. (This is the principal source)
- W. Thurston, Three-dimensional geometry and topolgy, PUP, 1997
- M. Berger, Geometry I, Springer
- J. Ratcliffe, Foundations of hyperbolic manifolds, Springer
- M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhauser.

Some helpful references

- W. Thurston, Lecture notes...: A chapter on orbifolds, 1977. (This is the principal source)
- W. Thurston, Three-dimensional geometry and topolgy, PUP, 1997
- M. Berger, Geometry I, Springer
- J. Ratcliffe, Foundations of hyperbolic manifolds, Springer
- M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhauser.

Some helpful references

- W. Thurston, Lecture notes...: A chapter on orbifolds, 1977. (This is the principal source)
- W. Thurston, Three-dimensional geometry and topolgy, PUP, 1997
- M. Berger, Geometry I, Springer
- J. Ratcliffe, Foundations of hyperbolic manifolds, Springer
- M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhauser.

Some helpful references

- W. Thurston, Lecture notes...: A chapter on orbifolds, 1977. (This is the principal source)
- W. Thurston, Three-dimensional geometry and topolgy, PUP, 1997
- M. Berger, Geometry I, Springer
- J. Ratcliffe, Foundations of hyperbolic manifolds, Springer
- M. Kapovich, Hyperbolic Manifolds and Discrete Groups, Birkhauser.
- My talk http:
//math.kaist.ac.kr/~schoi/Titechtalk.pdf

Euclidean geometry

- The Euclidean space is \mathbb{R}^{n} and the group $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$ of rigid motions is generated by $O(n)$ and T_{n} the translation group. In fact, we have an inner-product giving us a metric.
- A system of linear equations gives us a subspace (affine or linear)
- This gives us the model for Euclidean axioms....

Euclidean geometry

- The Euclidean space is \mathbb{R}^{n} and the group $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$ of rigid motions is generated by $O(n)$ and T_{n} the translation group. In fact, we have an inner-product giving us a metric.
- A system of linear equations gives us a subspace (affine or linear)
- This gives us the model for Euclidean axioms....

Euclidean geometry

- The Euclidean space is \mathbb{R}^{n} and the group $\operatorname{Isom}\left(\mathbb{R}^{n}\right)$ of rigid motions is generated by $O(n)$ and T_{n} the translation group. In fact, we have an inner-product giving us a metric.
- A system of linear equations gives us a subspace (affine or linear)
- This gives us the model for Euclidean axioms....

Spherical geometry

- Let us consider the unit sphere \mathbf{S}^{n} in the Euclidean space \mathbb{R}^{n+1}.
- Many great spheres exist and they are subspaces... (They are given by homogeneous system of linear equations in \mathbb{R}^{n+1}.)
- The lines are replaced by great circles and lengths and angles are also replaced.
- The transformation group is $O(n+1)$.

Spherical geometry

- Let us consider the unit sphere \mathbf{S}^{n} in the Euclidean space \mathbb{R}^{n+1}.
- Many great spheres exist and they are subspaces... (They are given by homogeneous system of linear equations in \mathbb{R}^{n+1}.)
- The lines are replaced by great circles and lengths and angles are also replaced.
- The transformation group is $O(n+1)$.

Spherical trigonometry

- Many spherical triangle theorems exist...
- Such a triangle is classified by their angles $\theta_{0}, \theta_{1}, \theta_{2}$ satisfying

$$
\begin{align*}
\theta_{0}+\theta_{1}+\theta_{2} & >\pi \tag{1}\\
\theta_{i} & <\theta_{i+1}+\theta_{i+2}-\pi, i \in \mathbb{Z}_{3} . \tag{2}
\end{align*}
$$

Affine geometry

- A vector space \mathbb{R}^{n} becomes an affine space by forgetting the origin.
- An affine transformation of \mathbb{R}^{n} is one given by $x \mapsto A x+b$ for $A \in G L(n, \mathbb{R})$ and $b \in \mathbb{R}^{n}$. This notion is more general than that of rigid motions.
The Euclidean space \mathbb{R}^{n} with the group
Aff $\left(\mathbb{R}^{n}\right)=G L(n, \mathbb{R}) \cdot \mathbb{R}^{n}$ of affine transformations form the
affine geometry.
- Of course, angles and lengths do not make sense. But the
notion of lines exists.
- The set of three points in a line has an invariant based on
ratios of lengths.

Affine geometry

- A vector space \mathbb{R}^{n} becomes an affine space by forgetting the origin.
- An affine transformation of \mathbb{R}^{n} is one given by $x \mapsto A x+b$ for $A \in G L(n, \mathbb{R})$ and $b \in \mathbb{R}^{n}$. This notion is more general than that of rigid motions.
- The Euclidean space \mathbb{R}^{n} with the group $\operatorname{Aff}\left(\mathbb{R}^{n}\right)=G L(n, \mathbb{R}) \cdot \mathbb{R}^{n}$ of affine transformations form the affine geometry.
- Of course, angles and lengths do not make sense. But the notion of lines exists.
- The set of three points in a line has an invariant based on ratios of lengths.

Projective geometry

- Projective geometry was first considered from fine art.
- Desargues (and Kepler) first considered points at infinity.
- Poncelet first added infinite points to the euclidean plane.
- Projective transformations are compositions of perspectivities. Often, they send finite points to infinite points and vice versa. (i.e., two planes that are not parallel).
- The added points are same as ordinary points up to projective transformations.

Projective geometry

- Projective geometry was first considered from fine art.
- Desargues (and Kepler) first considered points at infinity.
- Poncelet first added infinite points to the euclidean plane.
- Projective transformations are compositions of perspectivities. Often, they send finite points to infinite points and vice versa. (i.e., two planes that are not parallel).
* The added points are same as ordinary points up to projective transformations.

Projective geometry

- Projective geometry was first considered from fine art.
- Desargues (and Kepler) first considered points at infinity.
- Poncelet first added infinite points to the euclidean plane.
- Projective transformations are compositions of perspectivities. Often, they send finite points to infinite points and vice versa. (i.e., two planes that are not parallel).
- The added points are same as ordinary points up to projective transformations.
- Lines have well defined infinite points and are really circles topologically.
- Some notions lose meanings. However, many interesting theorems can be proved. Duality of theorems plays an interesting role.
- Lines have well defined infinite points and are really circles topologically.
- Some notions lose meanings. However, many interesting theorems can be proved. Duality of theorems plays an interesting role.
- See for an interactive course: http://www.math.poly. edu/courses/projective_geometry/
- and http://demonstrations.wolfram.com/ TheoremeDePappusFrench/, http://demonstrations.wolfram.com/ TheoremeDePascalFrench/, http://www.math. umd.edu/~wphooper/pappus9/pappus.html, http://www.math.umd.edu/~wphooper/pappus/
- Formal definition with topology is given by Felix Klein using homogeneous coordinates.
- The projective space $\mathbb{R} P^{n}$ is $\mathbb{R}^{n+1}-\{O\} / \sim$ where \sim is given by $v \sim w$ if $v=s w$ for $s \in \mathbb{R}$.
- Each point is given a homogeneous coordinates: $[v]=\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
- The projective transformation group $\operatorname{PGL}(n+1, \mathbb{R})=G L(n+1, \mathbb{R}) / \sim$ acts on $\mathbb{R} P^{n}$ by each element sending each ray to a ray using the corresponding general linear maps.
- Here, each element of g of $\operatorname{PGL}(n+1, \mathbb{R})$ acts by $[v] \mapsto\left[g^{\prime}(v)\right]$ for a representative g^{\prime} in $G L(n+1, \mathbb{R})$ of g. Also any coordinate change can be viewed this way.
- Formal definition with topology is given by Felix Klein using homogeneous coordinates.
- The projective space $\mathbb{R} P^{n}$ is $\mathbb{R}^{n+1}-\{O\} / \sim$ where \sim is given by $v \sim w$ if $v=s w$ for $s \in \mathbb{R}$.
- Each point is given a homogeneous coordinates: $[v]=\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
- The projective transformation group $\operatorname{PGL}(n+1, \mathbb{R})=G L(n+1, \mathbb{R}) / \sim$ acts on $\mathbb{R} P^{n}$ by each element sending each ray to a ray using the corresponding general linear maps.

