Tropical computational experiments with compactifications of the deformation spaces of convex real projective structures on 2-orbifolds and surfaces.

S. Choi
Department of Mathematical Science
KAIST, Daejeon, South Korea
mathsci.kaist.ac.kr/ schoi (the copy of the lecture)
Lectures at Avignon, Feb. 23, 2016

joint work with Daniele Alessandrini.

Abstract

Abstract: We present some compactification methods using the traces of the closed curves on surfaces. The basic methods are Daniele Alessandrini's work and the trace computations on the deformation spaces. We present some experimental evidences.

Orbifolds

- By an n-dimensional orbifold, we mean a Hausdorff second countable topological space with a fine open cover with local models by finite group actions.

Orbifolds

- By an n-dimensional orbifold, we mean a Hausdorff second countable topological space with a fine open cover with local models by finite group actions.
- A good orbifold M / Γ where Γ is a discrete group with a properly discontinuous order. We will only study good orbifolds.

Orbifolds

- By an n-dimensional orbifold, we mean a Hausdorff second countable topological space with a fine open cover with local models by finite group actions.
- A good orbifold M / Γ where Γ is a discrete group with a properly discontinuous order. We will only study good orbifolds.
- We need only consider very good orbifolds of form S / G for a surface S and a finite group G acting on it.

Real projective structures on orbifolds

- A real projective structure on M / Γ with simply connected M is given by

Real projective structures on orbifolds

- A real projective structure on M / Γ with simply connected M is given by
- an immersion $D: M \rightarrow \mathbb{R} P^{n}$ equivariant with respect to

Real projective structures on orbifolds

- A real projective structure on M / Γ with simply connected M is given by
- an immersion $D: M \rightarrow \mathbb{R} P^{n}$ equivariant with respect to
- a homomorphism $\Gamma \rightarrow \operatorname{PGL}(n+1, \mathbb{R})$.

Real projective structures on orbifolds

- A real projective structure on M / Γ with simply connected M is given by
- an immersion $D: M \rightarrow \mathbb{R} P^{n}$ equivariant with respect to
- a homomorphism $\Gamma \rightarrow \operatorname{PGL}(n+1, \mathbb{R})$.
- Γ is said to be the fundamental group of M / Γ.

Real projective structures on orbifolds

- A real projective structure on M / Γ with simply connected M is given by
- an immersion $D: M \rightarrow \mathbb{R} P^{n}$ equivariant with respect to
- a homomorphism $\Gamma \rightarrow \operatorname{PGL}(n+1, \mathbb{R})$.
- Γ is said to be the fundamental group of M / Γ.
- A real projective structure on M / Γ is convex if D is an imbedding $D(M)$ is a convex domain in an affine subspace $A^{n} \subset \mathbb{R} P^{n}$.

Real projective structures on orbifolds

- A real projective structure on M / Γ with simply connected M is given by
- an immersion $D: M \rightarrow \mathbb{R} P^{n}$ equivariant with respect to
- a homomorphism $\Gamma \rightarrow \operatorname{PGL}(n+1, \mathbb{R})$.
- Γ is said to be the fundamental group of M / Γ.
- A real projective structure on M / Γ is convex if D is an imbedding $D(M)$ is a convex domain in an affine subspace $A^{n} \subset \mathbb{R} P^{n}$.
- A properly convex domain is a convex domain that is a precompact domain in some affine subspace. A convex domain is properly convex iff it does not contain a complete real line.

Real projective structures on orbifolds

- A real projective structure on M / Γ with simply connected M is given by
- an immersion $D: M \rightarrow \mathbb{R} P^{n}$ equivariant with respect to
- a homomorphism $\Gamma \rightarrow \operatorname{PGL}(n+1, \mathbb{R})$.
- Γ is said to be the fundamental group of M / Γ.
- A real projective structure on M / Γ is convex if D is an imbedding $D(M)$ is a convex domain in an affine subspace $A^{n} \subset \mathbb{R} P^{n}$.
- A properly convex domain is a convex domain that is a precompact domain in some affine subspace. A convex domain is properly convex iff it does not contain a complete real line.
- A real projective structure on M / Γ is properly convex if so is $D(M)$.

Projective group action

- A positive hyperbolic element A of $\mathrm{SL}(3, \mathbb{R})$ is a matrix with positive eigenvalues which are distinct.

Projective group action

- A positive hyperbolic element A of $\operatorname{SL}(3, \mathbb{R})$ is a matrix with positive eigenvalues which are distinct.
- $A^{n}, n=1,2, .$. acts with an attractive fixed point and a repelling fixed point and a saddle type fixed point. The three lines connecting any two are A-invariant.

Projective group action

- A positive hyperbolic element A of $\operatorname{SL}(3, \mathbb{R})$ is a matrix with positive eigenvalues which are distinct.
- $A^{n}, n=1,2, .$. acts with an attractive fixed point and a repelling fixed point and a saddle type fixed point. The three lines connecting any two are A-invariant.
- The conjugation invariants of a positive hyperbolic element A are eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ with

$$
0<\lambda_{1}<\lambda_{2}<\lambda_{3}, \lambda_{1} \lambda_{2} \lambda_{3}=1
$$

- The Goldman invariants of A are given by λ, τ where $\lambda=\lambda_{1}, \tau=\lambda_{2}+\lambda_{3}$.

