GRAPHS OF SMALL RANK-WIDTH ARE PIVOT-MINORS OF GRAPHS OF SMALL TREE-WIDTH

O-JOUNG KWON AND SANG-IL OUM

Abstract. We prove that every graph of rank-width \(k \) is a pivot-minor of a graph of tree-width at most \(2k \). We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors of trees and bipartite graphs of linear rank-width at most 1 are precisely pivot-minors of paths.

1. Introduction

Rank-width is a width parameter of graphs, introduced by Oum and Seymour [6], measuring how easy it is to decompose a graph into a tree-like structure where the “easiness” is measured in terms of the matrix rank function derived from edges formed by vertex partitions. Rank-width is a generalization of another, more well-known width parameter called tree-width, introduced by Robertson and Seymour [8]. It is well known that every graph of small tree-width also has small rank-width; Oum [7] showed that if a graph has tree-width \(k \), then its rank-width is at most \(k + 1 \). The converse does not hold in general, as complete graphs have rank-width 1 and arbitrary large tree-width.

Pivot-minor and vertex-minor relations are graph containment relations such that rank-width cannot increase when taking pivot-minors or vertex-minors of a graph [6]. Our main result is that for every graph \(G \) with rank-width at most \(k \) and \(|V(G)| \geq 3 \), there exists a graph \(H \) having \(G \) as a pivot-minor such that \(H \) has tree-width at most \(2k \) and \(|V(H)| \leq (2k + 1)|V(G)| - 6k \). Furthermore, we prove that for every graph \(G \) with linear rank-width at most \(k \) and \(|V(G)| \geq 3 \), there exists a graph \(H \) having \(G \) as a pivot-minor such that \(H \) has path-width at most \(k + 1 \) and \(|V(H)| \leq (2k + 1)|V(G)| - 6k \).

As a corollary, we give new characterizations of two graph classes: graphs with rank-width at most 1 and graphs with linear rank-width at most 1. We show that a graph has rank-width at most 1 if and only if it is a vertex-minor of a tree. We also prove that a graph has linear rank-width at most 1 if and only if it is a vertex-minor of a path. Moreover, if the graph is bipartite, we prove that a vertex-minor relation can be replaced with a pivot-minor relation in both theorems. Table 1 summarizes our theorems.

Date: March 16, 2012.

Key words and phrases. rank-width, linear rank-width, vertex-minor, pivot-minor, tree-width, path-width, distance-hereditary.

Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0011653). S. O. is also supported by TJ Park Junior Faculty Fellowship.
Table 1. Summary of theorems

<table>
<thead>
<tr>
<th>Condition</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>G has rank-width $\leq k$</td>
<td>G is a pivot-minor of a graph of tree-width $\leq 2k$</td>
</tr>
<tr>
<td>G has linear rank-width $\leq k$</td>
<td>G is a pivot-minor of a graph of path-width $\leq k + 1$</td>
</tr>
<tr>
<td>G has rank-width ≤ 1</td>
<td>G is a vertex-minor of a tree</td>
</tr>
<tr>
<td>G has linear rank-width ≤ 1</td>
<td>G is a vertex-minor of a path</td>
</tr>
<tr>
<td>G is bipartite and has rank-width ≤ 1</td>
<td>G is a pivot-minor of a tree</td>
</tr>
<tr>
<td>G is bipartite has linear rank-width ≤ 1</td>
<td>G is a pivot-minor of a path</td>
</tr>
</tbody>
</table>

To prove the main theorem, we construct a graph having G as a pivot-minor, called a rank-expansion. Then we prove that a rank-expansion has small tree-width.

The paper is organized as follows. We present the definition of rank-width and related operations in the next section. In Section 3, we define a rank-expansion of a graph and prove the main theorem. In Section 4, using a rank-expansion, we present new characterizations of graphs with rank-width at most 1 and graphs with linear rank-width at most 1.

2. Preliminaries

In this paper, all graphs are simple and undirected. Let $G = (V, E)$ be a graph. For $v \in V$, let $N(v)$ be the set of vertices adjacent to v and $\deg(v) := |N(v)|$. And let $\delta(v)$ be the set of edges incident with v. For $S \subseteq V$, $G[S]$ denotes the subgraph of G induced on S. For two sets A and B, $A \Delta B = (A \cup B) \setminus (A \cap B)$.

A vertex partition of a graph G is a pair (A, B) of subsets of V such that $A \cup B = V$ and $A \cap B = \emptyset$. A vertex $v \in V$ is a leaf if $\deg(v) = 1$; Otherwise we call it an inner vertex. An edge $e \in E$ is an inner edge if e does not have a leaf as an end. Let $V_I(G)$ and $E_I(G)$ be the set of inner vertices of G and inner edges of G, respectively.

For an $X \times Y$ matrix M and subsets $A \subseteq X$ and $B \subseteq Y$, $M[A, B]$ denotes the $A \times B$ submatrix $(m_{i,j})_{i \in A, j \in B}$ of M. If $A = B$, then $M[A] = M[A, A]$ is called a principal submatrix of M. The adjacency matrix of a graph G, which is a $(0, 1)$-matrix over the binary field, will be denoted by $A(G)$.

Pivoting matrices. Let $M = \begin{pmatrix} X & V \backslash X \\ V \backslash X & A \ B \ C \ D \end{pmatrix}$ be a symmetric or skew-symmetric $V \times V$ matrix over a field F. If $A = M[X]$ is nonsingular, then we define

$$M * X = \begin{pmatrix} X & V \backslash X \\ V \backslash X & A^{-1} \ B \ -CA^{-1} \ D - CA^{-1}B \end{pmatrix}.$$

This operation is called a pivot. Tucker showed the following theorem.