- Formal definition with topology is given by Felix Klein using homogeneous coordinates.
- The projective space $\mathbb{R} P^{n}$ is $\mathbb{R}^{n+1}-\{O\} / \sim$ where \sim is given by $v \sim w$ if $v=s w$ for $s \in \mathbb{R}$.
- Each point is given a homogeneous coordinates: $[v]=\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
- The projective transformation group $\operatorname{PGL}(n+1, \mathbb{R})=G L(n+1, \mathbb{R}) / \sim$ acts on $\mathbb{R} P^{n}$ by each element sending each ray to a ray using the corresponding general linear maps.
- Here, each element of g of $\operatorname{PGL}(n+1, \mathbb{R})$ acts by $[v] \mapsto\left[g^{\prime}(v)\right]$ for a representative g^{\prime} in $G L(n+1, \mathbb{R})$ of g. Also any coordinate change can be viewed this way.
- The affine geometry can be "imbedded": \mathbb{R}^{n} can be identified with the set of points in $\mathbb{R} P^{n}$ where x_{0} is not zero, i.e., the set of points $\left\{\left[1, x_{1}, x_{2}, \ldots, x_{n}\right]\right\}$. This is called an affine patch. The subgroup of $\operatorname{PGL}(n+1, \mathbb{R})$ fixing \mathbb{R}^{n} is precisely $\operatorname{Aff}\left(\mathbb{R}^{n}\right)=G L(n, \mathbb{R}) \cdot \mathbb{R}^{n}$.
- The subspace of points $\left\{\left[0, x_{1}, x_{2}, \ldots, x_{n}\right]\right\}$ is the complement homeomorphic to $\mathbb{R} P^{n-1}$. This is the set of infinities, i.e., directions in $\mathbb{R} P^{n}$.
- From affine geometry, one can construct a unique projective geometry and conversely using this idea. (See Berger for the complete abstract approach.)
- The affine geometry can be "imbedded": \mathbb{R}^{n} can be identified with the set of points in $\mathbb{R} P^{n}$ where x_{0} is not zero, i.e., the set of points $\left\{\left[1, x_{1}, x_{2}, \ldots, x_{n}\right]\right\}$. This is called an affine patch. The subgroup of $\operatorname{PGL}(n+1, \mathbb{R})$ fixing \mathbb{R}^{n} is precisely $\operatorname{Aff}\left(\mathbb{R}^{n}\right)=G L(n, \mathbb{R}) \cdot \mathbb{R}^{n}$.
- The subspace of points $\left\{\left[0, x_{1}, x_{2}, \ldots, x_{n}\right]\right\}$ is the complement homeomorphic to $\mathbb{R} P^{n-1}$. This is the set of infinities, i.e., directions in $\mathbb{R} P^{n}$.
- From affine geometry, one can construct a unique projective geometry and conversely using this idea. (See Berger for the complete abstract approach.)
- A subspace is the set of points whose representative vectors satisfy a homogeneous system of linear equations. The subspace in \mathbb{R}^{n+1} corresponding to a projective subspace in $\mathbb{R} P^{n}$ in a one-to-one manner while the dimension drops by 1 .
- The independence of points are defined. The dimension of a subspace is the maximal number of independent set minus 1.

```
* A hyperspace is given by a single linear equation. The
complement of a hyperspace can be identified with an
affine space.
- A line is the set of points [v] where }v=s\mp@subsup{v}{1}{}+t\mp@subsup{v}{2}{}\mathrm{ for
s,t\in\mathbb{R}\mathrm{ for the independent pair }\mp@subsup{v}{1}{},\mp@subsup{v}{2}{}\mathrm{ . Actually a line is}
R}\mp@subsup{P}{}{1}\mathrm{ or a line }\mp@subsup{\mathbb{R}}{}{1}\mathrm{ with a unique infinity.
```

- A subspace is the set of points whose representative vectors satisfy a homogeneous system of linear equations. The subspace in \mathbb{R}^{n+1} corresponding to a projective subspace in $\mathbb{R} P^{n}$ in a one-to-one manner while the dimension drops by 1 .
- The independence of points are defined. The dimension of a subspace is the maximal number of independent set minus 1.
- A hyperspace is given by a single linear equation. The complement of a hyperspace can be identified with an affine space.
- A line is the set of points [v] where $v=s v_{1}+t v_{2}$ for $s, t \in \mathbb{R}$ for the independent pair v_{1}, v_{2}. Actually a line is $\mathbb{R} P^{1}$ or a line \mathbb{R}^{1} with a unique infinity.
- Cross ratios of four points on a line (x, y, z, t). There is a unique coordinate system so that $b=b(x, y, z, t)$ is the cross-ratio.
- If the four points are on \mathbb{R}^{1}, the cross ratio is given as

$$
(x, y ; z, t)=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}
$$

if we can write

$$
x=\left[1, z_{1}\right], y=\left[1, z_{2}\right], z=\left[1, z_{3}\right], t=\left[1, z_{4}\right]
$$

- One can define cross ratios of four hyperplanes meeting in a projective subspace of codimension 2.
- For us $n=2$ is important. Here we have a familiar projective plane as topological type of $\mathbb{R} P^{2}$, which is a Mobius band with a disk filled in at the boundary. http:
- Cross ratios of four points on a line (x, y, z, t). There is a unique coordinate system so that $x=[1,0], y=[0,1], z=[1,1], t=[b, 1]$. Thus $b=b(x, y, z, t)$ is the cross-ratio.
- If the four points are on \mathbb{R}^{1}, the cross ratio is given as

$$
(x, y ; z, t)=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}
$$

if we can write

$$
x=\left[1, z_{1}\right], y=\left[1, z_{2}\right], z=\left[1, z_{3}\right], t=\left[1, z_{4}\right]
$$

- One can define cross ratios of four hyperplanes meeting in a projective subspace of codimension 2.
- For us $n=2$ is important. Here we have a familiar projective plane as topological type of $\mathbb{R} P^{2}$, which is a Mobius band with a disk filled in at the boundary. http:
//www.geom.uiuc.edu/zoo/toptype/pplane/cap/

Conformal geometry

- Reflections of \mathbb{R}^{n}. The hyperplane $P(a, t)$ given by $a \cdot x=t$. Then $\rho(x)=x+2(t-a \cdot x) a$.
- Inversions. The hypersphere $S(a, r)$ given by $|x-a|=r$. Then $\sigma(x)=a+\left(\frac{r}{|x-a|}\right)^{2}(x-a)$.
- We can compactify \mathbb{R}^{n} to $\hat{\mathbb{R}}^{n}=\mathrm{S}^{n}$ by adding infinity. This can be accomplished by a stereographic projection from the unit sphere \mathbf{S}^{n} in \mathbb{R}^{n+1} from the northpole $(0,0, \ldots, 1)$. Then these reflections and inversions induce conformal homeomorphisms.