- The Goldman invariants of A are given by λ, τ where $\lambda=\lambda_{1}, \tau=\lambda_{2}+\lambda_{3}$.
- The region D is given by

$$
0<\lambda \leq 1,2 / \sqrt{\lambda} \leq \tau \leq \lambda+\lambda^{-2}
$$

- A is positive hyperbolic iff $(\lambda(A), \tau(A)) \in D^{\circ}$.

- The Goldman invariants of A are given by λ, τ where $\lambda=\lambda_{1}, \tau=\lambda_{2}+\lambda_{3}$.
- The region D is given by

$$
0<\lambda \leq 1,2 / \sqrt{\lambda} \leq \tau \leq \lambda+\lambda^{-2}
$$

- A is positive hyperbolic iff $(\lambda(A), \tau(A)) \in D^{o}$.
- The arcs correspond to quasi-hyperbolic automorphisms.
- The point $(1,2)$ to a parabolic one. (See Goldman [JDG1990].)

Deformation spaces of nice convex real projective structures

- Given a closed or open orbifold S of finite type, a convex real projective structure is given by a diffeomorphism $f: S \rightarrow \Omega / \Gamma$ for a convex domain Ω in $\mathbb{R} P^{n}$ and Γ a subgroup of $\operatorname{PGL}(n+1, \mathbb{R})$.

Deformation spaces of nice convex real projective structures

- Given a closed or open orbifold S of finite type, a convex real projective structure is given by a diffeomorphism $f: S \rightarrow \Omega / \Gamma$ for a convex domain Ω in $\mathbb{R} P^{n}$ and Γ a subgroup of $\operatorname{PGL}(n+1, \mathbb{R})$.
- The ends are required to be either be a cusp, has a ideal principal geodesic boundary for hyperbolic case, and ideal geodesic boundary for quasi-hyperbolic case. These are nice structures.

Deformation spaces of nice convex real projective structures

- Given a closed or open orbifold S of finite type, a convex real projective structure is given by a diffeomorphism $f: S \rightarrow \Omega / \Gamma$ for a convex domain Ω in $\mathbb{R} P^{n}$ and Γ a subgroup of $\operatorname{PGL}(n+1, \mathbb{R})$.
- The ends are required to be either be a cusp, has a ideal principal geodesic boundary for hyperbolic case, and ideal geodesic boundary for quasi-hyperbolic case. These are nice structures.
- $\operatorname{CDef}(S)=\{f: S \rightarrow \Omega / \Gamma\} / \sim$ where $f \sim g$ for $f: S \rightarrow \Omega / \Gamma$ and $g: S \rightarrow \Omega^{\prime} / \Gamma^{\prime}$ if there exists a projective diffeomorphism k

so that $k \circ f$ is isotopic to g.

The hol map

- Assume that S is an open 2-orbifold of negative Euler characteristic.

The hol map

- Assume that S is an open 2-orbifold of negative Euler characteristic.
- There is a local homeomorphism

$$
\text { hol }: \operatorname{CDef}(S) \rightarrow \operatorname{Hom}\left(\pi_{1}(S), \operatorname{PGL}(n+1, \mathbb{R})\right) / \sim
$$

given by sending $[(D, h)] \rightarrow[h]$.

The hol map

- Assume that S is an open 2-orbifold of negative Euler characteristic.
- There is a local homeomorphism

$$
\text { hol : } \operatorname{CDef}(S) \rightarrow \operatorname{Hom}\left(\pi_{1}(S), \operatorname{PGL}(n+1, \mathbb{R})\right) / \sim
$$

given by sending $[(D, h)] \rightarrow[h]$.

- Let H_{1} be defined by $\left(\lambda\left(h\left(g_{i}\right)\right), \tau\left(h\left(g_{i}\right)\right)\right) \in D\left(g_{i}\right)$ for g_{i} representing ideal boundary components of S.

$$
\text { hol : } \operatorname{CDef}(S) \rightarrow H_{1} / \mathrm{SL}(3, \mathbb{R})
$$

is a homeomorphism to a union of components of H_{1}. (Alessandrini-Choi, Marquis)

Computing CDef(Pair of pants)

- Let P be a pair of pants with A, B, C the generator of $\pi_{1}(P)$ satisfying $C B A=I$.

Computing CDef(Pair of pants)

- Let P be a pair of pants with A, B, C the generator of $\pi_{1}(P)$ satisfying $C B A=I$.
- Then $\operatorname{CDef}(P)$ is parameterized by

$$
(s, t, \lambda(A), \tau(A), \lambda(B), \tau(B), \lambda(C), \tau(C))
$$

where $s, t \in \mathbb{R}_{+}^{2}$ and the rest are in $D_{1} \times D_{2} \times D_{3}$ for $D_{1}=D(A), D_{2}=D(B), D_{3}=D(C)$ above.

