
The ends of convex real projective manifolds and orbifolds

Suhyoung Choi

KAIST, Daejeon, MSRI, and UC Davis

email: schoi@math.kaist.ac.kr

Jointly with Yves Carrière and David Fried

UC Davis topology seminar April 28, 2015

1/37



Abstract

We consider n-orbifolds modeled on real projective geometry. These include

hyperbolic manifolds and orbifolds. There are nontrivial deformations of hyperbolic

orbifolds to real projective ones.

Among open real projective orbifolds that are topologically tame, we consider ones

with radial ends and totally geodesic ends. We will present our work to classify

these ends with some natural conditions.
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Introduction Orbifolds and RPn -structures

Orbifolds

Orbifolds
By an n-dimensional orbifold, we mean a Hausdorff 2nd countable topological space

with

a fine open cover {Ui , i ∈ I}

with models (Ũi ,Gi ) where Gi is a finite group acting on the Ũi ⊂ Rn, and

a map pi : Ũi → Ui inducing Ũi/Gi ∼= Ui where

I (compatibility) for each i, j , x ∈ Ui ∩ Uj , there exists Uk with x ∈ Uk ⊂ Ui ∩ Uj and the

inclusion Uk → Ui induces Ũk → Ũi with respect to Gk → Gi .

Good orbifolds
Our orbifolds are of form M/Γ for a simply connected manifold M and a discrete group

Γ acting on M properly discontinuously.
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with models (Ũi ,Gi ) where Gi is a finite group acting on the Ũi ⊂ Rn, and
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Introduction Orbifolds and RPn -structures

Topology of our orbifolds

Let O denote an n-dimensional orbifold with finitely many ends with end

neighborhoods, closed (n − 1)-dimensional orbifold times an open interval.

(strongly tame).

Equivalently, O has a compact suborbifold K so that O − K is a disjoint union

Ωi × [0, 1) for closed n − 1-orbifolds Ωi .
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Introduction Orbifolds and RPn -structures

Real projective and affine geometry

Real projective geometry
Recall that the real projective space

RPn := P(Rn+1) := Rn+1 − {O}/ ∼ under

~v ∼ ~w iff ~v = s~w for s ∈ R− {O}.

GL(n + 1,R) acts on Rn+1 and PGL(n + 1,R) acts faithfully on RPn.

Projective sphere geometry
Recall that the real projective sphere

Sn := S(Rn+1) := Rn+1 − {O}/ ∼ under

~v ∼ ~w iff ~v = s~w for s > 0.

GL(n + 1,R) acts on Rn+1 and SL±(n + 1,R) acts faithfully on Sn.
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Introduction Orbifolds and RPn -structures

Properly convex domain

An affine subspace Rn can be identified with RPn − V where V a hyperspace.

Geodesics agree.

Aff (Rn) = Aut(RPn − V ).

A convex subset of RPn is a convex subset of an affine subspace.

A properly convex subset of RPn is a precompact convex subset of an affine

subspace.

A convex domain Ω is properly convex iff Ω does not contain a complete real line.

Sphere version

An open hemisphere is the affine subspace in Sn with boundary a hypersphere V .

Now, the geometry is exactly the same as the above.

Aff (Rn) = Rn o GL(n,R).
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Introduction Orbifolds and RPn -structures

Real projective structures on orbifolds

A discrete group Γ acts on a simply connected manifold M properly discontinuously.

A RPn-structure on M/Γ is given by

an immersion D : M → RPn (developing map)

equivariant with respect to a homomorphism h : Γ→ PGL(n + 1,R). (holonomy

homomorphism)

Γ is the orbifold fundamental group of M/Γ.

M an interior of a conic in RPn of sign (−,+ · · · ,+). Discrete Γ ⊂ PO(n, 1) and

M/Γ is a hyperbolic orbifold and a convex RPn-orbifold.
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Introduction Orbifolds and RPn -structures

An RPn-structure on M/Γ is convex if D is a diffeomorphism to a convex domain

D(M) ⊂ An ⊂ RPn

Identify M = D(M) and Γ with its image under h.

A RPn-structure on M/Γ is properly convex if so is D(M).
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Figure: The developing images of convex RPn-structures on 2-orbifolds deformed from hyperbolic

ones: S2(3, 3, 5) and D2(2, 7)
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Introduction Orbifolds and RPn -structures

Some useful facts on properly convex real projective orbifolds

A properly convex domain has a Hilbert metric. Thus, a properly convex real

projective orbifold admits a Hilbert metric. (Hilbert, Kobayashi)

The interior of a unit sphere in an affine space has the hyperbolic metric as the

Hilbert metric. (Beltrami-Klein) Thus, all hyperbolic manifolds admit convex real

projective structures.