Conformal geometry

- Reflections of \mathbb{R}^{n}. The hyperplane $P(a, t)$ given by $a \cdot x=t$. Then $\rho(x)=x+2(t-a \cdot x) a$.
- Inversions. The hypersphere $S(a, r)$ given by $|x-a|=r$. Then $\sigma(x)=a+\left(\frac{r}{|x-a|}\right)^{2}(x-a)$.
- We can compactify \mathbb{R}^{n} to $\hat{\mathbb{R}}^{n}=\mathbf{S}^{n}$ by adding infinity. This can be accomplished by a stereographic projection from the unit sphere \mathbf{S}^{n} in \mathbb{R}^{n+1} from the northpole ($0,0, \ldots, 1$). Then these reflections and inversions induce conformal homeomorphisms.
- The group of transformations generated by these homeomorphisms is called the Mobius transformation group.
- They form the conformal transformation group of $\hat{\mathbb{R}}^{n}=\mathbf{S}^{n}$.
- For $n=2, \hat{\mathbb{R}}^{2}$ is the Riemann sphere $\hat{\mathbb{C}}$ and a Mobius transformation is a either a fractional linear transformation of form

or a fractional linear transformation pre-composed with the conjugation map $z \mapsto \bar{z}$.
- In higher-dimensions, a description as a sphere of null-lines and the special Lorentizian group exists.
- The group of transformations generated by these homeomorphisms is called the Mobius transformation group.
- They form the conformal transformation group of $\hat{\mathbb{R}}^{n}=\mathbf{S}^{n}$.
- For $n=2, \hat{\mathbb{R}}^{2}$ is the Riemann sphere $\hat{\mathbb{C}}$ and a Mobius transformation is a either a fractional linear transformation of form

$$
z \mapsto \frac{a z+b}{c z+d}, a d-b c \neq 0, a, b, c, d \in \mathbb{C}
$$

or a fractional linear transformation pre-composed with the conjugation map $z \mapsto \bar{z}$.

- In higher-dimensions, a description as a sphere of null-lines and the special Lorentizian group exists.

Poincare extensions

- We can identify E^{n-1} with $E^{n-1} \times\{O\}$ in E^{n}.
- We can extend each Mobius transformation of \hat{E}^{n-1} to \hat{E}^{n} that preserves the upper half space U : We extend reflections and inversions in the obvious way.
- The Mobius transformation of \hat{E}^{n} that preserves the open upper half spaces are exactly the extensions of the Mobius transformations of \hat{E}^{n-1}
- $M\left(U^{n}\right)=M\left(\hat{E}^{n-1}\right)$.
- We can put the pair $\left(U^{n}, \hat{E}^{n-1}\right)$ to $\left(B^{n}, S^{n-1}\right)$ by a Mobius transformation.
- Thus, $M\left(U^{n}\right)$ is isomorphic to $M\left(\mathrm{~S}^{n-1}\right)$ for the boundary sphere.

Poincare extensions

- We can identify E^{n-1} with $E^{n-1} \times\{O\}$ in E^{n}.
- We can extend each Mobius transformation of \hat{E}^{n-1} to \hat{E}^{n} that preserves the upper half space U : We extend reflections and inversions in the obvious way.
- The Mobius transformation of \hat{E}^{n} that preserves the open upper half spaces are exactly the extensions of the Mobius transformations of \hat{E}^{n-1}.
- $M\left(U^{n}\right)=M\left(\hat{E}^{n-1}\right)$.
- We can put the pair (U^{n}, \hat{E}^{n-1}) to (B^{n}, \mathbf{S}^{n-1}) by a Mobius transformation.
- Thus, $M\left(U^{n}\right)$ is isomorphic to $M\left(\mathrm{~S}^{n-1}\right)$ for the boundary sphere.

Poincare extensions

- We can identify E^{n-1} with $E^{n-1} \times\{O\}$ in E^{n}.
- We can extend each Mobius transformation of \hat{E}^{n-1} to \hat{E}^{n} that preserves the upper half space U : We extend reflections and inversions in the obvious way.
- The Mobius transformation of \hat{E}^{n} that preserves the open upper half spaces are exactly the extensions of the Mobius transformations of \hat{E}^{n-1}.
- $M\left(U^{n}\right)=M\left(\hat{E}^{n-1}\right)$.
- We can put the pair (U^{n}, \hat{E}^{n-1}) to (B^{n}, \mathbf{S}^{n-1}) by a Mobius transformation.
- Thus, $M\left(U^{n}\right)$ is isomorphic to $M\left(\mathbf{S}^{n-1}\right)$ for the boundary sphere.

Lorentzian geometry

- A hyperbolic space H^{n} is defined as a complex Riemannian manifold of constant curvature equal to -1 .
- Such a space cannot be realized as a submanifold in a Euclidean space of even very large dimensions.
- But it is realized as a "sphere" in a Lorentzian space.
- A Lorentzian space is $\mathbb{R}^{1, n}$ with an inner product
- A Lorentzian norm $\|x\|=(x \cdot y)^{1 / 2}$, a positive, zero, or positive imaginary number.
- One can define Lorentzian angles.
- The null vectors form a light cone divide into positive, negative cone, and 0 .
- Space like vectors and time like vectors and null vectors.
- Ordinary notions such as orthogonality, orthonormality,

Lorentzian geometry

- A hyperbolic space H^{n} is defined as a complex Riemannian manifold of constant curvature equal to -1 .
- Such a space cannot be realized as a submanifold in a Euclidean space of even very large dimensions.
- But it is realized as a "sphere" in a Lorentzian space.
- A Lorentzian space is $\mathbb{R}^{1, n}$ with an inner product

$$
x \cdot y=-x_{0} y_{0}+x_{1} y_{1}+\cdots+x_{n-1} y_{n-1}+x_{n} y_{n}
$$

- A Lorentzian norm $\|x\|=(x \cdot y)^{1 / 2}$, a positive, zero, or positive imaginary number.
- One can define Lorentzian angles.
- The null vectors form a light cone divide into positive, negative cone, and 0 .
- Space like vectors and time like vectors and null vectors.
- Ordinary notions such as orthogonality, orthonormality,..

Lorentzian geometry

- A hyperbolic space H^{n} is defined as a complex Riemannian manifold of constant curvature equal to -1 .
- Such a space cannot be realized as a submanifold in a Euclidean space of even very large dimensions.
- But it is realized as a "sphere" in a Lorentzian space.
- A Lorentzian space is $\mathbb{R}^{1, n}$ with an inner product

$$
x \cdot y=-x_{0} y_{0}+x_{1} y_{1}+\cdots+x_{n-1} y_{n-1}+x_{n} y_{n}
$$

- A Lorentzian norm $\|x\|=(x \cdot y)^{1 / 2}$, a positive, zero, or positive imaginary number.
- One can define Lorentzian angles.
- The null vectors form a light cone divide into positive, negative cone, and 0.
- Space like vectors and time like vectors and null vectors.
- Ordinary notions such as orthogonality, orthonormality,...

Lorentzian geometry

- A hyperbolic space H^{n} is defined as a complex Riemannian manifold of constant curvature equal to -1 .
- Such a space cannot be realized as a submanifold in a Euclidean space of even very large dimensions.
- But it is realized as a "sphere" in a Lorentzian space.
- A Lorentzian space is $\mathbb{R}^{1, n}$ with an inner product

$$
x \cdot y=-x_{0} y_{0}+x_{1} y_{1}+\cdots+x_{n-1} y_{n-1}+x_{n} y_{n}
$$

- A Lorentzian norm $\|x\|=(x \cdot y)^{1 / 2}$, a positive, zero, or positive imaginary number.
- One can define Lorentzian angles.
- The null vectors form a light cone divide into positive, negative cone, and 0 .
- Space like vectors and time like vectors and null vectors.
- Ordinary notions such as orthogonality, orthonormality,...

Lorentz group

- A Lorentzian transformation is a linear map preserving the inner-product.
- For J the diagonal matrix with entries $-1,1, \ldots, 1, A^{t} J A=J$ iff A is a Lorentzian matrix.
- A Lorentzian transformation sends time-like vectors to time-like vectors. It is either positive or negative.
- The set of Lorentzian transformations form a Lie group $O(1, n)$.
- The set of positive Lorentzian transformations form a Lie subgroup $P O(1, n)$.

Lorentz group

- A Lorentzian transformation is a linear map preserving the inner-product.
- For J the diagonal matrix with entries $-1,1, \ldots, 1, A^{t} J A=J$ iff A is a Lorentzian matrix.
- A Lorentzian transformation sends time-like vectors to time-like vectors. It is either positive or negative.
- The set of Lorentzian transformations form a Lie group $O(1, n)$.
- The set of positive Lorentzian transformations form a Lie subgroup $P O(1, n)$.

