Perfect Matchings in Claw-free Cubic Graphs

Sang-il Oum* ${ }^{*}$
Department of Mathematical Sciences, KAIST, Daejeon, 305-701, Republic of Korea.

November 9, 2009

Abstract

Lovász and Plummer conjectured that there exists a fixed positive constant c such that every cubic n-vertex graph with no cutedge has at least $2^{c n}$ perfect matchings. Their conjecture has been verified for bipartite graphs by Voorhoeve and planar graphs by Chudnovsky and Seymour. We prove that every claw-free cubic n-vertex graph with no cutedge has more than $2^{n / 12}$ perfect matchings, thus verifying the conjecture for claw-free graphs.

1 Introduction

A graph is claw-free if it has no induced subgraph isomorphic to $K_{1,3}$. A graph is cubic if every vertex has exactly three incident edges. A well-known classical theorem of Petersen [9] states that every cubic graph with no cutedge has a perfect matching. Sumner [10] and Las Vergnas [6] independently showed that every connected claw-free graph with even number of vertices has a perfect matching. Both theorems imply that every claw-free cubic graph with no cutedge has at least one perfect matching.

In 1970s, Lovász and Plummer conjectured that every cubic graph with no cutedge has exponentially many perfect matchings; see [7, Conjecture 8.1.8]. The best lower bound has been obtained by Esperet, Kardoš, and Král' [5]. They showed that the number of perfect matchings in a sufficiently large cubic graph with no cutedge always exceeds any fixed linear function in the number of vertices.

[^0]

Figure 1: Claw-free cubic graphs with only 9 perfect matchings

So far the conjecture is known to be true for bipartite graphs and planar graphs. For bipartite graphs, Voorhoeve [11] proved that every bipartite cubic n-vertex graph has at least $6(4 / 3)^{n / 2-3}$ perfect matchings. Recently, Chudnovsky and Seymour [2] proved that every planar cubic n-vertex graph with no cutedge has at least $2^{n / 655978752}$ perfect matchings.

We prove that every claw-free cubic n-vertex graph with no cutedge has more than

$$
2^{n / 12}
$$

perfect matchings. The graph should not have any cutedge; in Figure 1 , we provide an example of a claw-free cubic graph with only 9 perfect matchings.

Our approach is to use the structure of 2-edge-connected claw-free cubic graphs. The cycle space $\mathcal{C}(H)$ of H is a collection of the edge-disjoint union of cycles of H. It is well known that $\mathcal{C}(H)$ forms a vector space over $G F(2)$ and

$$
\operatorname{dim} \mathcal{C}(H)=|E(H)|-|V(H)|+1
$$

if H is connected, see Diestel 3. Roughly speaking, almost all 2-edge-connected claw-free cubic graph G can be built from a 2-edge-connected cubic multigraph H by certain operations so that every member of $\mathcal{C}(H)$ can be extended to 2 -factors of G. We will have two cases to consider; either H is big or small. If H is big, then $\mathcal{C}(H)$ is big enough to prove that G has many 2-factors. If H is small, then we find a 2-factor of H using many of the specified edges of H so that when transforming this 2-factor of H to that of G, each of those edges of H has many ways to make 2-factors of G.

2 Structure of 2-edge-connected claw-free cubic graphs

Graphs in this paper have no parallel edges and no loops, and multigraphs can have parallel edges and loops. We assume that a loop is counted twice when measuring a degree of a vertex in a multigraph. Every 2-edge-connected cubic multigraph can not have loops because if it has a loop, then it must have a cutedge.

We describe the structure of claw-free cubic graphs given by Palmer et al. 8]. A triangle of a graph is a set of three pairwise adjacent vertices. Replacing a vertex
v with a triangle in cubic graph is to replace v with three vertices v_{1}, v_{2}, v_{3} forming a triangle so that if e_{1}, e_{2}, e_{3} are three edges incident with v, then e_{1}, e_{2}, e_{3} will be incident with v_{1}, v_{2}, v_{3} respectively.

Every vertex in a claw-free cubic graph is in 1,2 , or 3 triangles. If a vertex is in 3 triangles, then the component containing the vertex is isomorphic to K_{4}. If a vertex is in exactly 2 triangles, then it is in an induced subgraph isomorphic to $K_{4} \backslash e$ for some edge e of K_{4}. Such an induced subgraph is called a diamond. It is clear that no two distinct diamonds intersect.