Theorem 2.1 (Tucker [9]). Let $M[X]$ be a nonsingular principal submatrix of a square matrix M. Then $M * X[Y]$ is nonsingular if and only if $M[X \Delta Y]$ is nonsingular.
Vertex-minors and pivot-minors. The graph obtained from $G = (V, E)$ by applying local complementation at a vertex v is $G* v = (V, E \Delta \{xy : xv, yv \in E, x \neq y\})$. The graph obtained from G by pivoting an edge uv is defined by $G \land uv = G * u * v * u$.

To see how we obtain the resulting graph by pivoting an edge uv, let $V_1 = N(u) \cap N(v)$, $V_2 = N(u) \setminus \{v\}$ and $V_3 = N(v) \setminus \{u\}$. One can easily verify that $G \land uv$ is identical to the graph obtained from G by complementing adjacency of vertices between distinct sets V_i and V_j and swapping the vertices u and v [6]. See Figure 1 for example.

In fact, if $uv \in E$, then $A(G \land uv) = A(G) * \{u, v\}$. Since $\det (A(G)[\{u, v\}]) = A(G)[u, v]$. Theorem 2.1 is useful for dealing with a sequence of pivoting. In Figure 1 we can easily check that $G \land uv \land uc = G \land vc$. For $X \subseteq V$, if $A(G)[X]$ is nonsingular, then we denote $G \land X$ as the graph having the adjacency matrix $A(G) * X$.

A graph H is a vertex-minor of G if H can be obtained from G by applying a sequence of vertex deletions and local complementations. A graph H is a pivot-minor of G if H can be obtained from G by applying a sequence of vertex deletions and pivoting edges. From the definition, every pivot-minor of a graph is a vertex-minor of the graph. Note that every pivot-minor of a bipartite graph is bipartite.

Rank-width and linear rank-width. The cut-rank function $\text{cutrk}_G : 2^V \to \mathbb{Z}$ of a graph G is defined by

$$\text{cutrk}_G(X) = \text{rank}(A(G)[X, V \setminus X]).$$

A tree is subcubic if it has at least two vertices and every inner vertex has degree 3. A rank-decomposition of a graph G is a pair (T, L), where T is a subcubic tree and L is a bijection from the vertices of G to the leaves of T. For an edge e in T, $T \setminus e$ induces a partition (X_e, Y_e) of the leaves of T. The width of an edge e is defined as $\text{cutrk}_G(L^{-1}(X_e))$. The width of a rank-decomposition (T, L) is the maximum width over all edges of T. The rank-width of G, denoted by $\text{rw}(G)$, is the minimum width of all rank-decompositions of G. If $|V| \leq 1$, then G admits no rank-decomposition and $\text{rw}(G) = 0$.

A subcubic tree is a caterpillar if it contains a path P such that every vertex of a tree has distance at most 1 to some vertex of P. A linear rank-decomposition of a graph G is a rank-decomposition (T, L) of G, where T is a caterpillar. The linear rank-width of G is defined as the minimum width of all linear rank-decompositions of G. If $|V| \leq 1$, then G admits no linear rank-decomposition and $\text{lrw}(G) = 0$.

Figure 1. Pivoting an edge uv. Note that $G \land uv \land uc = G \land vc$.

Graphs of small rank-width are pivot-minors.

\[\begin{align*}
G & \quad \quad G \land uv \quad \quad G \land uv \land uc
\end{align*} \]
Note that if a graph H is a vertex-minor or a pivot-minor of a graph G, then $\text{rw}(H) \leq \text{rw}(G)$ and $\text{lrw}(H) \leq \text{lrw}(G)$ [6]. Trivially, $\text{rw}(G) \leq \text{lrw}(G)$.

Tree-width and path-width. Let T be a tree, and let $B = \{B_t\}_{t \in V(T)}$ be a family of vertex sets $B_t \subseteq V$ indexed by the vertices $t \in V(T)$, called *bags*. The pair (T, B) is called a tree-decomposition of G if it satisfies the following three conditions.

$(T1)$ $V = \bigcup_{v \in V(T)} B_v$.
$(T2)$ For every edge $uv \in E$, there exists a vertex t of T such that $u, v \in B_t$.
$(T3)$ For t_1, t_2 and $t_3 \in V(T)$, $B_{t_1} \cap B_{t_3} \subseteq B_{t_2}$ whenever t_2 is on the path from t_1 to t_3.

The *width* of a tree-decomposition (T, B) is $\max\{|B_t| : t \in V(T)\}$. The tree-width of G, denoted by $\text{tw}(G)$, is the minimum width of all tree-decompositions of G. A path-decomposition of a graph G is a tree-decomposition (T, B) where T is a path. The path-width of G, denoted by $\text{pw}(G)$, is the minimum width of all path-decompositions of G.

3. Rank-expansions and pivot-minors of graphs with small tree-width

In this section, for a graph G with rank-width k, we construct a graph having tree-width at most $2k$ such that it has G as a pivot-minor.

Theorem 3.1. Let k be a non-negative integer. Let G be a graph of rank-width at most k and $|V(G)| \geq 3$. Then there exists a graph H having a pivot-minor isomorphic to G such that tree-width of H is at most $2k$ and $|V(H)| \leq (2k + 1)|V(G)| - 6k$.

Theorem 3.2. Let k be a non-negative integer. Let G be a graph of linear rank-width at most k and $|V(G)| \geq 3$. Then there exists a graph H having a pivot-minor isomorphic to G such that path-width of H is at most $k + 1$ and $|V(H)| \leq (2k + 1)|V(G)| - 6k$.