Lorentz group

- A Lorentzian transformation is a linear map preserving the inner-product.
- For J the diagonal matrix with entries $-1,1, \ldots, 1, A^{t} J A=J$ iff A is a Lorentzian matrix.
- A Lorentzian transformation sends time-like vectors to time-like vectors. It is either positive or negative.
- The set of Lorentzian transformations form a Lie group $O(1, n)$.
- The set of positive Lorentzian transformations form a Lie subgroup $P O(1, n)$.

Hyperbolic space

- Given two positive time-like vectors, there is a time-like angle

$$
x \cdot y=\|x\|\|y\| \cosh \eta(x, y)
$$

- A hyperbolic space is an upper component of the submanifold defined by $\|x\|^{2}=-1$ or $x_{0}^{2}=1+x_{1}^{2}+\cdots+x_{n}^{2}$. This is a subset of a positive cone.
- One induces a metric from the Lorentzian space which is positive definite.
- This gives us a Riemannian metric of constant curvature -1 . (The computation is very similar to the computations for the sphere.)

Hyperbolic space

- Given two positive time-like vectors, there is a time-like angle

$$
x \cdot y=\|x\|\|y\| \cosh \eta(x, y)
$$

- A hyperbolic space is an upper component of the submanifold defined by $\|x\|^{2}=-1$ or $x_{0}^{2}=1+x_{1}^{2}+\cdots+x_{n}^{2}$. This is a subset of a positive cone.
- Topologically, it is homeomorphic to \mathbb{R}^{n}. Minkowsky model
- One induces a metric from the Lorentzian space which is positive definite.
This gives us a Riemannian metric of constant curvature
-1 . (The computation is very similar to the computations
for the sphere.)

Hyperbolic space

- Given two positive time-like vectors, there is a time-like angle

$$
x \cdot y=\|x\|\|y\| \cosh \eta(x, y)
$$

- A hyperbolic space is an upper component of the submanifold defined by $\|x\|^{2}=-1$ or $x_{0}^{2}=1+x_{1}^{2}+\cdots+x_{n}^{2}$. This is a subset of a positive cone.
- Topologically, it is homeomorphic to \mathbb{R}^{n}. Minkowsky model
- One induces a metric from the Lorentzian space which is positive definite.
- This gives us a Riemannian metric of constant curvature -1 . (The computation is very similar to the computations for the sphere.)
- $P O(1, n)$ is the isometry group of H^{n} which is homogeneous and directionless.
- A hyperbolic line is an intersection of H^{n} with a time-like two-dimensional vector subspace.
- The hyperbolic sine law, The first law of cosines, The second law of cosines...
- One can assign any interio angles to a hyperbolic triangle as long as the sum is less than π.
- One can assign any lengths to a hyperbolic triangle.
- The triangle formula can be generalized to formula for quadrilateral, pentagon, hexagon.
- Basic philosophy here is that one can push the vertex outside and the angle becomes distances between lines. (See Ratcliffe,
- $P O(1, n)$ is the isometry group of H^{n} which is homogeneous and directionless.
- A hyperbolic line is an intersection of H^{n} with a time-like two-dimensional vector subspace.
- The hyperbolic sine law, The first law of cosines, The second law of cosines...
- One can assign any interior angles to a hyperbolic triangle as long as the sum is less than π.
- One can assign any lengths to a hyperbolic triangle.
- The triangle formula can be generalized to formula for quadrilateral, pentagon, hexagon.
- Basic philosophy here is that one can push the vertex
outside and the angle becomes distances between lines. (See Ratcliffe,
- $P O(1, n)$ is the isometry group of H^{n} which is homogeneous and directionless.
- A hyperbolic line is an intersection of H^{n} with a time-like two-dimensional vector subspace.
- The hyperbolic sine law, The first law of cosines, The second law of cosines...
- One can assign any interior angles to a hyperbolic triangle as long as the sum is less than π.
- One can assign any lengths to a hyperbolic triangle.
- The triangle formula can be generalized to formula for quadrilateral, pentagon, hexagon.
- Basic philosophy here is that one can push the vertex outside and the angle becomes distances between lines. (See Ratcliffe,

```
http://online.redwoods.cc.ca.us/instruct/
darnold/staffdev/Assignments/sinandcos.pdf)
```

- hyperbolic law of sines:
$\sin A / \sinh a=\sin B / \sinh b=\sin C / \sinh c$
- hyperbolic law of cosines:

$$
\begin{gathered}
\cosh c=\cosh a \cosh b-\sinh a \sinh b \cos C \\
\cos C=(\cosh a \cosh b-\cosh c) / \sinh a \sinh b \\
\cosh c=(\cos A \cos B+\cos C) / \sin A \sin B
\end{gathered}
$$

Beltrami-Klein models of hyperbolic geometry

- Beltrami-Klein model is directly obtained from the hyperboloid model.
- $d_{k}(P, Q)=1 / 2 \log |(A B, P Q)|$ where A, P, Q, B are on a segment with endpoints A, B and

$$
(A B, P Q)=\left|\frac{A P}{B P} \frac{B Q}{A Q}\right| .
$$

- There is an imbedding from H^{n} onto an open ball B in the affine patch \mathbb{R}^{n} of $\mathbb{R} P^{n}$. This is standard radial projection $\mathbb{R}^{n+1}-\{O\} \rightarrow \mathbb{R} P^{n}$
- B can be described as a ball of radius 1 with center at O.
- The isometry group $P O(1, n)$ also maps injectively to a subgroup of $P G L(n+1, \mathbb{R})$ that preserves B.
- The projective automorphism group of B is precisely this group.

Beltrami-Klein models of hyperbolic geometry

- Beltrami-Klein model is directly obtained from the hyperboloid model.
- $d_{k}(P, Q)=1 / 2 \log |(A B, P Q)|$ where A, P, Q, B are on a segment with endpoints A, B and

$$
(A B, P Q)=\left|\frac{A P}{B P} \frac{B Q}{A Q}\right| .
$$

- There is an imbedding from H^{n} onto an open ball B in the affine patch \mathbb{R}^{n} of $\mathbb{R} P^{n}$. This is standard radial projection $\mathbb{R}^{n+1}-\{O\} \rightarrow \mathbb{R} P^{n}$.
- B can be described as a ball of radius 1 with center at O.
subgroup of $P G L(n+1, \mathbb{R})$ that preserves B.
- The projective automorphism group of B is precisely this group.

Beltrami-Klein models of hyperbolic geometry

- Beltrami-Klein model is directly obtained from the hyperboloid model.
- $d_{k}(P, Q)=1 / 2 \log |(A B, P Q)|$ where A, P, Q, B are on a segment with endpoints A, B and

