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Abstract

We prove the topological tameness of a 3-manifold with a free fundamental group admitting a

complete flat Lorentzian metric; i.e., a Margulis space-time isomorphic to the quotient of the

complete flat Lorentzian space by the free and properly discontinuous isometric action of the

free group of rank ≥ 2.

We will use our particular point of view that a Margulis space-time is a real projective manifold

in an essential way.

The basic tools are a bordification by a closed RP2-surface with a free holonomy group, the

important work of Goldman, Labourie, and Margulis on geodesics in the Margulis space-times

and the 3-manifold topology.

Finally, we show that Margulis space-times are geometrically finite under our definition.

The tameness and many other results are also obtained indepedently by Jeff Danciger, Fanny

Kassel and François Guéritaud.
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Preliminary, History, Notations History

Tame manifolds

An open n-manifold can sometimes be compactified to a compact n-manifold with boundary.

Then the open manifold is said to be tame.

Brouwder, Levine, Livesay, and Sienbenmann [8] started this.

For 3-manifolds, Tucker, Scott, and Meyers made progress.

A nontame 3-manifold
essentially can be “simply” thought of as a union of an increasing sequence of compression

bodies Mi so that each Mi → Mi+1 is an imbedding by homotopy equivalence not isotopic to a

homeomorphism. (Ohshika’s observation.)

Hyperbolic 3-manifolds with finitely generated fundamental groups are shown to be tame by

Bonahon, Agol and Calegari-Gabai. See Bowditch [7] for details.

Earlier, geometrically finite hyperbolic 3-manifolds are shown to be tame by Marden (and

Thurston). This is relevant to us.
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Preliminary, History, Notations Notations

Let V2,1 denote the vector space R3 with a Lorentzian norm of sign 1, 1,−1, and

the Lorentzian space-time E2,1 can be thought of as the vector space with translation by any

vector allowed.

We will concern ourselves with only the subgroup Isom+(E2,1) of orientation-preserving

isometries, isomorphic to R3 o SO(2, 1) or

1→ R3 → Isom+(E2,1)
L→ SO(2, 1)→ 1.

P(V2,1) is defined as the quotient space

V2,1 − {O}/ ∼ where v ∼ w if and only if v = sw for s ∈ R− {0}.

The sphere of directions S := S(V2,1) is defined as the quotient space

V2,1 − {O}/ ∼ where v ∼ w if and only if v = sw for s > 0,

and equals the double cover R̂P2 of RP2.
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Preliminary, History, Notations Notations

Our spherical view of E2,1 and homogeneous coordinates

The projective sphere S3 := S(R4 − {O}) with coordinates t , x , y , z with projective

automorphism group Aut(S3) isomorphic to SL±(4,R).

S3 double-covers the real projective space.

The upper hemisphere given by t > 0 is identical with [1, x , y , z] and is identified with E2,1

with boundary S.

Isom+(E2,1) ⊂ Aut(S3).

Isom+(E2,1) acts on S by sending it by L to Aut(S).

We map E2,1 to a unit 3-ball in R3 by the map

[1, x , y , z]→
(x , y , z)√

1 + x2 + y2 + z2
.

S goes to the unit sphere x2 + y2 + z2 = 1.
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Preliminary, History, Notations Notations

The Lorentzian structure divides S into three open domains S+, S0, S− separated by two

conics bdS+ and bdS−.

Recall that S+ of the space of future time-like vectors is the Beltrami-Klein model of the

hyperbolic plane H2 where SO(2, 1) acts as the orientation-preserving isometry group. Here

the metric geodesics are precisely the projective geodesics and vice versa.

The geodesics in S+ are straight arcs and bdS+ forms the ideal boundary of S+.

For a finitely generated discrete, non-elementary, subgroup Γ in SO(2, 1), S+/Γ has a

complete hyperbolic structure as well as a real projective structure with the compatible

geodesic structure.

Nonelementary Γ has no parabolics if and only if S+/Γ is a geometrically finite hyperbolic

surface.
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Preliminary, History, Notations Notations

Suppose that Γ is a finitely generated Lorentzian isometry group acting freely and properly on

E2,1. We assume that Γ is not amenable (i.e., not solvable). Then E2,1/Γ is said to be a

Margulis space-time.