Computing CDef(Pair of pants)

- Let P be a pair of pants with A, B, C the generator of $\pi_{1}(P)$ satisfying $C B A=I$.
- Then $\operatorname{CDef}(P)$ is parameterized by

$$
(s, t, \lambda(A), \tau(A), \lambda(B), \tau(B), \lambda(C), \tau(C))
$$

where $s, t \in \mathbb{R}_{+}^{2}$ and the rest are in $D_{1} \times D_{2} \times D_{3}$ for $D_{1}=D(A), D_{2}=D(B), D_{3}=D(C)$ above.

- $\operatorname{CDef}(P)=\mathbb{R}_{+}^{2} \times D_{1} \times D_{2} \times D_{3}$. (following L. Marquis.)

The matrices

First, the matrices must assume these forms:

$$
\begin{align*}
& A:=\left[\begin{array}{ccc}
\alpha_{1} & \alpha_{1} a_{2}+\gamma_{1} c_{2} a_{3} & \gamma_{1} a_{3} \\
0 & -\beta_{1}+\gamma_{1} b_{3} c_{2} & \gamma_{1} b_{3} \\
0 & -\gamma_{1} c_{2} & -\gamma_{1}
\end{array}\right] \\
& B:=\left[\begin{array}{ccc}
-\alpha_{2} & 0 & -\alpha_{2} a_{3} \\
-\alpha_{2} b 1 & \beta_{2} & \beta_{2} b_{3}+\alpha_{2} a_{3} b_{1} \\
\alpha_{2} c_{1} & 0 & -\gamma_{2}+\alpha_{2} a_{3} c_{1}
\end{array}\right] \tag{2}\\
& C:=\left[\begin{array}{ccc}
-\alpha_{3}+\beta_{3} a_{2} b_{1} & \beta_{3} a_{2} & 0 \\
-\beta_{3} b_{1} & -\beta_{3} & 0 \\
\gamma_{3} c_{1}+\beta_{3} b_{1} c_{2} & \beta_{3} c_{2} & \gamma_{3}
\end{array}\right]
\end{align*}
$$

The problem is to solve for the unknowns given the boundary invariants fixed. (See Goldman [JDG1990].)

Given a closed curve γ on Σ, we obtain a function

$$
\operatorname{tr}(\gamma): \operatorname{Def}(\Sigma) \rightarrow \mathbb{R}_{+}
$$

given by sending an equivalence class of projective structure μ to the trace of the conjugacy classes of holonomy of γ corresponding to μ. We can also define this for P replacing Σ.

Theorem

The trace functions have only positive values.
By Positivstellensatz, we can show that trace functions are positive sums of monomials in defining functions of $D(\Sigma)$ multiplied by squares of rational functions.

Proposition

Let α be a closed curve.

- The function $\operatorname{tr}(\alpha): \operatorname{Def}\left(S_{p, q, r}\right) \rightarrow \mathbb{R}^{+}$is a rational function of s, t.
- The function $\operatorname{tr}(\alpha): \operatorname{Def}(P) \rightarrow \mathbb{R}^{+}$is a rational function of $s, t, l_{j}, l_{j, 2}, j=1,2,3$.
- The function $\operatorname{tr}(\alpha): \operatorname{Def}(\Sigma) \rightarrow \mathbb{R}^{+}$is a rational function of $s_{i}, t_{i}, l_{j}, l_{j, 2}$, $i=1,2, \ldots, 2 g-2, j=1,2, \ldots, 3 g-3$ and with denominators

$$
I_{j}-l_{j, 2}, l_{j}+l_{j, 2}, 1-l_{j} l_{j, 2}^{2}, 1+l_{j} l_{j, 2}^{2}, 1-l_{j}^{2} l_{j, 2}, 1+l_{j}^{2} l_{j, 2}, l_{l}+l_{j} l_{j, 2}^{2} I_{k} s
$$

for c_{l}, c_{k} in a pair of pants containing c_{j} and polynomials of gluing parameters a_{j}, b_{j} (and one more longer denominator term with positive summands only).

- Fock-Goncharov and a pair of pants P.

Fock-Goncharov invariants

- Let P_{3}^{3} denote the set of a triangle A, B, C inscribed in a triangle with lines a, b, c in $\mathbb{R} P^{2} \bmod$ out by $\operatorname{PGL}(3, \mathbb{R})$.

Fock-Goncharov invariants

- Let P_{3}^{3} denote the set of a triangle A, B, C inscribed in a triangle with lines a, b, c in $\mathbb{R} P^{2}$ mod out by $\operatorname{PGL}(3, \mathbb{R})$.
- P_{3}^{3} is actually \mathbb{R}_{+}determined by the triple ratio

$$
x=\frac{f_{a}\left(v_{B}\right) f_{b}\left(v_{C}\right) f_{c}\left(v_{A}\right)}{f_{a}\left(v_{C}\right) f_{b}\left(v_{A}\right) f_{c}\left(v_{B}\right)}
$$

where f_{l} a defining function of a line I and v_{k} a vector for a point k.