We need the following lemma.

Lemma 3.3. Let G be a graph and $(A_1, B_1), (A_2, B_2)$ be two vertex partitions such that $A_2 \subseteq A_1$. Let $S \subseteq A_1$ be a set corresponding to a basis of row vectors in $A(G)[A_1, B_1]$. Then there exists a subset of A_2 representing a basis of row vectors in $A(G)[A_2, B_2]$ containing $S \cap A_2$.

Proof. Because $A_2 \subseteq A_1$, rows in $A(G)[S \cap A_2, B_2]$ are independent. Therefore we can extend $S \cap A_2$ to a basis of rows in $A(G)[A_2, B_2]$. \square

To prove Theorems 3.1 and 3.2, we construct a rank-expansion of a graph. Let G be a connected graph and (T, L) be a rank-decomposition of G. We fix a leaf $x \in V(T)$. For $e \in E(T)$, let T_e be the component of $T \setminus e$ which does not contain x, and let $A_e = L^{-1}(V(T_e))$, $B_e = V(G) \setminus A_e$ and $M_e = A(G)[A_e, B_e]$. For each $a \in A_e$, let $R^a_e = M_e[\{a\}, B_e]$ the row vector of M_e.

First, for each edge $e = uv \in E(T)$, we orient the edge towards v if $v \in V(T_e)$. We choose a vertex set $U_e \subseteq A_e$ such that $\{R^a_e\}_{a \in U_e}$ forms a basis of row vectors in M_e and $(U_e \cap A_f) \subseteq U_f$ if the tail of an edge f is the head of e. Since R^a_e can be uniquely expressed as a linear combination of vectors of $\{R^a_e\}_{a \in U_e}$ for each $a \in A_e$, there exists a unique $A_e \times U_e$ matrix P_e such that $P_eA(G)[U_e, B_e] = A(G)[A_e, B_e]$.

If the tail of an edge f is the head of an edge e, then let $C_f = P_e[U_f, U_e]$.

Let H be a rank-expansion $R(G, T, L, x, \{U_f\}_{f \in E(T)})$ of a graph G such that

$V(H) = \bigcup_{v \in V_I} \bigcup_{e \in \delta(v)} (U_e \times \{e\} \times \{v\})$

$E(H) = \{(a, e, v), (a, e, w) : e = vw \in E_I(T), a \in U_e\}$

$\cup \{(a, e, v), (b, f, v) : v \in V_I(T), e, f \in E(T), v \text{ is the head of } e \text{ and the tail of } f,$

$a \in U_f, b \in U_e \text{ and } C_f(a, b) \neq 0\}$

$\cup \{(a, f_1, v), (b, f_2, v) : v \text{ is the tail of both } f_1 \text{ and } f_2 \in E(T),

a \in U_{f_1}, b \in U_{f_2} \text{ and } ab \in E(G)\}.$

For $v \in V_I(T)$, let $S_v = \bigcup_{e \in \delta(v)} U_e \times \{e\} \times \{v\} \subseteq V(H)$. For $e = vw \in E_I(T)$, let $\overline{\pi} = \{(a, e, v), (a, e, w) : a \in U_e\} \subseteq V(H)$. For $W \subseteq E_I(T)$, let $\overline{W} = \bigcup_{f \in W} \overline{f} \subseteq V(H)$. If $e \in E_I(T)$ is directed from w to v, let $L_e = S_w \cap \overline{\pi}$ and $R_e = S_w \cap \overline{\pi}$. For a vertex a in $V(G)$ and $e = \{L(a), v\} \in E(T)$, let $\overline{\pi}$ be the unique vertex in $U_e \times \{e\} \times \{v\}$ and let $\overline{\pi} = \overline{\pi}$.

We discuss the number of vertices in the rank-expansion H. We easily observe that $|E_I(T)| = |V(G)| - 3$. So if $rw(G) \leq k$, then $|\overline{\pi}| \leq 2k$ for each $e \in E_I(T)$, and we deduce that $|V(H)| \leq 2k|E_I(T)| + |V(G)| = 2k(|V(G)| - 3) + |V(G)| = (2k + 1)|V(G)| - 6k$.

First, we prove that every rank-expansion of a graph has the given graph as a pivot-minor. To obtain G as a pivot-minor of H, we will pivot $\bigcup_{v \in E_I(T)} \overline{\pi}$ to H.

Lemma 3.4. Let G be a graph and $uv \in E(G)$. If $\deg(u) = 1$, then $G \setminus uv \setminus \{u, v\} = G \setminus \{u, v\}$.

Proof. It is clear from the definition. \hfill \qed

For convenience, let $\det(A(H)_0) = 1$.

Lemma 3.5. Let $W \subseteq E_I(T)$. Then $A(H)|_{\overline{W}}$ is nonsingular.

Proof. We proceed by induction on $|W|$. If W is empty, then it is trivial. If $|W| \geq 1$, then W induces a forest in T, and therefore there must be an edge $f \in W$ which has a leaf in $T[W]$. By induction hypothesis, $A(H)|_{\overline{W} \setminus \{f\}}$ is nonsingular. Since
every edge in $H[\bar{f}]$ is incident with a leaf in $H[\bar{W}]$, by Lemma 3.4 pivoting all edges in \bar{f} does not change the graph $H[\bar{W} \setminus \{f\}]$. So, $A(H[\bar{W} \setminus \{f\}] = A(H)[\bar{W} \setminus \{f\}]$ and therefore, by Theorem 2.1 $A(H)[\bar{W}] = A(H)[\bar{W} \setminus \{f\}] = A(H)[\bar{W}]$ is nonsingular.