Γ injects under L to L(Γ) acting properly discontinuously and freely on S+. By Mess [34], Γ

must be a free group of rank ≥ 2.

Then S+/Γ is a complete genus g̃ hyperbolic surface with b ideal boundary components.
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Main Results: Theorem A and Theorem B Theorem A

Theorem A (Bordification by an RP2-surface)

Let Γ ⊂ Isom+(E2,1) be a fg. free group of rank

g ≥ 2 acting on the hyperbolic 2-space H2

properly discontinuously and freely without any

parabolic holonomy.

Then there exists a Γ-invariant open domain

D ⊂ S(V2,1) such that D/Γ is a closed surface Σ

with a real projective structure induced from S
unique up to the antipodal map A. (The genus

equals g.)
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Figure : The domain D covering Σ.
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Main Results: Theorem A and Theorem B Theorem A

These surfaces correspond to real projective structures on closed surfaces of genus g, g ≥ 2,

discovered by Goldman [26] in the late 1970s.

The surface is a quotient of a domain in S by a group of projective automorphisms.

This is an RP2-analog of the standard Schottky uniformization of a Riemann surface as a

CP1-manifold as observed by Goldman. There is an equivariant map shrinking all

complementary intervals to points.
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Main Results: Theorem A and Theorem B Theorem B

Handlebody

We obtain a handlebody is a 3-dimensional manifold from a 3-ball B3 by attaching 1-handles.

Theorem B (Compactification)

Let M be a Margulis space-time E2,1/Γ and L(Γ) has no parabolic element. Then M is

homeomorphic to the interior of a solid handlebody of genus equal to the rank of Γ.

Simplifying Assumption
L(Γ) ⊂ SO+(2, 1). Up to double covering, always true.
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Real projective surfaces: The prooof of Theorem A. Convex decomposition of real projective surfaces

Convex decomposition of real projective surfaces

A properly convex domain in RP2 is a bounded convex domain of an affine subspace in RP2. A real

projective surface is properly convex if it is a quotient of a properly convex domain in RP2 by a properly

disc. and free action of a subgroup of PGL(3,R).

A disjoint collection of simple closed geodesics c1, . . . , cm decomposes a real projective surface S into

subsurfaces S1, ..,Sn if each Si is the closure of a component of S −
⋃

i=1,..,m ci . We do not allow a curve ci to

have two one-sided neighborhoods in only one Si for some i .

Theorem 3.1 ([13])

Let Σ be a closed orientable real projective surface with principal geodesic or empty boundary and

χ(Σ) < 0.

Then Σ has a collection of disjoint simple closed principal geodesics decomposing Σ into properly

convex real projective surfaces with principal geodesic boundary and of negative Euler

characteristic and/or π-annuli with principal geodesic boundary.
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Real projective surfaces: The prooof of Theorem A. Convex decomposition of real projective surfaces

Null half-planes

Let N denote the nullcone in V2,1.

If v ∈ N − {O}, then its orthogonal complement v⊥ is a null plane which contains Rv, which

separates v⊥ into two half-planes.

Since v ∈ N , its direction lies in either bdS+ or bdS−. Choose an arbitrary element u of S+ or S−

respectively, so that the directions of v and u both lie in the same Cl(S+) or Cl(S−) respectively.

Define the null half-plane W (v) (or the wing) associated to v as:

W (v) := {w ∈ v⊥ | Det(v,w, u) > 0}.

We will now let ε([v]) := [W (v)] for convenience.

The map [v] 7−→ ε(v) is an SO(2, 1)-equivariant map

bdS+ → S

for the space S of half-arcs of form ε(v) for v ∈ bdS+.
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Real projective surfaces: The prooof of Theorem A. Convex decomposition of real projective surfaces

The arcs ε([v]) for v ∈ bdS+

foliate S0. Let us call the

foliation F .