$$
(A B, P Q)=\left|\frac{A P}{B P} \frac{B Q}{A Q}\right| .
$$

- There is an imbedding from H^{n} onto an open ball B in the affine patch \mathbb{R}^{n} of $\mathbb{R} P^{n}$. This is standard radial projection $\mathbb{R}^{n+1}-\{O\} \rightarrow \mathbb{R} P^{n}$.
- B can be described as a ball of radius 1 with center at O.
- The isometry group $P O(1, n)$ also maps injectively to a subgroup of $P G L(n+1, \mathbb{R})$ that preserves B.
- The projective automorphism group of B is precisely this group.
- The metric is induced on B. This is precisely the metric given by the log of the cross ratio. Note that $\lambda(t)=(\cosh t, \sinh t, 0, \ldots, 0)$ define a unit speed geodesic in H^{n}. Under the Riemannian metric, we have $d\left(e_{1},(\cosh t, \sinh t, 0, \ldots, 0)\right)=t$ for t positive.
> $U n d e r d_{k}$, we obtain the same. Since any geodesic segment of same length is congruent under the isometry, we see that the two metrics coincide. Betrami-Klein model
- The metric is induced on B. This is precisely the metric given by the log of the cross ratio. Note that $\lambda(t)=(\cosh t, \sinh t, 0, \ldots, 0)$ define a unit speed geodesic in H^{n}. Under the Riemannian metric, we have $d\left(e_{1},(\cosh t, \sinh t, 0, \ldots, 0)\right)=t$ for t positive.
- Under d_{k}, we obtain the same. Since any geodesic segment of same length is congruent under the isometry, we see that the two metrics coincide. Betrami-Klein model
- Beltrami-Klein model is nice because you can see outside. The outside is the anti-de Sitter space http://en. wikipedia.org/wiki/Anti_de_Sitter_space
- Also, we can treat points outside and inside together.
- Each line (hyperplane) in the model is dual to a point outside. (i.e., orthogonal by the Lorentzian inner-product) A point in the model is dual to a hyperplane outside. Infact any subspace of dimenstion i is dual to a subspace of dimension $n-i-1$ by orthogonality.
- For $n=2$, the duality of a line is given by taking tangent lines to the disk at the endpoints and taking the intersection.
- The distance between two hyperplanes can be obtained by two dual points. The two dual points span an orthogonal plane to the both hyperperplanes and hence provide a shortest geodesic.
- Beltrami-Klein model is nice because you can see outside. The outside is the anti-de Sitter space http://en. wikipedia.org/wiki/Anti_de_Sitter_space
- Also, we can treat points outside and inside together.
- Each line (hyperplane) in the model is dual to a point outside. (i.e., orthogonal by the Lorentzian inner-product) A point in the model is dual to a hyperplane outside. Infact any subspace of dimenstion i is dual to a subspace of dimension $n-i-1$ by orthogonality.
- For $n=2$, the duality of a line is given by taking tangent lines to the disk at the endpoints and taking the intersection.

$$
\begin{aligned}
& \text { The distance between two hyperplanes can be obtained } \\
& \text { by two dual points. The two dual points span an } \\
& \text { orthogonal plane to the both hyperperplanes and hence } \\
& \text { provide a shortest geodesic. }
\end{aligned}
$$

- Beltrami-Klein model is nice because you can see outside.
- Also, we can treat points outside and inside together.
- Each line (hyperplane) in the model is dual to a point outside. (i.e., orthogonal by the Lorentzian inner-product) A point in the model is dual to a hyperplane outside. Infact any subspace of dimenstion i is dual to a subspace of dimension $n-i-1$ by orthogonality.
- For $n=2$, the duality of a line is given by taking tangent lines to the disk at the endpoints and taking the intersection.
- The distance between two hyperplanes can be obtained by two dual points. The two dual points span an orthogonal plane to the both hyperperplanes and hence provide a shortest geodesic.

The conformal ball model (Poincare ball model)

- The stereo-graphic projection H^{n} to the plane P given by $x_{0}=0$ from the point $(-1,0, \ldots, 0)$.
- The formula for the map $\kappa: H^{n} \rightarrow P$ is given by

$$
\kappa(x)=\left(\frac{y_{1}}{1+y_{0}}, \ldots, \frac{y_{n}}{1+y_{0}}\right),
$$

where the image lies in an open ball of radius 1 with center O in P. The inverse is given by

$$
\zeta(x)=\left(\frac{1+|x|^{2}}{1-|x|^{2}}, \frac{2 x_{1}}{1-|x|^{2}}, \ldots, \frac{2 x_{n}}{1-|x|^{2}},\right) .
$$

- Since this is a diffeomorphism, B has an induced Riemannian metric of constant curvature -1

The conformal ball model (Poincare ball model)

- The stereo-graphic projection H^{n} to the plane P given by $x_{0}=0$ from the point $(-1,0, \ldots, 0)$.
- The formula for the map $\kappa: H^{n} \rightarrow P$ is given by

$$
\kappa(x)=\left(\frac{y_{1}}{1+y_{0}}, \ldots, \frac{y_{n}}{1+y_{0}}\right),
$$

where the image lies in an open ball of radius 1 with center O in P. The inverse is given by

$$
\zeta(x)=\left(\frac{1+|x|^{2}}{1-|x|^{2}}, \frac{2 x_{1}}{1-|x|^{2}}, \ldots, \frac{2 x_{n}}{1-|x|^{2}},\right) .
$$

- Since this is a diffeomorphism, B has an induced Riemannian metric of constant curvature -1 .
- We show

$$
\cosh d_{B}(x, y)=1+\frac{2|x-y|^{2}}{\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)},
$$

and inversions acting on B preserves the metric. Thus, the group of Mobius transformations of B preserve metric.

- The corresponding Riemannian metric is $g_{i j}=2 \delta_{i j} /\left(1-|x|^{2}\right)^{2}$.
- It follows that the group of Mobius transformations acting on B is precisely the isometry group of B. Thus, Isom $(B)=M\left(\mathbf{S}^{n-1}\right)$.
- Geodesics would be lines through O and arcs on circles perpendicular to the sphere of radius 1 .
- We show

$$
\cosh d_{B}(x, y)=1+\frac{2|x-y|^{2}}{\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)},
$$

and inversions acting on B preserves the metric. Thus, the group of Mobius transformations of B preserve metric.

- The corresponding Riemannian metric is $g_{i j}=2 \delta_{i j} /\left(1-|x|^{2}\right)^{2}$.
- It follows that the group of Mobius transformations acting on B is precisely the isometry group of B. Thus, $\operatorname{lsom}(B)=M\left(\mathbf{S}^{n-1}\right)$.
- Geodesics would be lines through O and arcs on circles perpendicular to the sphere of radius 1 .

The upper-half space model.

- Now we put B to U by a Mobius transformation. This gives a Riemannian metric constant curvature -1 .
- We have by computations $\cosh d_{u}(x, y)=1+|x-y|^{2} / 2 x_{n} y_{n}$ and the Riemannian metric is given by $g_{i j}=\delta_{i j} / x_{n}^{2}$. Then $I(U)=M(U)=M\left(E^{n-1}\right)$.
- Geodesics would be arcs on lines or circles perpendicular to E^{n-1}.
- Since \hat{E}^{1} is a circle and \hat{E}^{2} is the complex sphere, we
obtain som $^{+}\left(B^{2}\right)=\operatorname{PSL}(2, \mathbb{R})$ and
Isom ${ }^{+}\left(B^{3}\right)=\operatorname{PSL}(2, \mathbb{C})$.

The upper-half space model.

- Now we put B to U by a Mobius transformation. This gives a Riemannian metric constant curvature -1 .
- We have by computations $\cosh d_{u}(x, y)=1+|x-y|^{2} / 2 x_{n} y_{n}$ and the Riemannian metric is given by $g_{i j}=\delta_{i j} / x_{n}^{2}$. Then $I(U)=M(U)=M\left(E^{n-1}\right)$.
- Geodesics would be arcs on lines or circles perpendicular to E^{n-1}.
- Since \hat{E}^{1} is a circle and \hat{E}^{2} is the complex sphere, we obtain som $^{+}\left(B^{2}\right)=\operatorname{PSL}(2, \mathbb{R})$ and Isom ${ }^{+}\left(B^{3}\right)=\operatorname{PSL}(2, \mathbb{C})$.
- Orientation-preserving isometries of hyperbolic plane can have at most one fixed point. elliptic, hyperbolic, parabolic.

$$
z \mapsto e^{i \theta}, z \mapsto a z, a \neq 1, a \in \mathbb{R}^{+}, z \mapsto z+1
$$

- Isometries of a hyperbolic space: loxodromic, hyperbolic, elliptic, parabolic.