All closed curves are realized as closed geodesics (mostly uniquely) (Kuiper)

Some hyperbolic manifolds deform. (Kac-Viberg, Vinberg, Johnson-Millson,

Cooper-Long-Thistlethwait)

If the orbifold is closed, ∂Ω is C1. If C2, Ω is the interior of a unit sphere. and Ω/Γ

is hyperbolic. (Benzécri)

Convex real projective closed surfaces of genus > 1 is classified by Goldman by

pairs-of-pants decomposition.

For a closed manifold Ω/Γ, ∂Ω is strictly convex if and only if Γ is Gromov

hyperbolic. (Benoist)
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Introduction Orbifolds and RPn -structures

Dual real projective orbifolds

Dual domains

An open convex cone C in Rn+1 is dual to C∗ in Rn+1,∗ if C∗ is the set of of linear

forms taking positive values on Cl(C)− {O}.

A convex open domain Ω in P(Rn+1) is dual to Ω∗ in P(Rn+1∗) if Ω corresponds to

an open convex cone C and Ω∗ to its dual C∗.
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Introduction Orbifolds and RPn -structures

Given a properly convex real projective n-orbifold Ω/Γ, there exists a dual one

Ω∗/Γ∗ with dual group given by

Γ 3 g ↔ g−1,T ∈ Γ∗.

There exists a diffeomorphism Ω/Γ↔ Ω∗/Γ∗. (Vinberg)

Let O = Ω/Γ. Then (O∗)∗ = O.

The length spectrum determines closed O up to duality (Inkang Kim, Cooper-Delp)
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The end theory of convex real projective orbifolds

Real projective structures on the ends

Radial end (R-ends):
Each end E has an end neighborhood foliated by lines developing into lines ending at a

common point. The space of leaves gives us the end orbifold ΣE with a transverse real

projective structure.

Totally geodesic end (T-ends):
Each end has an end neighborhood completed by a closed totally geodesic orbifold of

codim 1. The orbifold SE is called an ideal boundary of the end or the end

neighborhood. Clearly, it has a real projective structure.
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The end theory of convex real projective orbifolds

Some definitions for radial ends

A subdomain K of an affine subspace An in RPn is said to be horospherical if it is

strictly convex and the boundary ∂K is diffeomorphic to Rn−1 and bdK − ∂K is a

single point.

K is lens-shaped if it is a convex domain in An and ∂K is a disjoint union of two

strictly convex (n − 1)-cells ∂+K and ∂−K .

A cone is a domain D in An that has a point v ∈ bdD called a cone-point so that

D = v ∗ K − {v} for some K ⊂ bdD.

A cone D over a lens-shaped domain L is a convex submanifold that contains L so

that

D = v ∗ ∂+L− {v}

for v ∈ bdD for a boundary component ∂+L of ∂L and ∂+L ⊂ bdD. (Every segment

must meet ∂−L.)
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The end theory of convex real projective orbifolds

We can allow one component ∂+L be not smooth. In this case, we call these

generalized lens and generalized lens-cone.

The universal covers of horospherical and lens shaped ends. The radial lines

form cone-structures.
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The end theory of convex real projective orbifolds

Definition on ends continued

A totally-geodesic subdomain is a convex domain in a hyperspace. A cone-over a

totally-geodesic domain A is a cone over a point x not in the hyperspace.

In general, a sum of convex sets C1, . . . ,Cm in Rn+1 in independent subspaces Vi ,

we define

C1 + · · ·+ Cm := {v |v = c1 + · · ·+ cm, ci ∈ Ci}.

A join of convex sets Ωi in RPn is given as

Ω1 ∗ · · · ∗ Ωm := Π(C1 + · · ·Cm)

where each Ci corresponds to Ωi and these subspaces are independent. (We can

relax this last condition)
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Convex RPn -orbifolds with radial or totally geodesic ends Examples: Global and Local

Examples of deformations for orbifolds with radials ends

Vinberg gave many examples for Coxeter orbifolds. (There are now numerous

examples due to Benoist, Choi, Lee, Marquis.)

Cooper-Long-Thistlethwaite also consider some hyperbolic 3-manifolds with ends.

There is a census of small hyperbolic orbifolds with graph-singularity. (See the

paper by D. Heard, C. Hodgson, B. Martelli, and C. Petronio [33].) S. Tillman

constructed an example on S3 with a handcuff graph singularity.