Hence S0 has a

SO(2, 1)-equivariant quotient

map

Π : S0 → P(N − {O}) ∼= S1

where ε([v]) = Π−1([v]) for

each v ∈ N − {O}.
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Figure : The tangent geodesics to disks S+ and S− in the unit sphere S
imbedded in R3.
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Real projective surfaces: The prooof of Theorem A. Proof of Theorem A

S+/Γ is an open hyperboic surface, compactified to Σ′ by adding number of ideal boundary

components.

Σ′ is covered by S+ ∪
⋃

i∈J bi where bi are ideal open arcs in bdS+.

Let si = ε(pi ) and ti = ε(qi ). Then li , si , ti , li,− bound a strip invariant under 〈gi 〉. We denote

by Ri the open strips union with li and li,−.

s

t

i, −

l

l

i

i

i

Ri
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Real projective surfaces: The prooof of Theorem A. Proof of Theorem A

Proof of Theorem A

We define Ai = Ri ∩ S0 for i ∈ J , which equals
⋃

x∈bi
ε(x).

We note that Ai ⊂ Ri for each i ∈ J .

We finally define

Σ̃ = Σ̃′+ ∪
∐
i∈J
Ri ∪ Σ̃′−

= Σ̃′+ ∪
∐
i∈J
Ai ∪ Σ̃′−

= Ω+ ∪
∐
i∈J
Ri ∪ Ω− (1)

= S−
⋃
x∈Λ

Cl(ε(x)). (2)

an open domain in S where Λ is the limit set.

Since the collection whose elements are of form Ri mapped to itself by Γ, we showed that Γ

acts on this open domain.
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Real projective surfaces: The prooof of Theorem A. Proof of Theorem A
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The work of Goldman, Labourie and Margulis Diffused Margulis invariants and neutral sections

Margulis invariants

Given an element g ∈ Γ− {I}, let us denote by v+(g), v0(g), and v−(g) the eigenvectors of

the linear part L(g) of g corresponding to eigenvalues > 1, = 1, and < 1 respectively.

v+(g) and v−(g) are null vectors and v0(g) is space-like and of unit norm. We choose so that

v−(g)× v+(g) = v0(g).

We recall the Margulis invariant α : Γ− {I} → R

α(g) := B(gx − x , v0(g)) for g ∈ Γ− {I}, x ∈ E2,1,

which is independent of the choice of x in E2,1. (See [20] for details.)

If Γ acts freely on E2,1, then Margulis invariants of nonidentity elements are all positive or all

negative by the Opposite sign-lemma of Margulis.
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The work of Goldman, Labourie and Margulis Diffused Margulis invariants and neutral sections

Diffused Margulis invariants of Labourie

By following the geodesics in Σ+, we obtain a so-called geodesic flow

Φ : UΣ+ × R→ UΣ+.

A geodesic current is a Borel probability measure on U(S+/Γ) invariant under the geodesic

flow, supported on a union of weakly recurrent geodesics.

Let [u] denote the element of H1(Γ0,V2,1) given by Γ for the linear part Γ0 of Γ.

We extend the function

Cper(Σ+)→ R by µγ 7→
α(γ)

lS+ (γ)
.

to the diffused one Φ[u] : C(S+/Γ)→ R≥0.

Γ = Γ0,[u] acts properly if and only if Φ[u](µ) > 0 for all µ ∈ C(Σ)− {O} (or Φ[u](µ) < 0) [30]
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The work of Goldman, Labourie and Margulis Diffused Margulis invariants and neutral sections

Neutralized sections

They in [30] ( following Fried ) constructed a flat affine bundle E over the unit tangent bundle

UΣ+ of Σ+ by forming E2,1 × US+ and taking the quotient by the diagonal action

γ(x , v) = (h(γ)(x), γ(v)) for a deck transformation γ of the cover US+ of UΣ+ where

h : Γ→ Isom+(E2,1) ⊂ Aut(S3)

is the inclusion map.

The cover of E is denoted by Ê and is identical with E2,1 × US+. We denote by

πE2,1 : Ê = E2,1 × US+ → E2,1

the projection.

We define V as the quotient of V2,1 × US+ by the linear action of Γ and the action of US+.
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The cover of E is denoted by Ê and is identical with E2,1 × US+. We denote by
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The work of Goldman, Labourie and Margulis Diffused Margulis invariants and neutral sections

Neutralized sections

A neutral section of V is an SO(2, 1)-invariant section which is parallel along geodesic flow of

UΣ+.