Lemma 3.6. Let $a, b \in V(G)$ and let P be a path from $L(a)$ to $L(b)$ in T. Then for $E(P) \cap E(T) \subseteq W \subseteq E(T)$, $A(H)[W \cup \{a, b\}]$ is nonsingular if and only if $A(H)[W, P]$ is nonsingular.

Proof. We use induction on $|W|$. If $W = E(P) \cap E(T)$, then it is trivial, because $E(P) = E(P)$. So we may assume that $|W| > |E(P) \cap E(T)|$. Since P is a maximal path in T, the subgraph of T having the edge set $W \cup E(P)$ must have at least 3 leaves. Thus there is an edge f in $W \cup E(P)$ incident with a leaf in $T[W \cup E(P)]$ other than $L(a)$ and $L(b)$. Since every edge in \bar{f} is incident with a leaf in $H[\bar{W}]$, by Lemma 3.4 $A(H)[W \cup \{\pi, \beta\} \setminus \bar{f}] = A(H)[W \setminus \{f\}] = A(H)[W \setminus \{f\} \cup \{\pi, \beta\}]$. By induction hypothesis and Theorem 2.1 we deduce that

$$A(H)[W \setminus \{f\} \cup \{\pi, \beta\}]$$

is nonsingular.

$$A(H)[W \setminus \{f\} \cup \{\pi, \beta\}]$$

is nonsingular if and only if $A(H)[W, P]$ is nonsingular.

$$A(H)[W \cup \{a, b\}]$$

is nonsingular.

Lemma 3.7. Let $P = (e_{n+1}, e_n, \ldots, e_0)$ be the directed path from w to v in T. Then $C_{e_1} C_{e_2} \cdots C_{e_n} A(G)[U_{e_{n+1}}, B_{e_{n+1}}] = A(G)[U_{e_1}, B_{e_{n+1}}].$

Proof. We proceed by induction on n. If $n = 1$, then by definition, $C_{e_1} A(G)[U_{e_2}, B_{e_2}] = P_{e_2}[U_{e_1}, U_{e_2}] A(G)[U_{e_1}, B_{e_2}] = A(G)[U_{e_1}, B_{e_2}]$. We may assume that $n \geq 2$. By induction hypothesis, $C_{e_1} C_{e_2} \cdots C_{e_n} A(G)[U_{e_{n+1}}, B_{e_{n+1}}] = A(G)[U_{e_2}, B_{e_{n+1}}]$. Since $C_{e_1} A(G)[U_{e_2}, B_{e_2}] = A(G)[U_{e_1}, B_{e_2}]$ and $B_{e_{n+1}} \subseteq B_{e_2}$, $C_{e_1} A(G)[U_{e_2}, B_{e_{n+1}}] = A(G)[U_{e_1}, B_{e_{n+1}}]$. Therefore, we conclude that $C_{e_1} C_{e_2} \cdots C_{e_n} A(G)[U_{e_{n+1}}, B_{e_{n+1}}] = C_{e_1} A(G)[U_{e_2}, B_{e_{n+1}}] = A(G)[U_{e_1}, B_{e_{n+1}}].$
Lemma 3.8.
\[
\begin{bmatrix}
0 & C_1 & 0 & 0 & \cdots & 0 & 0 \\
0 & I & C_2 & 0 & \cdots & 0 & 0 \\
0 & 0 & I & C_3 & 0 & 0 \\
0 & 0 & 0 & I & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0 & \cdots & I & C_n \\
C_{n+1} & 0 & 0 & 0 & \cdots & 0 & I
\end{bmatrix}
= (-1)^n \det(C_1 C_2 \cdots C_{n+1}).
\]

Proof. By elementary row operation,
\[
\begin{bmatrix}
0 & C_1 & 0 & 0 & \cdots & 0 & 0 \\
0 & I & C_2 & 0 & \cdots & 0 & 0 \\
0 & 0 & I & C_3 & 0 & 0 \\
0 & 0 & 0 & I & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0 & \cdots & I & C_n \\
C_{n+1} & 0 & 0 & 0 & \cdots & 0 & I
\end{bmatrix}
= \det
\begin{bmatrix}
0 & 0 & -C_1 C_2 & 0 & \cdots & 0 & 0 \\
0 & I & C_2 & 0 & \cdots & 0 & 0 \\
0 & 0 & I & C_3 & 0 & 0 \\
0 & 0 & 0 & I & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0 & \cdots & I & C_n \\
C_{n+1} & 0 & 0 & 0 & \cdots & 0 & I
\end{bmatrix}
= \det
\begin{bmatrix}
0 & 0 & 0 & (-1)^2 C_1 C_2 C_3 & \cdots & 0 & 0 \\
0 & I & C_2 & 0 & \cdots & 0 & 0 \\
0 & 0 & I & C_3 & 0 & 0 \\
0 & 0 & 0 & I & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0 & \cdots & I & C_n \\
C_{n+1} & 0 & 0 & 0 & \cdots & 0 & I
\end{bmatrix}
= \det
\begin{bmatrix}
(-1)^n C_1 C_2 \cdots C_{n+1} & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & I & C_2 & 0 & \cdots & 0 & 0 \\
0 & 0 & I & C_3 & 0 & 0 \\
0 & 0 & 0 & I & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0 & \cdots & I & C_n \\
C_{n+1} & 0 & 0 & 0 & \cdots & 0 & I
\end{bmatrix}
= (-1)^n \det(C_1 C_2 \cdots C_{n+1}). \qed
Proposition 3.9. Let \(k \geq 1 \). Let \(G \) be a connected graph with rank-width \(k \) and \(|V(G)| \geq 3 \). Then a rank-expansion of \(G \) has a pivot-minor isomorphic to \(G \).