Some examples are obtained by myself on the double orbifold of the hyperbolic

ideal regular tetrahedron [13] and by Lee on complete hyperbolic cubes by

numerical computations. (More examples were constructed by Greene, Ballas,

Danciger, Gye-Seon Lee. Such as cusp opening phenomena. )

These have lens type or horospherical ends by our theory to be presented.

16/37



Convex RPn -orbifolds with radial or totally geodesic ends Examples: Global and Local

Examples of deformations for orbifolds with radials ends

Vinberg gave many examples for Coxeter orbifolds. (There are now numerous

examples due to Benoist, Choi, Lee, Marquis.)

Cooper-Long-Thistlethwaite also consider some hyperbolic 3-manifolds with ends.

There is a census of small hyperbolic orbifolds with graph-singularity. (See the

paper by D. Heard, C. Hodgson, B. Martelli, and C. Petronio [33].) S. Tillman

constructed an example on S3 with a handcuff graph singularity.

Some examples are obtained by myself on the double orbifold of the hyperbolic

ideal regular tetrahedron [13] and by Lee on complete hyperbolic cubes by

numerical computations. (More examples were constructed by Greene, Ballas,

Danciger, Gye-Seon Lee. Such as cusp opening phenomena. )

These have lens type or horospherical ends by our theory to be presented.

16/37



Convex RPn -orbifolds with radial or totally geodesic ends Examples: Global and Local

Examples of deformations for orbifolds with radials ends

Vinberg gave many examples for Coxeter orbifolds. (There are now numerous

examples due to Benoist, Choi, Lee, Marquis.)

Cooper-Long-Thistlethwaite also consider some hyperbolic 3-manifolds with ends.

There is a census of small hyperbolic orbifolds with graph-singularity. (See the

paper by D. Heard, C. Hodgson, B. Martelli, and C. Petronio [33].) S. Tillman

constructed an example on S3 with a handcuff graph singularity.

Some examples are obtained by myself on the double orbifold of the hyperbolic

ideal regular tetrahedron [13] and by Lee on complete hyperbolic cubes by

numerical computations. (More examples were constructed by Greene, Ballas,

Danciger, Gye-Seon Lee. Such as cusp opening phenomena. )

These have lens type or horospherical ends by our theory to be presented.

16/37



Convex RPn -orbifolds with radial or totally geodesic ends Examples: Global and Local

End orbifold

3

33

Figure: The handcuff graph

Cusp ends
Let M be a complete hyperbolic manifolds with cusps. M is a quotient space of the

interior Ω of a conic in RPn or Sn. Then the horoballs form the horospherical ends. Any

end with a projective diffeomorphic end neighborhood is also called a cusp.
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Convex RPn -orbifolds with radial or totally geodesic ends Types of ends and the classification goal

Back to Theory: p-ends, p-end neighborhood, p-end fundamental group

End fundamental group
Given an end E of O, a system of connected end neighborhoods U1 ⊃ U2 ⊃ · · · of

O gives such a system U ′1 ⊃ U ′2 ⊃ · · · in Õ.

On each the end group ΓẼ acts. That is U ′i /ΓẼ → Ui , a homeomorphism.

There are called these proper pseudo-end neighborhood in Õ and defines a

pseudo-end Ẽ . (p-end nhbd, p-end from now on)

Correspondences

{E |E is an end of O} ↔ {Ẽ |Ẽ is a p-end of Õ}/π1(O)

↔ {ΓẼ |Ẽ is a p-end of Õ}/π1(O). (1)
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pseudo-end Ẽ . (p-end nhbd, p-end from now on)

Correspondences

{E |E is an end of O} ↔ {Ẽ |Ẽ is a p-end of Õ}/π1(O)
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Convex RPn -orbifolds with radial or totally geodesic ends Types of ends and the classification goal

R-ends

A point vẼ ∈ RPn, the set of directions of lines from vẼ form a sphere Sn−1
v .

Given a radial p-end Ẽ : vẼ ,

RvẼ
=: Σ̃Ẽ ⊂ Sn−1

vẼ

the space of directions from vẼ ending in Õ.