A neutral section ν : UΣ+ → V arises from a graph of the SO(2, 1)-invariant map

ν̃ : US+ → V2,1

with the image in the space of unit space-like vectors in V2,1:

ν̃ is defined by sending a unit vector u in US+ to the normalization of ρ(u)× α(u) of the null

vectors ρ(u) and α(u) with directions the the start point and the end point in bdS+ of the

geodesic tangent to u in S+.
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The work of Goldman, Labourie and Margulis Diffused Margulis invariants and neutral sections

Let UrecΣ+ ⊂ UΣ+ denote the unit vectors tangent to weakly recurrent geodesics of Σ.

Lemma 4.1 ([30])

Let Σ+ be as above. Then

UrecΣ+ ⊂ UΣ+ is a connected compact geodesic flow invariant set and is a subset of the

compact set UΣ′′+.

The inverse image UrecS+ of UrecΣ+ in UrecS+ is precisely the set of unit vectors tangent to

geodesics with both endpoints in Λ.
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The work of Goldman, Labourie and Margulis Diffused Margulis invariants and neutral sections

The above conjugates the geodesic flow φt on Σ+ with one Φt in E2,1 where each geodesic

with direction ~u at p goes to a geodesic in the direction of ν(~u).

We find the section Ñ : UrecS+ → Ê lifting N satisfying

Ñ ◦ φt = Φt′ ◦ Ñ and Ñ ◦ γ = γ ◦ Ñ (3)

for each deck transformation γ of US+ → UΣ+.

Proposition 4.2

The lift of the neutralized section Ñ induces a continuous function N : GrecS+ → GrecE2,1 where
I if the oriented geodesic l in S+ is g-invariant for g ∈ Γ, then g acts on the space-like geodesic Lg the image

under N as a translation.

I the convergent set of elements of GrecS+ maps to a convergent set in GrecE2,1.

I Finally, the map is surjective.

23/43



The work of Goldman, Labourie and Margulis Diffused Margulis invariants and neutral sections

The above conjugates the geodesic flow φt on Σ+ with one Φt in E2,1 where each geodesic

with direction ~u at p goes to a geodesic in the direction of ν(~u).
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Proof of Theorem B Proof of properness of the action on the bordification

Repeat: Our view of E2,1 and coordinates

The projective sphere S3 = S(R4 − {O}) with coordinates t , x , y , z with projective

automorphism group Aut(S3) isomorphic to SL±(4,R).

The upper hemisphere given by t > 0 is identical with [1, x , y , z] and is identified with E2,1

with boundary S.

Isom+(E2,1) ⊂ Aut(S3).

Isom+(E2,1) acts on S by sending it by L to Aut(S).

We map E2,1 to a unit 3-ball by the map

[1, x , y , z]→
(x , y , z)√

1 + x2 + y2 + z2
.
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Proof of Theorem B Proof of properness of the action on the bordification

A Lemma on projective automorphisms

Lemma 5.1

Let vj
i for j = 1, 2, 3, 4 be four sequences points of S3. Suppose that vj

i → vj
∞ for each j and

mutually distinct independent points v1
∞, . . . , v4

∞. Then we can choose a sequence hi of elements

of Aut(S3) so that

hi (vj
i ) = ej ,

hi is represented by uniformly convergent matrices and

hi → h∞ uniformly for h∞ ∈ Aut(S3) under Cs-topology for every s ≥ 0.
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Proof of Theorem B Proof of properness of the action on the bordification

Projective boost automorphism

A projective automorphism g that is of form
1 0 0 0

0 λ 0 0

k 0 1 0

0 0 0 1
λ

λ > 1, k 6= 0 (4)

under a homogeneous coordinate system of S3 is said to be a projective boost automorphism.

In affine coordinates,

(x , y , z) 7→ (λx , y + k ,
1
λ

z), x , y , z ∈ R
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Proof of Theorem B Proof of properness of the action on the bordification
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The action of a Lorentzian isometry ĝ on the

hemisphere H where the boundary sphere

S is the unit sphere with center (0, 0, 0)

here.