- Up to conjugations, they are represented as Mobius transformations which have forms

- Orientation-preserving isometries of hyperbolic plane can have at most one fixed point. elliptic, hyperbolic, parabolic.

$$
z \mapsto e^{i \theta}, z \mapsto a z, a \neq 1, a \in \mathbb{R}^{+}, z \mapsto z+1
$$

- Isometries of a hyperbolic space: loxodromic, hyperbolic, elliptic, parabolic.
- Up to conjugations, they are represented as Mobius transformations which have forms
- Orientation-preserving isometries of hyperbolic plane can have at most one fixed point. elliptic, hyperbolic, parabolic.

$$
z \mapsto e^{i \theta}, z \mapsto a z, a \neq 1, a \in \mathbb{R}^{+}, z \mapsto z+1
$$

- Isometries of a hyperbolic space: loxodromic, hyperbolic, elliptic, parabolic.
- Up to conjugations, they are represented as Mobius transformations which have forms
- $z \mapsto \alpha z, I m \alpha \neq 0,|\alpha| \neq 1$.
- $z \mapsto a z, a \neq 1, a \in \mathbb{R}^{+}$.
- $z \mapsto e^{i \theta} z, \theta \neq 0$.
- $z \mapsto z+1$.

Discrete groups and discrete group actions

- A discrete group is a group with a discrete topology. (Usually a finitely generated subgroup of a Lie group.) Any group can be made into a discrete group.
- We have many notions of a group action $\Gamma \times X \rightarrow X$:

> The action is discrete if Γ is discrete in the group of
> homeomorphisms of X with compact open topology.
> The action has discrete orbits if every x has a neighborhood U so that the orbit points in U is finite.
> The action is wandering if every x has a neighborhood U so that the set of elements γ of Γ so that $\gamma(U) \cap U \neq \emptyset$ is finite.
> The action is properly discontinuous if for every compact subset K the set of γ such that $K \cap \gamma(K) \neq \emptyset$ is finite.

Discrete groups and discrete group actions

- A discrete group is a group with a discrete topology. (Usually a finitely generated subgroup of a Lie group.) Any group can be made into a discrete group.
- We have many notions of a group action $\Gamma \times X \rightarrow X$:
- The action is effective, is free
- The action is discrete if Γ is discrete in the group of homeomorphisms of X with compact open topology.

Discrete groups and discrete group actions

- A discrete group is a group with a discrete topology. (Usually a finitely generated subgroup of a Lie group.) Any group can be made into a discrete group.
- We have many notions of a group action $\Gamma \times X \rightarrow X$:
- The action is effective, is free
- The action is discrete if Γ is discrete in the group of homeomorphisms of X with compact open topology.
- The action has discrete orbits if every x has a neighborhood U so that the orbit points in U is finite.
- The action is wandering if every x has a neighborhood U so that the set of elements γ of Γ so that $\gamma(U) \cap U \neq \emptyset$ is finite.
- The action is properly discontinuous if for every compact subset K the set of γ such that $K \cap \gamma(K) \neq \emptyset$ is finite.
- discrete action < discrete orbit < wandering < properly discontinuous. This is a strict relation (Assuming X is a manifold.)
- The action is wandering and free and gives manifold quotient (possibly non-Hausdorff)
- The action of Γ is free and properly discontinuous if and only if X / Γ is a manifold quotient (Hausdorff) and $X \rightarrow X / \Gamma$ is a covering map.
- 「 a discrete subgroup of a Lie group G acting on X with compact stabilizer. Then 「 acts properly discontinuously on X.

A complete (X, G) manifold is one isomorphic to $X /$ Г

- Suppose X is simply-connected. Given a manifold M the set of complete (X, G)-structures on M up to (X, G)-isotopies are in one-to-one correspondence with the discrete representations of $\pi(M) \rightarrow G$ up to conjugations.
- discrete action < discrete orbit < wandering < properly discontinuous. This is a strict relation (Assuming X is a
- The action is wandering and free and gives manifold quotient (possibly non-Hausdorff)
- The action of Γ is free and properly discontinuous if and only if X / Γ is a manifold quotient (Hausdorff) and $X \rightarrow X / \Gamma$ is a covering map.
- 「 a discrete subgroup of a Lie group G acting on X with compact stabilizer. Then Γ acts properly discontinuously on X.
- A complete (X, G) manifold is one isomorphic to X / Γ.
- Suppose X is simply-connected. Given a manifold M the set of complete (X, G)-structures on M up to (X, G)-isotopies are in one-to-one correspondence with the discrete representations of $\pi(M) \rightarrow G$ up to conjugations.
- discrete action < discrete orbit < wandering < properly discontinuous. This is a strict relation (Assuming X is a
- The action is wandering and free and gives manifold quotient (possibly non-Hausdorff)
- The action of Γ is free and properly discontinuous if and only if X / Γ is a manifold quotient (Hausdorff) and $X \rightarrow X / \Gamma$ is a covering map.
- Γ a discrete subgroup of a Lie group G acting on X with compact stabilizer. Then Γ acts properly discontinuously on X.
- A complete (X, G) manifold is one isomorphic to X / Γ.
- Suppose X is simply-connected. Given a manifold M the set of complete (X, G)-structures on M up to (X, G)-isotopies are in one-to-one correspondence with the discrete representations of $\pi(M) \rightarrow G$ up to conjugations.

Examples

- $\mathbb{R}^{2}-\{O\}$ with the group generated by $g_{1}:(x, y) \rightarrow(2 x, y / 2)$. This is a free wondering action but not properly discontinuous.
- $\mathbb{R}^{2}-\{O\}$ with the group generated by $g:(x, y) \rightarrow(2 x, 2 y)$. (free, properly discontinuous.)
- The modular group $\operatorname{PSL}(2, \mathbb{Z})$ the group of Mobius transformations or isometries of hyperbolic plane given by $z \mapsto \frac{a z+b}{c z+d}$ for integer a, b, c, d and $a d-b c=1$.
http://en.wikipedia.org/wiki/Modular_group.
This is not a free action.

Convex polyhedrons

Suppose that X is a space where a Lie group G acts effectively and transitively. Furthermore, suppose X has notions of m-planes. An m-plane is an element of a collection of submanifolds of X of dimension m so that given generic $m+1$ point, there exists a unique one containing them. We require also that every 1-plane contains geodesic between any two points in it. Obviously, we assume that elements of G sends m-planes to m-planes. (For complex hyperbolic spaces, such notion seemed to be absent.)

We also need to assume that X satisfies the increasing property that given an m-plane and if the generic $m+1$-points in it, lies in an n-plane for $n \geq m$, then the entire m-plane lies in the n-plane.

Convex polyhedrons

Suppose that X is a space where a Lie group G acts effectively and transitively. Furthermore, suppose X has notions of m-planes. An m-plane is an element of a collection of submanifolds of X of dimension m so that given generic $m+1$ point, there exists a unique one containing them. We require also that every 1 -plane contains geodesic between any two points in it. Obviously, we assume that elements of G sends m-planes to m-planes. (For complex hyperbolic spaces, such notion seemed to be absent.)

We also need to assume that X satisfies the increasing property that given an m-plane and if the generic $m+1$-points in it, lies in an n-plane for $n \geq m$, then the entire m-plane lies in the n-plane.

For example, any geometry with models in $\mathbb{R} P^{n}$ and G a subgroup of $\operatorname{PGL}(n+1, \mathbb{R})$ has a notion of m-planes. Thus, hyperbolic, euclidean, spherical, and projective geometries has notions of m-planes. Conformal geometry may not have such notions since generic pair of points have infinitely many circles through them.

A convex subset of X is a subset such that for any pair of
points, there is a unique geodesic segment between them and it is in the subset. For example, a pair of antipodal point in \mathbf{S}^{n} is convex.

For example, any geometry with models in $\mathbb{R} P^{n}$ and G a subgroup of $\operatorname{PGL}(n+1, \mathbb{R})$ has a notion of m-planes. Thus, hyperbolic, euclidean, spherical, and projective geometries has notions of m-planes. Conformal geometry may not have such notions since generic pair of points have infinitely many circles through them.

A convex subset of X is a subset such that for any pair of points, there is a unique geodesic segment between them and it is in the subset. For example, a pair of antipodal point in \mathbf{S}^{n} is convex.