Proof. Let \((T, L)\) be a rank decomposition of a graph \(G \) and let \(x \) be a leaf in \(T \). We orient each edge \(f \) away from \(x \). For each \(f \in E(T) \), if \(m \) is the width of \(f \), we choose a basis \(U_f = \{ u_f^1, u_f^2, \ldots, u_f^m \} \subseteq A_f \) of rows in the matrix \(A(G)[A_f, B_f] \) such that \((U_e \cap A_f) \subseteq U_f\) if the head of an edge \(e \) is the tail of \(f \). Since \(G \) is connected, \(|U_f| \geq 1\). Let \(H \) be a rank-expansion \(R(G, T, L, x, \{U_f\}_{f \in E(T)}) \) of a graph \(G \). By Lemma 3.4, for every \(W \subseteq E_I(T), \ A(H)[W] \) is nonsingular. We will prove that for \(a, b \in V(G), \ \bar{a} \bar{b} \in E(H \cap E_I(T)) \) if and only if \(ab \in E(G) \).

Let \(a, b \) be distinct vertices in \(V(G) \). We consider the path \(P \) from \(L(a) \) to \(L(b) \) in \(T \). By Lemma 3.6, \(\pi \) is adjacent to \(b \) in \(H \cap E_I(T) \) if and only if \(\pi \) is adjacent to \(b \) in \(H[E(P)] \cap (E(P) \cap E_I(T)) \). Then, by Theorem 2.1

\[
\bar{a} \bar{b} \in E(H \cap E_I(T)) \iff \bar{a} \bar{b} \in E(H[E(P)] \cap (E(P) \cap E_I(T)))
\]

\[
\iff A \left(H[E(P)] \cap (E(P) \cap E_I(T)) \right) \{\pi, \bar{b}\} \text{ is nonsingular}
\]

\[
\iff A \left(H[E(P)] \right) \{\pi, \bar{b}\} \Delta \{\pi, \bar{b}\} \text{ is nonsingular}
\]

\[
\iff A(H[E(P)]) \text{ is nonsingular.}
\]

Thus, it is enough to show that \(\text{det}(A(H[E(P)]) = A(G)(a, b) \).

If \(L(b) = x \), then \(P = (e_n+1, e_n, \ldots, e_1, e_0) \) is a directed path from \(L(b) \) to \(L(a) \). The submatrix of \(A(H) \) induced by \(E(P) \) is

\[
\begin{pmatrix}
\bar{b} & L_{e_1} & L_{e_2} & \cdots & L_{e_{n-1}} & L_{e_n} & \pi & R_{e_1} & R_{e_2} & \cdots & R_{e_{n-1}} & R_{e_n} \\
0 & C_{e_0} & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & I & C_{e_1} & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & I & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & I & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & I & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & C_{e_0} & I & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & C_{e_1} & I & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & I & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & I & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & C_{e_{n-1}} & I \\
\end{pmatrix}
\]

\[
= \left(\begin{array}{c|c}
C & 0 \\
\hline
0 & C^{t} \\
\end{array} \right).
\]

Note that \(\text{det}(A(H)[E(P)]) = \text{det}(C) \text{det}(C^{t}) = \text{det}(C)^{2} \). By Lemma 3.8, \(\text{det}(C) = (-1)^{n} \text{det}(C_{e_0} C_{e_1} \ldots C_{e_n}) \). Since \(|U_{e_{n+1}}| = |B_{e_{n+1}}| = 1 \) and \(\text{rank}(A(G)[U_{e}, B_{e}]) = \)
where L is the length of a. Let $R = (e_{n-1}, \ldots, e_0)$ be the edges of P from y to $L(a)$ and $P_\ast = (f_{m-1}, \ldots, f_0)$ be the edges of P from y to $L(b)$.

Therefore $\det(A(H)(E(P))) = A(G)(a, b)$, as required.

Now we assume that $L(a) \neq x$ and $L(b) \neq x$. Then there exists a vertex y in $V(P)$ such that it has a shortest distance to x. Let $P_1 = (e_n, e_{n-1}, \ldots, e_0)$ be the edges of P from y to $L(a)$ and $P_2 = (f_0, f_{m-1}, \ldots, f_0)$ be the edges of P from y to $L(b)$.

Let $M = A(H)[R_{e_n}, R_{f_m}]$. By the construction of a rank-expansion, $M = A(G)[U_{e_n}, U_{f_m}]$. The submatrix of $A(H)$ induced by $E(P)$ is

$$
\begin{pmatrix}
\{\bar{b}\} \cup \bigcup_{i=1}^{n} R_{e_i} \cup \bigcup_{i=1}^{m} L_{f_i} \\
\{\bar{b}\} \cup \bigcup_{i=1}^{n} L_{e_i} \cup \bigcup_{i=1}^{m} R_{f_i} \\
0 & C \\
\end{pmatrix}
$$

where C is

$$
\begin{pmatrix}
\bar{b} & L_{e_1} & L_{e_2} & \cdots & L_{e_{n-1}} & L_{e_n} & R_{f_m} & R_{f_{m-1}} & \cdots & R_{f_1} \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & I & C_{e_1} & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & I & \cdots \\
0 & 0 & 0 & \cdots & I & C_{e_{n-1}} & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & I & M & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & I & C_{f_{m-1}} & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & I & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & I \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & I \\
C_{f_1} & \cdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & I \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & I \\
\end{pmatrix}
$$

It is enough to show that $C_{e_0}C_{e_1} \cdots C_{e_{n-1}}MC_{f_{m-1}} \cdots C_{f_0} = A(G)(a, b)$.