The arc on S given by y = 0 is the

invariant geodesic in S+ and with end

points the fixed points of ĝ.

The arc given by x = 0 and z = 0 is a

line where ĝ acts as a translation in the

positive y -axis direction for ĝ 6= I.
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hemisphere H where the boundary sphere

S is the unit sphere with center (0, 0, 0)

here.

The arc on S given by y = 0 is the

invariant geodesic in S+ and with end

points the fixed points of ĝ.
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The plane z = 0 is where ĝ acts as an

expansion-translation (stable disk),

the plane x = 0 is where ĝ acts as a

contraction-translation (unstable disk).

The semicircle defined by y ≥ 0 and

z = 0 is η+, “the attracting arc”.

The semicircle defined by x = 0 and

y ≤ 0 is η−, “the repelling arc”.
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expansion-translation (stable disk),

the plane x = 0 is where ĝ acts as a
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Proof of Theorem B Proof of properness of the action on the bordification

Lemma 5.2 (Central)

Let gλ,k denote the automorphism on S3 defined by the equation 4 for a homogeneous coordinate

system with functions t , x , y , z in the given order and let S given by t = 0, S2
0 given by x = 0, and

H given by t > 0. We assume that k ≥ 0, λ > 0.

Then as λ, k → +∞ where k/λ→ 0, we obtain

gλ,k |S3 − S2
0 converges to a rational map Π0 given by sending [t , x , y , z] to [0,±1, 0, 0] where

the sign depends on the sign of x/t if t 6= 0 and the sign of x if t = 0.

gλ,k |(S2
0 ∩H )− η− converges in the compact open topology to a rational map Π1 given by

sending [t , 0, y , z] to [0, 0, 1, 0].

For a properly convex compact set K in H − η−, the geometric limit of a subsequence of

{gλ,k (K )} as λ, k →∞, is either

a point [0, 1, 0, 0] or [0,−1, 0, 0] or the segment η+.
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Proof of Theorem B Proof of properness of the action on the bordification

Proposition 5.3 (Properness of the action on the bordification)

Let Γ be a discrete group of orientation-preserving fg. Lorentzian isometries acting freely and properly

discontinuously on E2,1 isomorphic to a free group of finite rank ≥ 2 with Σ̃ as determined above. Assuming

the positive diffused Margulis invariants:

Then Γ acts freely and properly discontinuously on E2,1 ∪ Σ̃ as a group of projective

automorphisms of S3.

Proof: Suppose that there exists a sequence {gi} of elements of Γ and a compact subset K

of E2,1 ∪ Σ̃ so that

gi (K ) ∩ K 6= ∅ for all i. (5)

Recall that the Fuchsian Γ-action on the boundary bdS+ of the standard disk S+ in S forms a

discrete convergence group:
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Proof of Theorem B Proof of properness of the action on the bordification

Choosing the coordinatization of each gi .

For every sequence gj in Γ, there is a subsequence gjk and two (not necessarily distinct)
points a, b in the circle bdS+ such that

I the sequences gjk (x)→ a locally uniformly in bdS+ − {b}.
I g−1

jk
(y)→ b locally uniformly on bdS+ − {a} respectively as k →∞. (See [1] for details.) We may

assume a 6= b.

We compute

νi :=
ρi × αi

|||ρi × αi |||
.
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Proof of Theorem B Proof of properness of the action on the bordification

Since we have {ai} → a, we obtain that the sequence ai [νi ]ai,− = Cl(ε(ai )) converges to a

segment a[ν]a− = Cl(ε(a)) where [ν] is the direction of

ν :=
β × α
|||β × α|||

for nonzero vectors α and β corresponding to a and b respectively.

Since the geodesics with end points ai , ri pass the bounded part of the unit tangent bundle of

S+, it follows that Lgi are convergent as well by Proposition 4.2.

