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Abstract

Lovasz and Plummer conjectured that there exists a fixed positive con-
stant ¢ such that every cubic n-vertex graph with no cutedge has at least 2¢"
perfect matchings. Their conjecture has been verified for bipartite graphs
by Voorhoeve and planar graphs by Chudnovsky and Seymour. We prove
that every claw-free cubic n-vertex graph with no cutedge has more than
27/12 perfect matchings, thus verifying the conjecture for claw-free graphs.

1 Introduction

A graph is claw-free if it has no induced subgraph isomorphic to K; 3. A graph
is cubic if every vertex has exactly three incident edges. A well-known classical
theorem of Petersen [J] states that every cubic graph with no cutedge has a perfect
matching. Sumner [10] and Las Vergnas [6] independently showed that every
connected claw-free graph with even number of vertices has a perfect matching.
Both theorems imply that every claw-free cubic graph with no cutedge has at least
one perfect matching.

In 1970s, Lovasz and Plummer conjectured that every cubic graph with no
cutedge has exponentially many perfect matchings; see [7, Conjecture 8.1.8]. The
best lower bound has been obtained by Esperet, Kardos, and Kral’ [5]. They
showed that the number of perfect matchings in a sufficiently large cubic graph
with no cutedge always exceeds any fixed linear function in the number of vertices.
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Figure 1: Claw-free cubic graphs with only 9 perfect matchings

So far the conjecture is known to be true for bipartite graphs and planar graphs.
For bipartite graphs, Voorhoeve [I1] proved that every bipartite cubic n-vertex
graph has at least 6(4/3)"/273 perfect matchings. Recently, Chudnovsky and Sey-
mour [2] proved that every planar cubic n-vertex graph with no cutedge has at
least 27/655978752 porfect matchings.

We prove that every claw-free cubic n-vertex graph with no cutedge has more

than
2n/12

perfect matchings. The graph should not have any cutedge; in Figure[I, we provide
an example of a claw-free cubic graph with only 9 perfect matchings.

Our approach is to use the structure of 2-edge-connected claw-free cubic graphs.
The cycle space C(H) of H is a collection of the edge-disjoint union of cycles of H.
It is well known that C(H) forms a vector space over GF'(2) and

dimC(H) = |E(H)| - |V(H)|+1

if H is connected, see Diestel [3]. Roughly speaking, almost all 2-edge-connected
claw-free cubic graph GG can be built from a 2-edge-connected cubic multigraph H
by certain operations so that every member of C(H) can be extended to 2-factors
of G. We will have two cases to consider; either H is big or small. If H is big, then
C(H) is big enough to prove that G has many 2-factors. If H is small, then we find
a 2-factor of H using many of the specified edges of H so that when transforming
this 2-factor of H to that of GG, each of those edges of H has many ways to make
2-factors of G.

2 Structure of 2-edge-connected claw-free cubic
graphs

Graphs in this paper have no parallel edges and no loops, and multigraphs can have
parallel edges and loops. We assume that a loop is counted twice when measuring
a degree of a vertex in a multigraph. Every 2-edge-connected cubic multigraph
can not have loops because if it has a loop, then it must have a cutedge.

We describe the structure of claw-free cubic graphs given by Palmer et al. [§].
A triangle of a graph is a set of three pairwise adjacent vertices. Replacing a vertex



v with a triangle in cubic graph is to replace v with three vertices vy, v, v3 forming
a triangle so that if ey, €5, e3 are three edges incident with v, then ey, es, e3 will be
incident with vy, v9, v3 respectively.

Every vertex in a claw-free cubic graph is in 1, 2, or 3 triangles. If a vertex is
in 3 triangles, then the component containing the vertex is isomorphic to Kj. If
a vertex is in exactly 2 triangles, then it is in an induced subgraph isomorphic to
K, \ e for some edge e of K4. Such an induced subgraph is called a diamond. It is
clear that no two distinct diamonds intersect.

A string of diamonds is a maximal sequence Di, Do, ..., D, of diamonds in
which, for each i € {1,2,...,k — 1}, D; has a vertex adjacent to a vertex in D;,.
A string of diamonds has exactly two vertices of degree 2, which are called the head
and the tail of the string. Replacing an edge e = uv with a string of diamonds
with the head x and the tail y is to remove e and add edges ux and vy.

A connected claw-free cubic graph in which every vertex is in a diamond is
called a ring of diamonds. We require that a ring of diamonds contains at least 2
diamonds. It is now straightforward to describe the structure of 2-edge-connected
claw-free cubic graphs as follows.

Proposition 1. A graph G is 2-edge-connected claw-free cubic if and only if either
(1) G is isomorphic to Ky,
(i1) G is a ring of diamonds, or

(111) G can be built from a 2-edge-connected cubic multigraph H by replacing some
edges of H with strings of diamonds and replacing each vertex of H with a
triangle.

Proof. Let us first prove the “if” direction. It is easy to see that G is 2-edge-
connected cubic and has no loops or parallel edges. If G is built as in (iii), then
clearly GG has neither loops nor parallel edges, and every vertex of GG is in a triangle
and therefore GG is claw-free. Note that since H is 2-edge-connected, H can not
have loops.

To prove the “only if” direction, let us assume that G is a 2-edge-connected
claw-free cubic graph. We may assume that G is not isomorphic to K, or a
ring of diamonds. We claim that G can be built from a 2-edge-connected cubic
multigraph as in (iii). Suppose that G is a counter example with the minimum
number of vertices.