Fock-Goncharov invariants

- Let P_{3}^{3} denote the set of a triangle A, B, C inscribed in a triangle with lines a, b, c in $\mathbb{R} P^{2}$ mod out by $\operatorname{PGL}(3, \mathbb{R})$.
- P_{3}^{3} is actually \mathbb{R}_{+}determined by the triple ratio

$$
X=\frac{f_{a}\left(v_{B}\right) f_{b}\left(v_{C}\right) f_{c}\left(v_{A}\right)}{f_{a}\left(v_{C}\right) f_{b}\left(v_{A}\right) f_{c}\left(v_{B}\right)}
$$

where f_{l} a defining function of a line $/$ and v_{k} a vector for a point k.

Fock-Goncharov coordinates

- A framed convex real projective structure is one where the ideal boundary components are oriented geodesics. (not nec principal) Equivalently, these are just structures with a flag at each ideal fixed point.

Fock-Goncharov coordinates

- A framed convex real projective structure is one where the ideal boundary components are oriented geodesics. (not nec principal) Equivalently, these are just structures with a flag at each ideal fixed point.
- Mark each face and mark two points in the interior of each edge.

Fock-Goncharov coordinates

- A framed convex real projective structure is one where the ideal boundary components are oriented geodesics. (not nec principal) Equivalently, these are just structures with a flag at each ideal fixed point.
- Mark each face and mark two points in the interior of each edge.

Fock-Goncharov coordinates

- A framed convex real projective structure is one where the ideal boundary components are oriented geodesics. (not nec principal) Equivalently, these are just structures with a flag at each ideal fixed point.
- Mark each face and mark two points in the interior of each edge.
- Theorem (Fock-Goncharov)

Let $\mathcal{T}^{+}(S)$ denote the deformation space of framed convex real projective structures on S. There is a homeomorphism $\phi: \mathcal{T}^{+}(S) \rightarrow \mathbb{R}_{+}^{m}$ where m is the number of markings.

Fock-Goncharov coordinates

- A framed convex real projective structure is one where the ideal boundary components are oriented geodesics. (not nec principal) Equivalently, these are just structures with a flag at each ideal fixed point.
- Mark each face and mark two points in the interior of each edge.
- Theorem (Fock-Goncharov)

Let $\mathcal{T}^{+}(S)$ denote the deformation space of framed convex real projective structures on S. There is a homeomorphism $\phi: \mathcal{T}^{+}(S) \rightarrow \mathbb{R}_{+}^{m}$ where m is the number of markings.

Fock-Goncharov coordinates

- A framed convex real projective structure is one where the ideal boundary components are oriented geodesics. (not nec principal) Equivalently, these are just structures with a flag at each ideal fixed point.
- Mark each face and mark two points in the interior of each edge.Theorem (Fock-Goncharov)
Let $\mathcal{T}^{+}(S)$ denote the deformation space of framed convex real projective structures on S. There is a homeomorphism $\phi: \mathcal{T}^{+}(S) \rightarrow \mathbb{R}_{+}^{m}$ where m is the number of markings.
- Proof.

Each marking gets an FG-invariant from a convex real projective structure. Conversely, FG-invariants on markings lets us construct a convex real projective structure.

Computing holonomy from Fock-Goncharov coordinates

Given a closed curve γ on a framed convex real projective surface S, we can compute the holonomy by following the rule of multiplications. A caveat: these are not unimodular!

Computing holonomy from Fock-Goncharov coordinates

Given a closed curve γ on a framed convex real projective surface S, we can compute the holonomy by following the rule of multiplications. A caveat: these are not unimodular!

$$
T(X)=\left[\begin{array}{ccc}
0 & 0 & 1 \tag{3}\\
0 & -1 & -1 \\
X & 1+X & 1
\end{array}\right], E(Z, W)=\left[\begin{array}{ccc}
0 & 0 & Z^{-1} \\
0 & -1 & 0 \\
W & 0 & 0
\end{array}\right]
$$

Computing holonomy from Fock-Goncharov coordinates

Theorem (Fock-Goncharov)

Let $\operatorname{Def}(P)$ be the Fock-Goncharov space parameterized by cubit-root Fock-Goncharov coordinates. Let $h_{\mu}: \pi_{1}(S) \rightarrow \mathrm{SL}(3, \mathbb{R})$ the holonomy homomorphism associated with $\mu \in \operatorname{Def}(P)$. The function $\operatorname{tr}\left(h_{\mu}(\alpha)\right): \operatorname{Def}(P) \rightarrow \mathbb{R}^{+}$is a rational function of cubit-root Fock-Goncharov coordinates which has only positive summands.

Computing holonomy from Fock-Goncharov coordinates

Theorem (Fock-Goncharov)

Let $\operatorname{Def}(P)$ be the Fock-Goncharov space parameterized by cubit-root Fock-Goncharov coordinates. Let $h_{\mu}: \pi_{1}(S) \rightarrow \mathrm{SL}(3, \mathbb{R})$ the holonomy homomorphism associated with $\mu \in \operatorname{Def}(P)$. The function $\operatorname{tr}\left(h_{\mu}(\alpha)\right): \operatorname{Def}(P) \rightarrow \mathbb{R}^{+}$is a rational function of cubit-root Fock-Goncharov coordinates which has only positive summands.

Proof.