Each Lgi pass a point pi , and {pi} forms a convergent sequence in E2,1. By choosing a

subsequence, we assume wlg pi → p∞ for p∞ ∈ E2,1.
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Proof of Theorem B Proof of properness of the action on the bordification

The coordinate changes so that gi becomes one of form in equation 4 from a converging subsequence

We now introduce hi ∈ Aut(S3) coodinatizing S3 for each i . We choose hi so that

hi (pi ) = [1, 0, 0, 0], hi (ai ) = [0, 1, 0, 0],

hi (bi ) = [0, 0, 0, 1], and hi ([νi ]) = [0, 0, 1, 0].
(6)

It follows that {hi} can be chosen so that {hi} converges to h ∈ Aut(S3), a quasi-isometry h,

uniformly in Cs-sense for any integer s ≥ 0 by Lemma 5.1. Hence the sequence {hi} is

uniformly quasi-isometric in dS3 ;

Lemma 5.4

By conjugating gi by hi as defined above, we have

λ(gi )→ +∞, k(gi )→ +∞, and
k(gi )

λ(gi )
→ 0. (7)
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Proof of Theorem B Proof of properness of the action on the bordification

The conclusion of the proof of Proposition 5.3.

Let S0
i denote the sphere containing the weak stable plane of gi , and S+

i the sphere

containing the stable plane of gi . The sequences of these both geometrically converge.

Fix sufficiently small ε > 0 and sufficiently large i > I0, so that these objects are ε close to

their limits (spherical metric)

For the compact set K , we cover it by convex open balls Bj , j = 1, . . . ,K , of two types: Ones

that are at least ε away from S0
i for i > I0 and ones that are dumbel types with the two parts

at least ε/2 away from S0 for i > I0.

Then under gi , the sequences of images of balls will converge to a or a− and the sequences

of images of the dumbels will converge to a[ν]a−.

The coordinate change by hi will verify this.

Thus, for every small compact ball Bj , we have gi (Bj ) ∩ Bk = ∅ for i > J j,k .

For J = max{J j,k}j=1,...,K ,k=1,...,K , we have gi (K ) ∩ K = ∅ for i > J.
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Proof of Theorem B Proof of Tameness

The proof of Tameness

Thus, Σ̃/Γ is a closed surface of genus g and the boundary of the 3-manifold

M := (E2,1 ∪ Σ̃)/Γ by Proposition 5.3. We now show that M is compact.

Proposition 5.5

Each simple closed curve γ in Σ̃ bounds a simple disk in E2,1 ∪ Σ̃. Let c be a simple closed curve

in Σ that is homotopically trivial in M. Then c bounds an imbedded disk in M.

Proof.
This is just Dehn’s lemma.
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Proof of Theorem B Proof of Tameness

A system of circles

We can find a collection of disjoint simple curves γi , i ∈ J , on Σ̃ for an index set J so that
the following hold:

I
⋃

i∈J γi is invariant under Γ.

I
⋃

i∈J γi cuts Σ̃ into a union of open pair-of-pants Pk , k ∈ K , for an index set K . The closure of each

Pk is a closed pair-of-pants.
I {Pk}k∈K is a Γ-invariant set.
I Under the covering map π : Σ̃→ Σ̃/Γ, each γi for i ∈ I maps to a simple closed curve in a

one-to-one manner and each Pk for k ∈ K maps to an open pair-of-pants as a homeomorphism.
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Proof of Theorem B Proof of Tameness

Figure : The arcs in S+ and an example of γ̂i in the bold arcs.
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Geometrical finiteness

Corollary 6.1

In E2,1, there exists a Γ-invariant nonempty convex open domain D whose boundary in E2,1 is

asymptopic to bdD(Λ), homeomorphic to a circle. (D(Λ) is the properly convex invariant set in S

containing Λ. ) There exists another Γ-invariant convex open domain D′ whose boundary in E2,1 is

asymptotic to A (bdD(Λ)) so that the closures of D and D′ are disjoint. Moreover, every weakly

recurrent space-like geodesic is contained in a manifold

(E2,1 −D −D′)/Γ

with concave boundary.

Remark: Mess first obtained these invariant domains (see also Barbot [3] for proof).

Theorem 6.2

There exists a compact core in a Margulis space-time containing all weakly recurrent space-like

geodesics.
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Geometrical finiteness

Gracias!
We also thank Virginie Charette, Yves Coudene, Todd Drumm, Charles

Frances, David Fried, et François Labourie
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