A string of diamonds is a maximal sequence $D_{1}, D_{2}, \ldots, D_{k}$ of diamonds in which, for each $i \in\{1,2, \ldots, k-1\}, D_{i}$ has a vertex adjacent to a vertex in D_{i+1}. A string of diamonds has exactly two vertices of degree 2, which are called the head and the tail of the string. Replacing an edge $e=u v$ with a string of diamonds with the head x and the tail y is to remove e and add edges $u x$ and $v y$.

A connected claw-free cubic graph in which every vertex is in a diamond is called a ring of diamonds. We require that a ring of diamonds contains at least 2 diamonds. It is now straightforward to describe the structure of 2-edge-connected claw-free cubic graphs as follows.

Proposition 1. A graph G is 2-edge-connected claw-free cubic if and only if either
(i) G is isomorphic to K_{4},
(ii) G is a ring of diamonds, or
(iii) G can be built from a 2-edge-connected cubic multigraph H by replacing some edges of H with strings of diamonds and replacing each vertex of H with a triangle.

Proof. Let us first prove the "if" direction. It is easy to see that G is 2-edgeconnected cubic and has no loops or parallel edges. If G is built as in (iii), then clearly G has neither loops nor parallel edges, and every vertex of G is in a triangle and therefore G is claw-free. Note that since H is 2-edge-connected, H can not have loops.

To prove the "only if" direction, let us assume that G is a 2 -edge-connected claw-free cubic graph. We may assume that G is not isomorphic to K_{4} or a ring of diamonds. We claim that G can be built from a 2-edge-connected cubic multigraph as in (iii). Suppose that G is a counter example with the minimum number of vertices.

If G has no diamonds, then every vertex of G is in exactly one triangle and therefore $V(G)$ can be partitioned into disjoint triangles. By contracting each triangle, we obtain a 2-edge-connected cubic multigraph H.

So G must have a string of diamonds. Let D be the set of vertices in the string of diamonds. Since G is cubic, G has two vertices not in D, say u and v, adjacent
to D. If $u=v$, then because the degree of u is $3, u$ must have another incident edge e but e will be a cutedge of G. Thus $u \neq v$.

If u and v are adjacent in G, then u and v must has a common neighbor x, because otherwise G will have an induced subgraph isomorphic to $K_{1,3}$. However one of the edges incident with x will be a cutedge of G, a contradiction.

Thus u and v are nonadjacent in G. Let $G^{\prime}=(G \backslash D)+u v$, that is obtained from G by deleting D and adding an edge $u v$. Then G^{\prime} has no parallel edges or loops and moreover G^{\prime} is 2 -edge-connected claw-free cubic. Since G has a vertex not in a diamond, so does G^{\prime} and therefore G^{\prime} can be built from a 2-edge-connected cubic multigraph H by replacing some edges with strings of diamonds and replacing each vertex of H with a triangle. Since D is chosen maximally, u and v are not in diamonds and therefore H has the edge $u v$. So we can obtain G from H by doing all replacements to obtain G^{\prime} and then replacing the edge $u v$ with a string of diamonds. This completes the proof.

We remark that Proposition 1 can be seen as a corollary of the structure theorem of quasi-line graphs by Chudnovsky and Seymour [1]. A graph is a quasi-line graph if the neighborhood of each vertex is expressible as the union of two cliques. It is obvious that every claw-free cubic graph is a quasi-line graph. Chudnovsky and Seymour [1] proved that every connected quasi-line graph is either a fuzzy circular interval graph or a composition of fuzzy linear interval strips. For 2-edgeconnected claw-free cubic graphs, a fuzzy circular interval graph corresponds to a ring of diamonds and a composition of fuzzy linear interval strips corresponds to the construction (iii) of Proposition 1.

3 Main theorem

Theorem 2. Every claw-free cubic n-vertex graph with no cutedge has more than $2^{n / 12}$ perfect matchings.

Proof. Let G be a claw-free cubic n-vertex graph with no cutedge. We may assume that G is connected. If G is isomorphic to K_{4}, then the claim is clearly true. If G is a ring of diamonds, then G has $2^{n / 4}+1$ perfect matchings. Thus we may assume that G is obtained from a 2-edge-connected cubic multigraph H by replacing some edges of H with strings of diamonds and replacing each vertex of H with a triangle.

Let $k=|V(H)|$. In other words, $3 k$ is the number of vertices not in a diamond of G.