Since $M = A(G)[U_{e_n}, U_{f_m}] \leq A(G)[U_{e_n}, B_{e_n}]$, by Lemma 3.7 we have

$$
C_{e_0}C_{e_1} \cdots C_{e_{n-1}}MC_{f_{m-1}} \cdots C_{f_0} = C_{e_0}C_{e_1} \cdots C_{e_{n-1}}A(G)[U_{e_n}, U_{f_m}]C_{f_m-1} \cdots C_{f_0} = A(G)[U_{e_n}, U_{f_m}]C_{f_m-1} \cdots C_{f_0} = (C_{f_0}C_{f_1} \cdots C_{f_m-1}(A(G)[U_{f_m}, U_{e_n}]))^{t} = A(G)[U_{f_0}, U_{e_0}^{t}] = A(G)(a, b).
$$

So, $\det(A(H)(E(P))) = A(G)(a, b)$, as claimed. Therefore, $\bar{b} \in E(H \cap E(T))$ if and only if $ab \in E(G)$. We conclude that a rank-expansion of G has a pivot-minor isomorphic to G.

In the next proposition, we show that a rank-expansion has tree-width at most $2k$ when $\text{rw}(G) \leq k$.

\[
\begin{align*}
U_v &= \{a_4, a_5, a_7\} \\
U_{f_1} &= \{a_4, a_5\} \\
U_{f_2} &= \{a_6, a_7\}
\end{align*}
\]

Figure 4. A rank-expansion of the graph \(G\) in Figure 2. By the construction of a rank-expansion, every vertex in \(L_e\) has exactly one neighbor in \(R_{f_1} \cup R_{f_1} \setminus \{(a_6, f_2, v)\}\) in the subgraph \(H[S_e]\).

Proposition 3.10. Let \(k \geq 1\). Let \(G\) be a connected graph with \(|V(G)| \geq 3\). If \(G\) has rank-width \(k\), then \(G\) has a rank-expansion of tree-width at most \(2k\). Moreover, if \(G\) has linear rank-width \(k\), then \(G\) has a rank-expansion of path-width at most \(k + 1\).

Proof. Let \((T, L)\) be a rank-decomposition of \(G\) of width \(k\). We fix a leaf \(x \in V(T)\) and orient each edge \(f\) away from \(x\). For each \(f \in E(T)\), if \(m\) is the width of \(f\), we choose a basis \(U_f = \{u_{f1}^1, u_{f1}^2, \ldots, u_{fm}^m\} \subseteq A_f\) of rows in the matrix \(A(G)[A_f, B_f]\) such that \((U_e \cap A_f) \subseteq U_f\) if the head of an edge \(e\) is the tail of \(f\). Since \(G\) is connected, \(|U_f| \geq 1\). Let \(H\) be a rank-expansion \(R(G, T, L, x, \{U_f\}_{f \in E(T)})\) of a graph \(G\).

Let \(T'\) be a tree obtained from \(T[V_f(T)]\) by replacing each edge from \(v\) to \(w\) with a path \(wz_y^1z_y^2 \ldots z_y^{U_e}z_y^{U_e}p_y^{w}p_y^{a} \ldots p_y^{u_{f1}^2}v\). Let \(y\) be the neighbor of \(x\) in \(T\) and let \(B(y) = S_y\). For \(v \in V_f(T) \setminus \{y\}\), let \(e = vw\) be the edge incoming to \(v\) and \(f_1, f_2\) be edges outgoing from \(v\). Let \(R_v = \{(a, f, v) \in R_{f_1} \cup R_{f_2} : a \notin U_e\}\). Since \((U_e \cap A_f) \subseteq U_f\) for each \(i \in \{1, 2\}\), each vertex in \(L_e\) has exactly one neighbor in \(R_{f_1} \cup R_{f_2} \setminus R_v\). Let \(B(v) = R_{f_1} \cup R_{f_2}\) and \(B(z_y^{U_e}) = R_{v} \cup \{(u_{f1}^1, e, v)\}\). \(B(p_y^{a}) = R_v \cup L_v \cup \{(a, f, v) \in R_{f_1} \cup R_{f_2} : a = u_{f1}^1\}\). And for each \(2 \leq i \leq |U_e|\), we define

\[
\begin{align*}
B(z_y^{U_e}) &= B(z_y^{U_e-1}) \setminus \{(u_{f1}^{i-1}, e, v)\} \cup \{(u_{f1}^{i}, e, v)\} \\
B(p_y^{a}) &= B(p_y^{a-1}) \setminus \{(u_{f1}^{i-1}, e, v)\} \cup \{(a, f, v) \in R_{f_1} \cup R_{f_2} : a = u_{f1}^i\}.
\end{align*}
\]

Now we show that the pair \((T', \{B(v)\}_{v \in V(T')}\) is a tree-decomposition of \(H\). Note that for each \(v \in V_f(T) \setminus \{y\}\) with the incoming edge \(e\), \(\bigcup_{v} E(H[B(z_y)]) = E(H[V_t])\) and \(\bigcup_{v} E(H[B(p_y^{a})]) = E(H[S_v])\). Therefore all vertices and all edges in \(H\) are covered by \(B(v)\) for some \(v \in V(T')\). So the first and second axioms of a tree-decomposition are satisfied.