For radial end, ΣẼ := Σ̃Ẽ/ΓẼ is the end orbifold with the transverse real projective

structure associated with E . (or write simply ΣE )
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Convex RPn -orbifolds with radial or totally geodesic ends Types of ends and the classification goal

T-ends

For a T-end, S̃Ẽ completes a closed p-end neighborhood. of a p-T-end. SẼ := S̃Ẽ/ΓẼ is

a ideal boundary component corresponding to E . (or SE .)
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Convex RPn -orbifolds with radial or totally geodesic ends Types of ends and the classification goal

Real projective n − 1-orbifolds associated with ends

Usual assumption
Let O a properly convex and strongly tame real projective orbifolds with radial or totally

geodesic ends. The holonomy homomorphism is strongly irreducible. (The end

fundamental group is of infinite index.)

R-ends:
An R-end E has an end orbifold ΣE admitting a real projective structure of dim = n− 1.

The structure is convex real projective one. The structure can be

PC: properly convex,

CA: complete affine, or

NPCC: convex, not properly convex, not complete affine.
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Convex RPn -orbifolds with radial or totally geodesic ends Types of ends and the classification goal

T-end
A totally geodesic end E has the ideal boundary orbifold SE admitting a real projective

structure of dim = n − 1. Here the structure is properly convex.

Nonradial types (we do not study these)
Convex ends – Geometrically finite, or infinite. (Even topologically wild?)

ends that can be completed by lower dimensional strata– sometimes correspond

to "geometrical Dehn surgeries". (hyperbolic Dehn surgery and other types also)

Recent example: P(S+
3×3)/SL(3,Z) by Cooper for the space S+

3×3 of positive

definite 3× 3-matrices. (Borel already studied these.)
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Convex RPn -orbifolds with radial or totally geodesic ends Main result

Definitions for ends

Admissible group
An admissible group ΓẼ is a p-end fundamental group acting on

Σ̃Ẽ = (Ω1 ∗ · · · ∗ Ωk )o

for strictly convex domains Ωi of dimension ji ≥ 0 and is a finite extension of a finite

product of Zk × Γ1 × · · · × Γk for infinite hyperbolic groups Γi where

each Γi acts cocompactly on an open strictly convex domain Ωi and trivially on Ωj

for j 6= i and

the center Zk acts trivially on each Ωi .

Question
Can we improve the strict convexity to the proper convexity?
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Convex RPn -orbifolds with radial or totally geodesic ends Main result

Classification of the PC-ends

Definition: umec

Let Ẽ be a properly convex R-end with Σ̃Ẽ = Ω. The end fundamental group ΓẼ

satisfies the uniform middle eigenvalue condition (umec) if if every g ∈ ΓẼ satisfies

K−1lengthΩ(g) ≤ log

(
λ1(g)

λvẼ
(g)

)
≤ K lengthΩ(g), (2)

for the largest eigenvalue modulus λ1(g) of g and the eigenvalue of g at vẼ for g in ΓE .

Also, the same has to hold for each factor Cl(Ωi ) where the maximal norm of the

eigenvalue in the factor is used.

There is a dual definition for T-ends.
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Convex RPn -orbifolds with radial or totally geodesic ends Main result

Main results

Theorem 1 (Main result for PC R-ends)
Let O be a real projective orbifold with usual property.

Suppose that the end holonomy group of a properly convex R-end Ẽ satisfies the

uniform middle eigenvalue condition.

Then Ẽ is of generalized lens type. If we assume only weak uniform middle eigenvalue

condition, then the end can also be quasi-lens type.

Theorem 3.1

Let O satisfy the usual condition. Let ΓẼ the holonomy group of a properly convex

p-R-end Ẽ. Assume that O satisfies the triangle condtion or Ẽ is virtually factorizable.

Then the following statements are equivalent:

(i) ΓẼ is of lens-type.

(ii) ΓẼ satisfies the uniform middle eigenvalue condition.
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Convex RPn -orbifolds with radial or totally geodesic ends The equivalence of lens condition with umec.

Theorem 2

Let O be as usual. Let S̃Ẽ be a totally geodesic ideal boundary of a totally geodesic

p-T-end Ẽ of Õ. Then the following conditions are equivalent:

(i) Ẽ satisfies the uniform middle-eigenvalue condition.

(ii) S̃Ẽ has a lens-neighborhood in an ambient open manifold containing Õ and hence

Ẽ has a lens-type p-end neighborhood in Õ.
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Non-properly convex (NPCC) ends

Nonproperly convex (NPCC) ends

Let Ẽ be a p-end of O with Σ̃Ẽ ⊂ Sn−1
vẼ

is convex but not properly convex and not

complete affine, and let U the corresponding end neighborhood in Sn with the end

vertex vẼ .