Assume that X is either $\mathbf{S}^{n}, \mathbb{R}^{n}, H^{n}$, or $\mathbb{R} P^{n}$ with Lie groups acting on X. Let us state some facts about convex sets:

- The dimension of a convex set is the least integer m such that C is contained in a unique m-plane \hat{C} in X.
- The interior C°, the boundary ∂C are defined in \hat{C}.
- The closure of C is in \hat{C}. The interior and closures are convex. They are homeomorphic to an open ball and a contractible domain of dimension equal to that of \hat{C} respectively.
- A side C is a nonempty maximal convex subset of ∂C.
- A convex polyhedron is a nonempty closed convex subset such that the set of sides is locally finite in X.

Convex polytopes

- A side C is a nonempty maximal convex subset of ∂C.
- A convex polyhedron is a nonempty closed convex subset such that the set of sides is locally finite in H^{n}.
- A polytope is a convex polyhedron with finitely many vertices and is the convex hull of its vertices in H^{n}.
- A polyhedron P in H^{n} is a generalized polytope if its closure is a polytope in the affine patch. A generalized polytope may have ideal vertices.

Examples of Convex polytopes

- A compact simplex: convex hull of $n+1$ points in H^{n}.
- Start from the origin expand the infinitesimal euclidean polytope from an interior point radially. That is a map sending $x \rightarrow s x$ for $s>0$ and x is the coordinate vector of an affine patch using in fact any vector coordinates. Thus for any Euclidean polytope, we obtain a one parameter family of hyperbolic polytopes.

Regular dodecahedron with all edge angles $\pi / 2$

Fundamental domain of discrete group action

- Let Γ be a group acting on X.
- A fundamental domain for Γ is an open domain F so that $\{g F \mid g \in \Gamma\}$ is a collection of disjoint sets and their closures cover X.
- The fundamental domain is locally finite if the above closures are locally finite.
- The Dirichlet domain for $u \in X$ is the intersection of all $H_{g}(u)=\{x \in X \mid d(x, u)<d(x, g u)\}$. Under nice conditions, $D(u)$ is a convex fundamental polyhedron.
- The regular octahedron example of hyperbolic surface of genus 2 is an example of a Dirichlet domain with the origin as u.

Fundamental domain of discrete group action

- Let Γ be a group acting on X.
- A fundamental domain for Γ is an open domain F so that $\{g F \mid g \in \Gamma\}$ is a collection of disjoint sets and their closures cover X.
- The fundamental domain is locally finite if the above closures are locally finite.
- The Dirichlet domain for $u \in X$ is the intersection of all $H_{g}(u)=\{x \in X \mid d(x, u)<d(x, g u)\}$. Under nice conditions, $D(u)$ is a convex fundamental polyhedron.
- The regular octahedron example of hyperbolic surface of genus 2 is an example of a Dirichlet domain with the origin

Fundamental domain of discrete group action

- Let Γ be a group acting on X.
- A fundamental domain for Γ is an open domain F so that $\{g F \mid g \in \Gamma\}$ is a collection of disjoint sets and their closures cover X.
- The fundamental domain is locally finite if the above closures are locally finite.
- The Dirichlet domain for $u \in X$ is the intersection of all $H_{g}(u)=\{x \in X \mid d(x, u)<d(x, g u)\}$. Under nice conditions, $D(u)$ is a convex fundamental polyhedron.
- The regular octahedron example of hyperbolic surface of genus 2 is an example of a Dirichlet domain with the origin as u.

Tessellations

- A tessellation of X is a locally-finite collection of polyhedra covering X with mutually disjoint interiors.
- Convex fundamental polyhedron provides examples of exact tessellations.
- If P is an exact convex fundamental polyhedron of a discrete group Γ of isometries acting on X, then Γ is generated by $\Phi=\{g \in \Gamma \mid P \cap g(P)$ is a side of $P\}$.

Side pairings and Poincare fundamental polyhedron theorem

- Given a side S of an exact convex fundamental domain P, there is a unique element g_{S} such that $S=P \cap g_{S}(P)$. And $S^{\prime}=g_{S}^{-1}(S)$ is also a side of P.
- $g_{S^{\prime}}=g_{S}^{-1}$ since $S^{\prime}=P \cap g_{S}^{-1}$.
- Γ-side-pairing is the set of g_{S} for sides S of P.
- The equivalence class at P is generated by $x \cong x^{\prime}$ if there is a side-pairing sending x to x^{\prime} for $x, x^{\prime} \in P$.

Side pairings and Poincare fundamental polyhedron theorem

- Given a side S of an exact convex fundamental domain P, there is a unique element g_{s} such that $S=P \cap g_{s}(P)$. And $S^{\prime}=g_{S}^{-1}(S)$ is also a side of P.
- $g_{S^{\prime}}=g_{S}^{-1}$ since $S^{\prime}=P \cap g_{S}^{-1}$.
- Γ-side-pairing is the set of g_{s} for sides S of P.
- The equivalence class at P is generated by $x \cong x^{\prime}$ if there is a side-pairing sending x to x^{\prime} for $x, x^{\prime} \in P$.

Side pairings and Poincare fundamental polyhedron theorem

- Given a side S of an exact convex fundamental domain P, there is a unique element g_{S} such that $S=P \cap g_{S}(P)$. And $S^{\prime}=g_{S}^{-1}(S)$ is also a side of P.
- $g_{S^{\prime}}=g_{S}^{-1}$ since $S^{\prime}=P \cap g_{S}^{-1}$.
- Γ-side-pairing is the set of g_{s} for sides S of P.
- The equivalence class at P is generated by $x \cong x^{\prime}$ if there is a side-pairing sending x to x^{\prime} for $x, x^{\prime} \in P$.
- $[x]$ is finite and $[x]=P \cap \Gamma$.
- Cycle relations (This should be cyclic):
- Let $S_{1}=S$ for a given side S. Choose the side R of S_{1}. Obtain S_{1}^{\prime}. Let S_{2} be the side adjacent to S_{1}^{\prime} so that $g_{s_{1}}\left(S_{1}^{\prime} \cap S_{2}\right)=R$.

- Then
- Example: the octahedron in the hyperbolic plane giving genus 2-surface.
- The period is the number of sides coming into a given side R of codimension two.
- Cycle relations (This should be cyclic):
- Let $S_{1}=S$ for a given side S. Choose the side R of S_{1}. Obtain S_{1}^{\prime}. Let S_{2} be the side adjacent to S_{1}^{\prime} so that $g_{s_{1}}\left(S_{1}^{\prime} \cap S_{2}\right)=R$.
- Let S_{i+1} be the side of P adjacent to S_{i}^{\prime} such that $g_{s_{i}}\left(S_{i}^{\prime} \cap S_{i+1}\right)=S_{i-1}^{\prime} \cap S_{i}$.
- Then
- There is an integer $/$ such that $S_{i+1}=S_{i}$ for each i.

- $g_{\mathcal{S}_{1}} g_{s_{2}} \ldots . g_{\mathcal{S}_{l}}$ has order k.
- Example: the octahedron in the hyperbolic plane giving genus 2-surface.
- The period is the number of sides coming into a given side R of codimension two.
- Cycle relations (This should be cyclic):
- Let $S_{1}=S$ for a given side S. Choose the side R of S_{1}. Obtain S_{1}^{\prime}. Let S_{2} be the side adjacent to S_{1}^{\prime} so that $g_{S_{1}}\left(S_{1}^{\prime} \cap S_{2}\right)=R$.
- Let S_{i+1} be the side of P adjacent to S_{i}^{\prime} such that $g_{s_{i}}\left(S_{i}^{\prime} \cap S_{i+1}\right)=S_{i-1}^{\prime} \cap S_{i}$.
- Then
- There is an integer / such that $S_{i+l}=S_{i}$ for each i.
- $\sum_{i=1}^{\prime} \theta\left(S_{i}^{\prime}, S_{i+1}\right)=2 \pi / k$.
- Example: the octahedron in the hyperbolic plane giving genus 2-surface.
- The period is the number of sides coming into a given side R of codimension two.
- Cycle relations (This should be cyclic):
- Let $S_{1}=S$ for a given side S. Choose the side R of S_{1}. Obtain S_{1}^{\prime}. Let S_{2} be the side adjacent to S_{1}^{\prime} so that $g_{S_{1}}\left(S_{1}^{\prime} \cap S_{2}\right)=R$.
- Let S_{i+1} be the side of P adjacent to S_{i}^{\prime} such that $g_{s_{i}}\left(S_{i}^{\prime} \cap S_{i+1}\right)=S_{i-1}^{\prime} \cap S_{i}$.
- Then
- There is an integer $/$ such that $S_{i+1}=S_{i}$ for each i.
- $\sum_{i=1}^{\prime} \theta\left(S_{i}^{\prime}, S_{i+1}\right)=2 \pi / k$.
- $g_{s_{1}} g_{s_{2}} \ldots . g_{s_{l}}$ has order k.
- Example: the octahedron in the hyperbolic plane giving genus 2-surface.
- The period is the number of sides coming into a given side R of codimension two.