Any curve can be freely homotoped to a product of $E(Z, W) T(X)$ or $E(Z, W) T(X)^{-1}$ for some X, Z, W s.

$$
\begin{gather*}
E(Z, W) T(X)=\left[\begin{array}{ccc}
Z^{-1} X & Z^{-1}(1+X) & Z^{-1} \\
0 & 1 & 1 \\
0 & 0 & W^{-1}
\end{array}\right], \\
E(Z, W) T(X)^{-1}=\left[\begin{array}{ccc}
Z^{-1} X & 0 & 0 \\
1 & 1 & 0 \\
W & W\left(1+X^{-1}\right) & W X^{-1}
\end{array}\right] \tag{4}
\end{gather*}
$$

Traces in terms of Goldman coordinates

Proposition (Positivity for a pair of pants)
$\operatorname{tr}(\alpha): \operatorname{Def}(P) \rightarrow \mathbb{R}^{+}$is a rational function of $I_{i}, l_{i, 2}, s, t$ for $i=1,2,3$ which has only positive summands.

Traces in terms of Goldman coordinates

Proposition (Positivity for a pair of pants)

$\operatorname{tr}(\alpha): \operatorname{Def}(P) \rightarrow \mathbb{R}^{+}$is a rational function of $l_{i}, l_{i, 2}, s, t$ for $i=1,2,3$ which has only positive summands.

Proof.

Fock-Goncharov invariants of P can be computed from Goldman invariants $I_{i}, l_{i, 2}, s, t$ as positive rational functions of $l_{i}, l_{i, 2}, s, t$,

$$
\frac{1}{l_{2} I_{2,2}^{2} I_{3}+l_{1} s}, \frac{1}{l_{1} l_{3} l_{3,2}^{2}+l_{2} s}, \frac{1}{l_{2}+l_{1} l_{1,2}^{2} l_{3} s}
$$

with positive summands only.

Positivity for orbifolds?

- Some experimental results show that for $\operatorname{CDef}\left(S_{p, q, r}\right)$, the function $\operatorname{tr}(\alpha)$ is a rational function of l_{i}, τ_{i}, s, t for $i=1,2,3$ that has only positive summands.
- However, we do not have any proof. This observation began our study. (See the file "triangle5".)

Semifields

- A semifield is $(\mathbb{S},+, \cdot, 0,1)$ where + and \cdot associative and commutative satisfying the distributivity law, and $0,1 \in \mathbb{S}$ are identity elements, and
- $\mathbb{S}^{*}=\mathbb{S}-\{0\}$ is a group w.r.t \cdot. We write a / b for $a b^{-1}$.
- 0 satisfies $0 . x=x .0=0$ for all $x \in \mathbb{S}$.
- Furthermore, if $x+y=0$, then $x=y=0$. (the zero-sum-free property.)

Semifields

- A semifield is $(\mathbb{S},+, \cdot, 0,1)$ where + and \cdot associative and commutative satisfying the distributivity law, and $0,1 \in \mathbb{S}$ are identity elements, and
- $\mathbb{S}^{*}=\mathbb{S}-\{0\}$ is a group w.r.t \cdot. We write a / b for $a b^{-1}$.
- 0 satisfies $0 . x=x .0=0$ for all $x \in \mathbb{S}$.
- Furthermore, if $x+y=0$, then $x=y=0$. (the zero-sum-free property.)
- Given an ordered abelian group $(\Lambda,+,<)$, add an extra element $-\infty$ so that $-\infty<x, \forall x \in \Lambda$.
- We define

$$
\mathbb{T}_{\Lambda}=(\wedge \cup\{-\infty\}, \oplus, \odot,-\infty, 0)
$$

where

$$
a \oplus b=\max \{a, b\}, a \odot b=a+b \text { if } a, b \in \Lambda \text { or }-\infty \text { if } a=-\infty \text { or } b=-\infty .
$$

The usual tropical field in the literature is $\mathbb{T}_{\mathbb{R}}$.

Maslow dequantization

- Given $t \in(0,1)$, consider the map sending 0 to $-\infty$

$$
\log _{\frac{1}{t}}: \mathbb{R}_{+} \ni z \mapsto \log _{\frac{1}{t}}(z)=\left(\frac{-1}{\log t}\right) \log z \in \mathbb{R} \cup\{-\infty\} .
$$

- The inverse function sending $-\infty$ to 0 is

$$
\mathbf{D}_{t}:=\log _{\frac{1}{t}}^{-1}: \mathbb{R} \cup\{-\infty\} \ni x \mapsto t^{-x}=\exp \left(x \log _{\frac{1}{t}}\right) \in \mathbb{R}_{+}
$$

Maslow dequantization

- Given $t \in(0,1)$, consider the map sending 0 to $-\infty$

$$
\log _{\frac{1}{t}}: \mathbb{R}_{+} \ni z \mapsto \log _{\frac{1}{t}}(z)=\left(\frac{-1}{\log t}\right) \log z \in \mathbb{R} \cup\{-\infty\} .
$$

- The inverse function sending $-\infty$ to 0 is

$$
\mathbf{D}_{t}:=\log _{\frac{1}{t}}^{-1}: \mathbb{R} \cup\{-\infty\} \ni x \mapsto t^{-x}=\exp \left(x \log _{\frac{1}{t}}\right) \in \mathbb{R}_{+}
$$