Σ̃Ẽ is foliated by affine spaces (or open hemispheres) of dimension i . with

common boundary Si−1
∞ . The space of i-dimensional hemispheres with boundary

Si−1
∞ equals projective Sn−i−1. The space of i-dimensional leaves form a properly

convex domain K in Sn−i−1.

Now going Sn. Each hemiphere H i ⊂ Sn−1
vẼ

with ∂H i = Si−1
∞ corresponds to H i+1 in

Sn whose common boundary Si
∞ that contains vẼ . Note Si

∞ is h(π1(E))-invariant.

We let N be the subgroup of h(π1(E)) of elements inducing trivial actions on

Sn−i−1.
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∞ is h(π1(E))-invariant.

We let N be the subgroup of h(π1(E)) of elements inducing trivial actions on

Sn−i−1.

27/37



Non-properly convex (NPCC) ends

Nonproperly convex (NPCC) ends
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Non-properly convex (NPCC) ends

Proposition 4.1

Let Ẽ be a NPCC p-end of a properly convex n-orbifold O with usual conditions. Let

ĥẼ : π1(Ẽ)→ Aut(Sn−1) be the associated holonomy homomorphism for the

corresponding end vertex vẼ . Then

Σ̃Ẽ ⊂ Sn−1
vẼ

is foliated by complete affine subspaces of dimension i, i > 0.

The space K of leaves is a properly convex domain of dimension n − 1− i .

h(π1(E)) acts on the great sphere Si−1
∞ of dimension i − 1 in Sn−1

vẼ
.

There exists an exact sequence

1→ N → π1(E)→ NK → 1

where N acts trivially on K and NK ⊂ Aut(K ).
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Non-properly convex (NPCC) ends

Some examples of NPCC p-ends: the join and the quasi-join

Lens part v1 ∗ L where L is a properly open convex domain in a hyperspace S′1
outside v1. Let Γ1 acts on v1 and L. L/Γ1 is compact. (coming from

some lens-type end) Assume v1 ∗ L ⊂ Sn−i0−1
1 for a subspace.

Horosphere Let H be horosphere with vertex v2 in a subspace S i0+1
2 with Γ2 act on

it. ∂H/Γ2 is a compact suborbifold.

Complementary We embed these in subspaces of Sn where

v1 ∗ L ⊂ S1,H ⊂ S2, so that S1 ∩ S2 = {v1 = v2},S′1 ∩ S2 = ∅.

Join Obtain a join (v1 ∗ L) ∗ H. Extend Γ2 trivially on S1. Extend Γ1 to an

action on S2 normalizing Γ2.
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Non-properly convex (NPCC) ends

Example of quasi-join (not definition)

Joined action Find an infinite cyclic group action by g fixing every points S′1 and S2.

They correspond to different eigenspaces of g of eigenvalues

λ1, λ2, λ1 < λ2. Then Γ1 × Γ2 × 〈g〉 acts on the join.

Quasi-join We mutiply g by a unipotent translation T in S2 towards v2. Then

Γ1 × Γ2 × 〈g〉 now acts on properly convex domain whose closure

meets S1 at v2 only. For example, for (λ < 1, k > 0),

g :=


λ3 0 0 0

0 1
λ

0 0

0 0 1
λ

0

0 k 0 1
λ

 , n :=


1 0 0 0

0 1 0 0

0 v 1 0

0 v2

2 v 1


(helped from Benoist.)

p-end The group will act on a properly convex p-end neighborhood.
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Non-properly convex (NPCC) ends

Definition 3
We define λ1(g) to equal to the largest norm of the eigenvalue of g whose Jordan-form

invariant subspace meets Sn − Si0
∞, and λvẼ

(g) the eigenvalue of g at vẼ . The weak

middle-eigenvalue condition means

λ1(g) ≥ λvẼ
(g) for every g ∈ ΓẼ .

Theorem 4

Let ΣẼ be the end orbifold of a NPCC radial p-end Ẽ of a strongly tame properly

convex n-orbifold O satisfying usual conditions. Let ΓẼ be the end fundamental group.

We suppose that

ΓẼ satisfies the weak middle-eigenvalue condition.

Suppose that a virtual center of ΓẼ maps to a Zariski dense group in Aut(K ) for

the space K of complete affine leaves of Σ̃Ẽ .

Then there exists a finite cover ΣE′ of ΣẼ so that E ′ is a quasi-join of a properly convex

totally geodesic R-ends and a cusp R-end.
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Non-properly convex (NPCC) ends
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Figure: A developing of the boundary of quasi-joined end neighborhood.
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