- (a1, D), (a1', K), (b1', K), (b1, B), (a1', B), (a1, C), (b1, C),
$\left(b 1^{\prime}, H\right),(a 2, H),\left(a 2^{\prime}, E\right),\left(b 2^{\prime}, E\right),(b 2, F),\left(a 2^{\prime}, F\right),(a 2, G)$,
- $(b 2, G),\left(b 2^{\prime}, D\right),(a 1, D),\left(a 1^{\prime}, K\right), \ldots$
- Poincare fundamental polyhedron theorem is the converse. (See Kapovich P. 80-84):
- Given a convex polyhedron P in X with side-pairing isometries satisfying the above relations, then P is the fundamental domain for the discrete group generated by the side-pairing isometries.
- If every k equals 1 , then the result of the face identification is a manifold. Otherwise, we obtain orbifolds.
- The results are always complete.
- See Jeff Weeks http: / /www. geometrygames .org/ CurvedSpaces/index.html
- Poincare fundamental polyhedron theorem is the converse. (See Kapovich P. 80-84):
- Given a convex polyhedron P in X with side-pairing isometries satisfying the above relations, then P is the fundamental domain for the discrete group generated by the side-pairing isometries.
- If every k equals 1 , then the result of the face identification is a manifold. Otherwise, we obtain orbifolds.
- The results are always complete.
- See Jeff Weeks http://www. geometrygames . org/ CurvedSpaces/index.html
- Poincare fundamental polyhedron theorem is the converse. (See Kapovich P. 80-84):
- Given a convex polyhedron P in X with side-pairing isometries satisfying the above relations, then P is the fundamental domain for the discrete group generated by the side-pairing isometries.
- If every k equals 1 , then the result of the face identification is a manifold. Otherwise, we obtain orbifolds.
- The results are always complete.
- See Jeff Weeks http: //www.geometrygames.org/ CurvedSpaces/index.html

Reflection groups

- A discrete reflection group is a discrete subgroup in G generated by reflections in X about sides of a convex polyhedron. Then all the dihedral angles are submultiples of π.
- Then the side pairing such that each face is glued to itself by a reflection satisfies the Poincare fundamental theorem.
- The reflection group has presentation $\left\{S_{i}:\left(S_{i} S_{j}\right)^{K_{j i}}\right\}$ where $k_{i i}=1$ and $k_{i j}=k_{j i}$.
- These are examples of Coxeter groups.

Reflection groups

- A discrete reflection group is a discrete subgroup in G generated by reflections in X about sides of a convex polyhedron. Then all the dihedral angles are submultiples of π.
- Then the side pairing such that each face is glued to itself by a reflection satisfies the Poincare fundamental theorem.
- The reflection group has presentation $\left\{S_{i}:\left(S_{i} S_{j}\right)^{k_{i j}}\right\}$ where $k_{i j}=1$ and $k_{i j}=k_{j i}$.
- These are examples of Coxeter groups.
http://en.wikipedia.org/wiki/Coxeter_group

Dodecahedral reflection group

One has a regular dodecahedron with all edge angles $\pi / 2$ and hence it is a fundamental domain of a hyperbolic reflection group.

Triangle groups

- Find a triangle in X with angles submultiples of π.
- We divide into three cases $\pi / a+\pi / b+\pi / c>\pi,=\pi,<\pi$.
- We can always find ones for any integers a, b, c.

Triangle groups

- Find a triangle in X with angles submultiples of π.
- We divide into three cases $\pi / a+\pi / b+\pi / c>\pi,=\pi,<\pi$.
- We can always find ones for any integers a, b, c.
- > π cases: $(2,2, c),(2,3,3),(2,3,4),(2,3,5)$ corresponding to dihedral group of order $4 c$, a tetrahedral group, octahedral group, and dodecahedral group.
- $<\pi$ cases: Infinitely many hyperbolic tessellation groups.

Triangle groups

- Find a triangle in X with angles submultiples of π.
- We divide into three cases $\pi / a+\pi / b+\pi / c>\pi,=\pi,<\pi$.
- We can always find ones for any integers a, b, c.
- > π cases: $(2,2, c),(2,3,3),(2,3,4),(2,3,5)$ corresponding to dihedral group of order $4 c$, a tetrahedral group, octahedral group, and dodecahedral group.
- $=\pi$ cases: $(3,3,3),(2,4,4),(2,3,6)$.
- $<\pi$ cases: Infinitely many hyperbolic tessellation groups.
- (2, 4, 8)-triangle group

- The ideal example
http://egl.math.umd.edu/software.html

Higher-dimensional examples

- To construct a 3-dimensional examples, obtain a Euclidean regular polytopes and expand it until we achieve that all angles are $\pi / 3$. Regular octahedron with angles $\pi / 2$. These are ideal polytope examples.
Higher-dimensional examples were analyzed by Vinberg and so on. For example, there are no hyperbolic reflection group of compact type above dimension ≥ 30.

Higher-dimensional examples

- To construct a 3-dimensional examples, obtain a Euclidean regular polytopes and expand it until we achieve that all angles are $\pi / 3$. Regular octahedron with angles $\pi / 2$. These are ideal polytope examples.
- Higher-dimensional examples were analyzed by Vinberg and so on. For example, there are no hyperbolic reflection group of compact type above dimension ≥ 30.

Crystallographic groups

- A crystallographic group is a discrete group of the rigid motions whose quotient space is compact.
- Bieberbach theorem:
> - A group is isomorphic to a crystallographic group if and only if it contains a subgroup of finite index that is free abelian of rank equal to the dimension.
> - The crystallographic groups are isomorphic as abstract groups if and only if they are conjugate by an affine transformation.

Crystallographic groups

- A crystallographic group is a discrete group of the rigid motions whose quotient space is compact.
- Bieberbach theorem:
- A group is isomorphic to a crystallographic group if and only if it contains a subgroup of finite index that is free abelian of rank equal to the dimension.
- The crystallographic groups are isomorphic as abstract groups if and only if they are conjugate by an affine transformation.

Crystallographic groups

- There are only finitely many crystallographic group for each dimension since once the abelian group action is determined, its symmetry group can only be finitely many.
- 17 wallpaper groups for dimension 2.
http://www.clarku.edu/~djoyce/wallpaper/ and see Kali by Weeks http://www.geometrygames.org/Kali/index.html.
- 230 space groups for dimension 3. Conway, Thurston,
- Further informations:

Crystallographic groups

- There are only finitely many crystallographic group for each dimension since once the abelian group action is determined, its symmetry group can only be finitely many.
- 17 wallpaper groups for dimension 2.
http://www.clarku.edu/~djoyce/wallpaper/ and see Kali by Weeks http://www.geometrygames.org/Kali/index.html.
- 230 space groups for dimension 3. Conway, Thurston, ... http://www.emis.de/journals/BAG/vol.42/no. 2/b42h2con.pdf
- Further informations:
http://www.ornl.gov/sci/ortep/topology.html