- The operations,$+ \cdot$ are transformed by conjugation to

$$
x \oplus_{t} y=\log _{\frac{1}{t}}\left(t^{-x}+t^{-y}\right), \quad x \odot_{t} y=\log _{\frac{1}{t}}\left(t^{-x} t^{-y}\right)=x+y
$$

- For every $t \in(0,1), t$ induces a semifield structure on $\mathbb{R} \cup\{-\infty\}$ isomorphic to \mathbb{R}_{+}:

$$
\mathbb{R}^{t}=\left(\mathbb{R} \cup\{-\infty\}, \oplus_{t}, \odot_{t},-\infty, 0\right)
$$

The limit semifield is $\mathbb{T}_{\mathbb{R}}$.

Compactification of semi-algebraic sets

- We define

$$
\begin{aligned}
& \log _{\frac{1}{t}}: \mathbb{R}_{+}^{n} \rightarrow(\mathbb{R} \cup\{-\infty\})^{n}, \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\log _{\frac{1}{t}}\left(x_{1}\right), \cdots, \log _{\frac{1}{t}}\left(x_{n}\right)\right) \\
& \left(\log _{\frac{1}{t}}\right)^{-1}=: \mathbf{D}_{t}:(\mathbb{R} \cup\{-\infty\})^{n} \rightarrow \mathbb{R}_{+}^{n}, \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(t^{-x_{1}}, \cdots, t^{-x_{n}}\right)
\end{aligned}
$$

- Let $V \subset\left(\mathbb{R}_{>0}\right)^{n}$ be a closed real semi-algebraic set. For $t \in(0,1)$, the amoeba of V is

$$
\mathcal{A}_{t}(V)=\left\{\left.\left(\log _{\frac{1}{t}}\left(x_{1}\right), \ldots, \log _{\frac{1}{t}}\left(x_{n}\right)\right) \right\rvert\,\left(x_{1}, \ldots, x_{n}\right) \in V\right\}
$$

Compactification of semi-algebraic sets

- We define

$$
\begin{aligned}
& \log _{\frac{1}{t}}: \mathbb{R}_{+}^{n} \rightarrow(\mathbb{R} \cup\{-\infty\})^{n}, \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\log _{\frac{1}{t}}\left(x_{1}\right), \cdots, \log _{\frac{1}{t}}\left(x_{n}\right)\right) \\
& \left(\log _{\frac{1}{t}}\right)^{-1}=: \mathbf{D}_{t}:(\mathbb{R} \cup\{-\infty\})^{n} \rightarrow \mathbb{R}_{+}^{n}, \quad\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(t^{-x_{1}}, \cdots, t^{-x_{n}}\right)
\end{aligned}
$$

- Let $V \subset\left(\mathbb{R}_{>0}\right)^{n}$ be a closed real semi-algebraic set. For $t \in(0,1)$, the amoeba of V is

$$
\mathcal{A}_{t}(V)=\left\{\left.\left(\log _{\frac{1}{t}}\left(x_{1}\right), \ldots, \log _{\frac{1}{t}}\left(x_{n}\right)\right) \right\rvert\,\left(x_{1}, \ldots, x_{n}\right) \in V\right\} .
$$

- We deform

$$
W:=\left\{(x, t) \in \mathbb{R}^{n} \times(0, \epsilon) \mid x \in \mathcal{A}_{t}(V)\right\} .
$$

- Define

$$
\mathcal{A}_{0}=\pi\left(\bar{W} \cap\left(\mathbb{R}^{n} \times\{0\}\right)\right) \subset \mathbb{R}^{n}
$$

Theorem (Alessandrini)

Let $V \subset\left(\mathbb{R}_{>0}\right)^{n}$ be a semi-algebraic set. Then the logarithmic limit set $\mathcal{A}_{0}(V) \subset \mathbb{R}^{n}$ is a polyhedral cone, $\operatorname{dim} \mathcal{A}_{0}(V) \leq \operatorname{dim} V$, and $\mathcal{A}_{0}(V) \cap \mathbb{Q}$ is dense in $\mathcal{A}_{0}(V)$.

- We compactify \mathbb{R}^{n} by adding the sphere at infinity

$$
\begin{align*}
& \mathbb{R}^{n} \ni x \mapsto \frac{x}{\sqrt{1+\|x\|^{2}}} \in D^{n} \tag{5}\\
& D^{n} \cong \mathbb{R}^{n} \cup \mathbb{S}^{n-1} \tag{6}
\end{align*}
$$

- We are given an equivalence relation

$$
x \sim y \text { iff } x=\lambda y \text { for } \lambda>0 .
$$

- We compactify \mathbb{R}^{n} by adding the sphere at infinity

$$
\begin{align*}
& \mathbb{R}^{n} \ni x \mapsto \frac{x}{\sqrt{1+\|x\|^{2}}} \in D^{n} \tag{5}\\
& D^{n} \cong \mathbb{R}^{n} \cup \mathbb{S}^{n-1} \tag{6}
\end{align*}
$$