For the third axiom, it suffices to show that for every \(t \in V(H)\), \(T'[[z : B(z) \ni t]]\) is a subtree of \(T'\). Let \(t = (u_{f1}^1, e, v) \in V(H)\) for some \(e = vw \in E(T)\) and \(1 \leq j \leq |U_e|\). If \(v\) is the head of \(e\), \(T'[[z : B(z) \ni t]] = T'[[z_y^{U_e} \ldots z_y^{U_e}, p_y^{a} \ldots p_y^{u_{f1}^j}]]\), and it forms a path. Suppose \(v\) is the tail of \(e\). Let \(f\) be the edge incoming to \(v\), and if \(a \in U_f\), then let \(h\) be the integer such that \(a = u_{f1}^h\), if otherwise, let \(h = 1\). Then \(T'[\{z : B(z) \ni t]\} = T'[\{p_y^{a} \ldots p_y^{a}, v, z_y^{U_e}, \ldots, z_y^{U_e}\}]\). It also forms a path, thus \((T', \{B(v)\}_{v \in V(T')}\) is a tree-decomposition of \(H\).
Since $|B(y)| \leq 2k + 1$ and for each $v \in V_1(T) \setminus \{y\}$ with the incoming edge e, $|B(z_i^y)| = |B(z_i^v)| = |R_e| + 1 \leq k + 1$, $|B(p_i^v)| = |B(p_i^y)| = |R'_e| + |L_e| + 1 \leq (2k - |U_e|) + |U_e| + 1 = 2k + 1$ and $|B(v)| \leq 2k$, the resulting tree-decomposition has width at most $2k$.

Suppose that G has linear rank-width at most k. Here, we choose $x \in V(T)$ such that x is an end of a longest path in T, and let y be the neighbor of x. For $v \in V_1(T)$ with outgoing edges f_1 and f_2, $|U_{f_1}| = 1$ or $|U_{f_2}| = 1$ because every inner vertex of T is incident with a leaf. Therefore, for each $v \in V_1(T) \setminus \{y\}$ and $1 \leq i \leq |U_e|$, $|B(p_i^v)| \leq (k + 1 - |U_e|) + |U_e| + 1 = k + 2$ and $|B(v)| \leq k + 1$, and $|B(y)| \leq k + 2$. Moreover, since $T[V_1(T)]$ is a path, T' is also a path. Therefore $(T', \{B(v)\}_{v \in V(T')})$ is a path-decomposition of H with path-width at most $k + 1$.

Proof of Theorem 3.11. If $k = 0$, then it is trivial. We assume that $k \geq 1$. We proceed by induction on the number of vertices.

Suppose G is connected. Since G has rank-width at most k and $|V(G)| \geq 3$, by Proposition 3.10, there is a rank-expansion H of G such that $\text{tw}(H) \leq 2k$, and $|V(H)| \leq (2k + 1)|V(G)| - 6k$. By Proposition 3.9, H has a pivot-minor isomorphic to G.

If G is disconnected, then we choose a largest component Y of G. Since $k \geq 1$, the component Y has at least 2 vertices. If $|V(Y)| = 2$, then G has rank-width 1 and tree-width 1, and $|V(G)| \leq (2 + 1)|V(G)| - 6$ since $|V(G)| \geq 3$. We assume that $|V(Y)| \geq 3$. Then by induction hypothesis, there is a graph H_1 such that Y is isomorphic to a pivot-minor of H_1 and $\text{tw}(H_1) \leq 2k$ and $|V(H_1)| \leq (2k + 1)|V(Y)| - 6k$.

If $G \setminus V(Y)$ has tree-width at most 1, then G is isomorphic to a pivot-minor of the disjoint union of two graphs H_1 and $G \setminus V(Y)$, and the tree-width of it is equal to the tree-width of H_1. Since $|V(H_1)| + |V(G) \setminus V(Y)| \leq (2k + 1)|V(Y)| - 6k + |V(G) \setminus V(Y)| \leq (2k + 1)|V(Y)| - 6k$, we obtain the result. If tree-width of $G \setminus V(Y)$ is at least 2, then $|V(G) \setminus V(Y)| \geq 3$. Therefore, by induction hypothesis, there is a graph H_2 such that $G \setminus V(Y)$ is isomorphic to a pivot-minor of H_2 and $\text{tw}(H_2) \leq 2k$ and $|V(H_2)| \leq (2k + 1)|V(G) \setminus V(Y)| - 6k$. So G is isomorphic to a pivot-minor of the disjoint union of two graphs H_1 and H_2, and the tree-width of
it is at most $2k$, and $|V(H_1)| + |V(H_2)| \leq (2k + 1)|V(G)| - 6k$. Thus, we conclude the theorem.

Proof of Theorem 3.2. We can easily obtain the proof of Theorem 3.2 from the proof of Theorem 3.1.

4. **Graphs with rank-width or linear rank-width at most 1**

Distance-hereditary graphs are introduced by Bandelt and Mulder [2]. A graph G is **distance-hereditary** if for every connected induced subgraph H of G and vertices a, b in H, the distance between a and b in H is the same as in G. Oum [6] showed that distance-hereditary graphs are exactly graphs of rank-width at most 1. Recently, Ganian [5] obtains a similar characterization of graphs of linear rank-width 1. In this section, we obtain another characterization for these classes in terms of vertex-minor relation.

Note that every tree has rank-width at most 1 and every path has linear rank-width at most 1.

Theorem 4.1. Let G be a graph. The following are equivalent:

1. G has rank-width at most 1.
2. G is distance-hereditary.
3. G has no vertex-minor isomorphic to C_5.
4. G is a vertex-minor of a tree.