If G has no diamonds, then every vertex of GG is in exactly one triangle and
therefore V(G) can be partitioned into disjoint triangles. By contracting each
triangle, we obtain a 2-edge-connected cubic multigraph H.

So G must have a string of diamonds. Let D be the set of vertices in the string
of diamonds. Since G is cubic, G has two vertices not in D, say u and v, adjacent



to D. If u = v, then because the degree of w is 3, © must have another incident
edge e but e will be a cutedge of G. Thus u # v.

If v and v are adjacent in GG, then u and v must has a common neighbor z,
because otherwise G will have an induced subgraph isomorphic to K7 3. However
one of the edges incident with x will be a cutedge of G, a contradiction.

Thus u and v are nonadjacent in G. Let G’ = (G\ D)+uv, that is obtained from
G by deleting D and adding an edge uv. Then G’ has no parallel edges or loops
and moreover GG’ is 2-edge-connected claw-free cubic. Since G has a vertex not in a
diamond, so does GG' and therefore GG’ can be built from a 2-edge-connected cubic
multigraph H by replacing some edges with strings of diamonds and replacing
each vertex of H with a triangle. Since D is chosen maximally, v and v are not
in diamonds and therefore H has the edge uv. So we can obtain G from H by
doing all replacements to obtain G’ and then replacing the edge uv with a string
of diamonds. This completes the proof. O

We remark that Proposition [Ij can be seen as a corollary of the structure theo-
rem of quasi-line graphs by Chudnovsky and Seymour [I]. A graph is a quasi-line
graph if the neighborhood of each vertex is expressible as the union of two cliques.
It is obvious that every claw-free cubic graph is a quasi-line graph. Chudnovsky
and Seymour [I] proved that every connected quasi-line graph is either a fuzzy
circular interval graph or a composition of fuzzy linear interval strips. For 2-edge-
connected claw-free cubic graphs, a fuzzy circular interval graph corresponds to a
ring of diamonds and a composition of fuzzy linear interval strips corresponds to
the construction (iii) of Proposition [1]

3 Main theorem

Theorem 2. FEvery claw-free cubic n-vertex graph with no cutedge has more than
2712 perfect matchings.

Proof. Let G be a claw-free cubic n-vertex graph with no cutedge. We may assume
that G is connected. If G is isomorphic to Ky, then the claim is clearly true. If G
is a ring of diamonds, then G has 2*/* 41 perfect matchings. Thus we may assume
that GG is obtained from a 2-edge-connected cubic multigraph H by replacing some
edges of H with strings of diamonds and replacing each vertex of H with a triangle.

Let k = |V(H)|. In other words, 3k is the number of vertices not in a diamond
of G.

Suppose that k& > n/6. Since H has 3k/2 edges, the cycle space of H has
dimension 3k/2 — k + 1 = k/2 + 1 and therefore |C(H)| = 2¥/2*!. To obtain a
2-factor from C' € C(H), we transform C into a member C’ € C(G) so that it
meets all 3 vertices of GG corresponding to v for each vertex v of H incident with
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Figure 2: Transforming a member of C(H) into a 2-factor of G (Solid edges repre-
sent edges in a member of C(H) or a 2-factor of G.)

C' as well as it meets all the vertices in each diamond that corresponds to an edge
in C. Then for each vertex w of G unused yet in C’, we add a cycle of length 3
or 4 depending on whether the vertex is in a diamond; see Figure Then this
is a 2-factor of G because it meets every vertex of G. Since the complement of
the edge-set of a 2-factor is a perfect matching, we conclude that G has at least
2k/2+1 > 9n/1241 perfect matchings.

Now let us assume that £ < n/6. We know that G has (n — 3k)/4 diamonds.
The length of an edge e of H is the number of diamonds in the string of diamonds
replaced with e. (If the edge e is not replaced with a string of diamonds, then the
length of e is 0.)

Edmonds’ characterization of the perfect matching polytope [4] implies that
there exist a positive integer ¢t depending on H and a list of 3t perfect matchings
My, Ms, ..., M3, in H such that every edge of H is in exactly t of the perfect
matchings. (In other words, H is fractionally 3-edge-colorable.) By taking com-
plements, we have a list of 3t 2-factors of H such that each edge of H is in exactly
2t of the 2-factors in the list. Since G has (n — 3k)/4 diamonds, the sum of the
length of all edges of H is (n — 3k)/4. Therefore there exists a 2-factor C' of H
whose length is at least 252 = (n — 3k) /6.

We claim that G has at least 2("~3%)/6 2_factors corresponding to C. For each
diamond in the string replacing an edge e of (', there are two ways to route cycles
of C through the diamond, see Figure[2] Since C passes through at least (n—3k)/6
diamonds, G has at least 2("=3%)/6 2_factors. Since k < n/6, G has more than 2"/12
2-factors. Thus G has more than 2"/'? perfect matchings. O

We remark that every 3-edge-connected claw-free cubic n-vertex graph G has
exactly 27/6F! perfect matchings, unless G is isomorphic to K4. That is because
G has no diamonds and so, from the idea of the above proof, there is a one-to-
one correspondence between the set of all 2-factors of G and the cycle space of a
multigraph H obtained by contracting each triangle of G.
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