- We are given an equivalence relation

$$
x \sim y \text { iff } x=\lambda y \text { for } \lambda>0 .
$$

- We define

$$
\partial V=\left(\mathcal{A}_{0}(V)-\{O\}\right) / \sim \hookrightarrow \mathbb{S}^{n-1}
$$

- Given $0<t_{0}<1$, the closure \bar{V} of $\mathcal{A}_{t_{0}}(V)$ in D^{n} equals

$$
\bar{V}=\mathcal{A}_{t_{0}}(V) \cup \partial V
$$

- $\operatorname{CDef}(P)$ can be identified with a subset given by

$$
D_{P}:=\mathcal{D}_{1} \times \mathcal{D}_{2} \times \mathcal{D}_{3} \times \mathbb{R}_{+}^{2}, \text { where } \mathcal{D}_{i}:=0<l_{i} \leq l_{i_{2}} \leq \frac{1}{l_{i} l_{i, 2}}, \text { for } i=1,2,3
$$

- Let \mathcal{F} be the set of generating trace family of $\pi_{1}(S)$. A standard family due to Lawton for a pair of pants P is given by

$$
f_{a}, f_{a^{-1}}, f_{b}, f_{b^{-1}}, f_{a b}, f_{a^{-1} b^{-1}}, f_{a b^{-1}}, f_{a^{-1} b}, f_{a b a^{-1} b^{-1}}
$$

- $\operatorname{CDef}(P)$ can be identified with a subset given by

$$
D_{P}:=\mathcal{D}_{1} \times \mathcal{D}_{2} \times \mathcal{D}_{3} \times \mathbb{R}_{+}^{2}, \text { where } \mathcal{D}_{i}:=0<l_{i} \leq l_{i_{2}} \leq \frac{1}{l_{i} l_{i, 2}}, \text { for } i=1,2,3
$$

- Let \mathcal{F} be the set of generating trace family of $\pi_{1}(S)$. A standard family due to Lawton for a pair of pants P is given by

$$
f_{a}, f_{a^{-1}}, f_{b}, f_{b^{-1}}, f_{a b}, f_{a^{-1} b^{-1}}, f_{a b^{-1}}, f_{a^{-1} b}, f_{a b a^{-1} b^{-1}} .
$$

Figure: The Newton polytopes and their regions for $f_{a b-1}, f_{a-1 b}$ and $f_{a b a-1}{ }_{b-1}$. For each region, the extremal vertices for the Newton polytope of $f_{a b-1}$, the one for f_{a-1} and $f_{a b a-1}{ }^{-1}$ are linearly independent.

Figure: The tropical image of the map $\left(f_{a b-1}, f_{a-1}, f_{a b a-1} b^{-1}\right)$ which is a union of three cones with vertex the origin and the boundary arcs in the unit sphere.

Theorem

Let $\operatorname{CDef}(P)_{\left(l_{1}, l_{1}, 2, l_{2}, l_{2,2}, l_{3}, l_{3}, 2\right)}$ be the subspace of $\operatorname{CDef}(P)$ where the boundary invariants are fixed. Then its closure in the compactification of $\operatorname{CDef}(P)$ homeomorphic to a disk.

Theorem

Let $\operatorname{CDef}(P)_{\left(l_{1}, l_{1}, 2, l_{2}, l_{2}, 2, l_{3}, l_{3}, 2\right)}$ be the subspace of $\operatorname{CDef}(P)$ where the boundary invariants are fixed. Then its closure in the compactification of $\operatorname{CDef}(P)$ homeomorphic to a disk.

Theorem

Given a small 2-orbifold $S(p, q, r)$ with $1 / p+1 / q+1 / r<1$, suppose that all trace functions of $\operatorname{CDef}(S(p, q, r))$ is a positive rational function in Goldman coordinates s, t. Then the compactification of $\operatorname{CDef}(S(p, q, r))$ is homeomorphic to the closed unit ball B^{2}.

This agrees with Cooper-Delp compactification as $\mathbb{R} P^{2}$ when we consider only the length functions.

Some other results following the Bonahon-Dreyer approach

- Let P be a pair of pants with a triangulation into two triangles. We take one where a boundary edge / of a triangle ends in only one end.
- Letting the center invariants to be constant, we can vary six variables of the FG-coordinates.

Figure: The diagram to compute the holonomy

Some other results following the Bonahon-Dreyer approach

- Let P be a pair of pants with a triangulation into two triangles. We take one where a boundary edge / of a triangle ends in only one end.
- Letting the center invariants to be constant, we can vary six variables of the FG-coordinates.
- We fix all other invariants other than two ω and ζ on I.
- The tropical spectrum is

$$
[0,-3(\omega+\zeta),-6(\omega+\zeta), \ldots] \sim[0,1,2, \ldots]
$$

- Hence, there is a collapsing of the FG-coordinates.