Proof. ((1) \Leftrightarrow (2)) is proved by Oum [6], and ((2) \Leftrightarrow (3)) follows from the Bouchet's theorem [3, 4]. Since every tree has rank-width at most 1, ((4) \Rightarrow (1)) is trivial. We want to prove that (1) implies (4).

Let G be a graph of rank-width at most 1. We may assume that G is connected. If $|V(G)| \leq 2$, then G itself is a tree. So we may assume that $|V(G)| \geq 3$. Let (T, L) be a rank-decomposition of G of width 1. From Proposition 3.9, a rank-expansion H with the rank-decomposition (T, L) has G as a pivot-minor.

The width of each edge in T is 1. Thus for $v \in V_I(T)$, the subgraph $H[S_v]$ is a path of length 2 or a triangle because G is connected. Also for $e \in E_I(T)$, $H[e]$ consists of an edge. Therefore H is connected and does not have cycles of length at least 4.

Let Q be a tree obtained from H by replacing each triangle abc with $K_{1,3}$ by adding a new vertex d, making d adjacent to a, b, c and deleting ab, bc, ca. Clearly H is a vertex-minor of the tree Q because we can obtain the graph H from Q by applying local complementation on those new vertices and deleting them. Therefore G is a vertex-minor of a tree, as required.

We also obtain a characterization of graphs with linear rank-width at most 1. Obstruction sets for graphs of linear rank-width 1 are C_5, N and Q [1], depicted in Figure 6.

Lemma 4.2. Every subcubic caterpillar is a pivot-minor of a path.

Proof. Let H be a subcubic caterpillar. By the definition of a caterpillar, there is a path P in H such that every vertex in $V(H) \setminus V(P)$ is a leaf. We choose such path $P = p_1p_2 \ldots p_m$ in H with maximum length. We construct a path Q from P by replacing each edge p_ip_{i+1} with a path $p_ia.bp_{i+1}$. We can obtain a pivot-minor of P isomorphic to Q by pivoting each edge a_ib_i and deleting all a_i and deleting b_i if p_i is not adjacent to a leaf in H. □
Theorem 4.3. Let G be a graph. The following are equivalent:

(1) G has linear rank-width at most 1.

(2) G has no vertex-minor isomorphic to C_5, N or Q.

(3) G is a vertex-minor of a path.

Proof. ((1) \iff (2)) is proved by Adler, Farley and Proskurowski [1]. Since every path has linear rank-width at most 1, ((3) \Rightarrow (1)) is trivial. Let us prove that (1) implies (3).

Let G be a graph of linear rank-width at most 1. We may assume that G is connected and $|V(G)| \geq 3$. Let H be a rank-expansion of G with a linear rank-decomposition (T, L) of width 1. Note that T is a caterpillar.

Since (T, L) is a linear rank-decomposition of width 1, for each triangle in H, one of those vertices is of degree 2 in H. Let P be a caterpillar obtained from H by replacing each triangle with a path of length 2 whose internal vertex has degree 2 in H. We can obtain H from P by applying local complementation on the inner vertex of those paths of length 2, H is a vertex-minor of P. And by Lemma 4.2, P is a pivot-minor of a path. Therefore G is a vertex-minor of a path. □

In Theorems 4.1 and 4.2, if a given graph is bipartite, we do not need to apply local complementation at some vertices. To prove it, we need the following lemma.

Lemma 4.4. Let G be a connected bipartite graph with rank-width 1 and $|V(G)| \geq 3$. Let (T, L) be a rank-decomposition of width 1. Then a rank-expansion of G with respect to (T, L) is a tree.

Proof. Let $x \in V(T)$ be a leaf and H be a rank-expansion $R(G, T, L, x, \{U_f\}_{f \in E(T)})$ of G.

Suppose that H has a triangle. Then there exists a vertex $v \in V_l(T)$ such that $H[S_v]$ is the triangle. Let e_1, e_2 and e_3 be edges incident with v and assume that e_1
is the incoming edge. Let $U_{e_1} = \{a\}$, $U_{e_2} = \{b\}$ and $U_{e_3} = \{c\}$. By the construction of a rank-expansion, $bc \in E(G)$ and $R^e_{a} = R^e_{b} = R^e_{c}$. Since R^e_{a} is a non-zero vector, there is a vertex $x \in V(G)$ such that x is adjacent to all of a, b and c. Therefore xbc is a triangle in G, contradiction. □

Theorem 4.5. Let G be a graph. Then G is bipartite and has rank-width at most 1 if and only if G is a pivot-minor of a tree.

Proof. We may assume that G is connected. Since every tree has rank-width at most 1, backward direction is trivial. If G is bipartite and has rank-width at most 1, then by Lemma 4.4, we have a rank-expansion of G which is a tree. Hence, G is a pivot-minor of a tree. □

Theorem 4.6. Let G be a graph. Then G is bipartite and has linear rank-width 1 if and only if G is a pivot-minor of a path.

Proof. We may assume that G is connected. Similarly, backward direction is trivial. Suppose G is bipartite and has linear rank-width 1. Let H be a rank-expansion of G with a linear rank-decomposition (T, L) of width 1. By Lemma 4.4, the graph H is a tree, and since T is a caterpillar, H is also a caterpillar. By Lemma 4.2, H is a pivot-minor of a path, and so is G. □

References

Department of Mathematical Sciences, KAIST, 291 Daehak-ro Yuseong-gu Daejeon, 305-701 South Korea

E-mail address: ilkof@kaist.ac.kr

E-mail address: sangil@kaist.edu