Suppose that $k \geq n / 6$. Since H has $3 k / 2$ edges, the cycle space of H has dimension $3 k / 2-k+1=k / 2+1$ and therefore $|\mathcal{C}(H)|=2^{k / 2+1}$. To obtain a 2-factor from $C \in \mathcal{C}(H)$, we transform C into a member $C^{\prime} \in \mathcal{C}(G)$ so that it meets all 3 vertices of G corresponding to v for each vertex v of H incident with

Figure 2: Transforming a member of $\mathcal{C}(H)$ into a 2-factor of G (Solid edges represent edges in a member of $\mathcal{C}(H)$ or a 2 -factor of G.)
C as well as it meets all the vertices in each diamond that corresponds to an edge in C. Then for each vertex w of G unused yet in C^{\prime}, we add a cycle of length 3 or 4 depending on whether the vertex is in a diamond; see Figure 2. Then this is a 2 -factor of G because it meets every vertex of G. Since the complement of the edge-set of a 2 -factor is a perfect matching, we conclude that G has at least $2^{k / 2+1} \geq 2^{n / 12+1}$ perfect matchings.

Now let us assume that $k<n / 6$. We know that G has $(n-3 k) / 4$ diamonds. The length of an edge e of H is the number of diamonds in the string of diamonds replaced with e. (If the edge e is not replaced with a string of diamonds, then the length of e is 0 .)

Edmonds' characterization of the perfect matching polytope [4] implies that there exist a positive integer t depending on H and a list of $3 t$ perfect matchings $M_{1}, M_{2}, \ldots, M_{3 t}$ in H such that every edge of H is in exactly t of the perfect matchings. (In other words, H is fractionally 3 -edge-colorable.) By taking complements, we have a list of $3 t 2$-factors of H such that each edge of H is in exactly $2 t$ of the 2 -factors in the list. Since G has $(n-3 k) / 4$ diamonds, the sum of the length of all edges of H is $(n-3 k) / 4$. Therefore there exists a 2 -factor C of H whose length is at least $\frac{n-3 k}{4} \frac{2}{3}=(n-3 k) / 6$.

We claim that G has at least $2^{(n-3 k) / 6} 2$-factors corresponding to C. For each diamond in the string replacing an edge e of C, there are two ways to route cycles of C through the diamond, see Figure 2 . Since C passes through at least $(n-3 k) / 6$ diamonds, G has at least $2^{(n-3 k) / 6} 2$-factors. Since $k<n / 6, G$ has more than $2^{n / 12}$ 2-factors. Thus G has more than $2^{n / 12}$ perfect matchings.

We remark that every 3 -edge-connected claw-free cubic n-vertex graph G has exactly $2^{n / 6+1}$ perfect matchings, unless G is isomorphic to K_{4}. That is because G has no diamonds and so, from the idea of the above proof, there is a one-toone correspondence between the set of all 2 -factors of G and the cycle space of a multigraph H obtained by contracting each triangle of G.

References

[1] M. Chudnovsky and P. Seymour. The structure of claw-free graphs. In Surveys in combinatorics 2005, volume 327 of London Math. Soc. Lecture Note Ser., pages 153-171. Cambridge Univ. Press, Cambridge, 2005.
[2] M. Chudnovsky and P. Seymour. Perfect matchings in planar cubic graphs. Submitted, 2008.
[3] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, third edition, 2005.
[4] J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Nat. Bur. Standards Sect. B, 69B:125-130, 1965.
[5] L. Esperet, F. Kardoš, and D. Král'. Cubic bridgeless graphs have more than a linear number of perfect matchings. Accepted to Eurocomb'09, 2009.
[6] M. Las Vergnas. A note on matchings in graphs. Cahiers Centre Études Recherche Opér., 17(2-3-4):257-260, 1975. Colloque sur la Théorie des Graphes (Paris, 1974).
[7] L. Lovász and M. D. Plummer. Matching theory, volume 121 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1986. Annals of Discrete Mathematics, 29.
[8] E. M. Palmer, R. C. Read, and R. W. Robinson. Counting claw-free cubic graphs. SIAM J. Discrete Math., 16(1):65-73 (electronic), 2002.
[9] J. Petersen. Die Theorie der regulären graphs. Acta Math., 15(1):193-220, 1891.
[10] D. P. Sumner. Graphs with 1-factors. Proc. Amer. Math. Soc., 42:8-12, 1974.
[11] M. Voorhoeve. A lower bound for the permanents of certain (0,1)-matrices. Nederl. Akad. Wetensch. Indag. Math., 41(1):83-86, 1979.

[^0]: *sangil@kaist.edu
 ${ }^{\dagger}$ Supported by the SRC Program of Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. R11-2007-035-01002-0).