Figure: The diagram to compute the holonomy

Understandable regions

- First, we look at FG-matrices that are of form $E T$ or $E T^{-1}$. The tropicalization of the matrix is: For $i=1,2,3$, we have

$$
\begin{align*}
& M_{\zeta_{i}, \omega_{i}}:=\left(\begin{array}{ccc}
-2 \zeta_{i}-\omega_{i}+2 x_{i} & -2 \zeta_{i}-\omega_{i}+\max \left\{2 x_{i},-x_{i}\right\} & -2 \zeta_{i}-\omega_{i}-x_{i} \\
-\infty & \zeta_{i}-\omega_{i}-x_{i} & \zeta_{i}-\omega_{i}-x_{i} \\
-\infty & -\infty & \zeta_{i}+2 \omega_{i}-x_{i}
\end{array}\right), \tag{7}\\
& N_{\zeta_{i}, \omega_{i}}:=\left(\begin{array}{ccc}
-2 \zeta_{i}-\omega_{i}+x_{i} & -\infty & -\infty \\
\zeta_{i}-\omega_{i}+x_{i} & \zeta_{i}-\omega_{i}+x_{i} & -\infty \\
\zeta_{i}+2 \omega_{i}+x_{i} & \zeta_{i}+2 \omega_{i}+\max \left\{x_{i},-2 x_{i}\right\} & \zeta_{i}+2 \omega_{i}-2 x_{i}
\end{array}\right) . \tag{8}
\end{align*}
$$

- We restrict to considering the cone C defined by the $(1,1)$-entry of each matrix being larger than or equal to other terms in the matrix:

$$
\begin{equation*}
x_{i}>0, \zeta_{i}<0, \omega_{i}<0 \tag{9}
\end{equation*}
$$

is the cone we consider. For every i, we assume that this is true.

- We restrict to considering the cone C defined by the $(1,1)$-entry of each matrix being larger than or equal to other terms in the matrix:

$$
\begin{equation*}
x_{i}>0, \zeta_{i}<0, \omega_{i}<0 \tag{9}
\end{equation*}
$$

is the cone we consider. For every i, we assume that this is true.

- The another region is C_{-}

$$
\begin{equation*}
x_{i}<0, \omega_{i}>0, \zeta_{i}>0 \tag{10}
\end{equation*}
$$

This region is symmetric to the first one (9).

- Let D be the deformation space. $D \subset \mathbb{R}^{-8 \chi(S)}$. Let \mathcal{C} denote the set of closed curves. We define function $F: D \rightarrow \mathbb{R}^{\mathcal{C}}$ given by $(F(\mu))_{\alpha}=f_{\alpha}(\mu)$.
- Let D be the deformation space. $D \subset \mathbb{R}^{-8 \chi(S)}$. Let \mathcal{C} denote the set of closed curves. We define function $F: D \rightarrow \mathbb{R}^{\mathcal{C}}$ given by $(F(\mu))_{\alpha}=f_{\alpha}(\mu)$.
- Let $\mathcal{C}^{\text {even }}$ be the set of unoriented simple closed curves and let $\mathcal{C}^{\text {odd }}=\mathcal{C}$; the unit vectors in the 1-homology group. (representable by connected circles.)
- We define $F^{\text {even }}: D \rightarrow \mathbb{R}^{\mathcal{C}^{\text {even }}}$ and $F^{\text {odd }}: D \rightarrow \mathbb{R}^{\mathcal{C}^{\text {odd }}}$.
- Let D be the deformation space. $D \subset \mathbb{R}^{-8 \chi(S)}$. Let \mathcal{C} denote the set of closed curves. We define function $F: D \rightarrow \mathbb{R}^{\mathcal{C}}$ given by $(F(\mu))_{\alpha}=f_{\alpha}(\mu)$.
- Let $\mathcal{C}^{\text {even }}$ be the set of unoriented simple closed curves and let $\mathcal{C}^{\text {odd }}=\mathcal{C}$; the unit vectors in the 1-homology group. (representable by connected circles.)
- We define $F^{\text {even }}: D \rightarrow \mathbb{R}^{\mathcal{C}^{\text {even }}}$ and $F^{\text {odd }}: D \rightarrow \mathbb{R}^{\mathcal{C}^{\text {odd }}}$.
- The main task is to show the injectivity of $F: D \rightarrow \mathbb{R}^{\mathcal{C}}$.

Proposition

The kernel of $F^{\text {even }} \times F^{\text {odd }}: D \rightarrow \mathbb{R}^{\mathcal{C}^{\text {even }}} \times \mathbb{R}^{\mathcal{C}}$ is same as the kernel of F.

Figure: The train tracks and weight, and FG-invariants

Conjecture

- $\mathcal{F}: D \rightarrow \mathbb{R}^{\mathcal{C}}$ sends a cone $C^{2 E+F}$ in $D^{2 E+F}$ to a cone of dimension $E+F+\operatorname{dim} H^{1}(\bar{S}, \partial \bar{S})$.
- It is never injective. The cone collapse by $E-\operatorname{dim} H^{1}(\bar{S}, \partial \bar{S})$.
- This gives us a set in the boundary of the compactification of dimension $E+F+\operatorname{dim} H^{1}(\bar{S}, \partial \bar{S})-1$.
- Morover, the antipodal cone C_ maps to the cone of the same dimension.
- This follows since $F^{\text {odd }}$ is homological. (following Bonahon-Dreyer.)

