
Computing rank-width exactly

Sang-il Oum∗†

Department of Mathematical Sciences

KAIST

335 Gwahangno Yuseong-gu Daejeon 305-701 South Korea

September 9, 2008

Abstract

We prove that the rank-width of an n-vertex graph can be com-

puted exactly in time O(2nn3 log2 n log log n). To improve over a trivial

O(3n log n)-time algorithm, we develop a general framework for decom-

positions on which an optimal decomposition can be computed efficiently.

This framework may be used for other width parameters, including the

branch-width of matroids and the carving-width of graphs.

Keyword: graph algorithms; rank-width; branch-width; exact exponential

algorithms; fast subset convolution

1 Introduction

We present an exponential-time algorithm to calculate the rank-width of a

graph, whose running time is faster than the trivial exponential-time algorithm.

In order to present the result in a general framework, we define a decomposi-

tion of a finite set, which is roughly a description how one can split a finite set

recursively until no further split can be performed.
∗Supported by the SRC Program of Korea Science and Engineering Foundation (KOSEF)

grant funded by the Korea government (MOST) (No. R11-2007-035-01002-0).
†Email: sangil@kaist.edu

1

To be precise, we define a rooted binary tree as a directed tree with a specified

vertex r called the root such that the root has two incoming edges and no

outgoing edges and every vertex other than the root has exactly one outgoing

edges and either two or zero incoming edges. A leaf of a rooted binary tree is

a vertex with no incoming edges. A descendent of an edge e of a rooted binary

tree is the set of vertices from which there exists a directed path to e.

A decomposition of a finite set V is a pair (T, µ) of a rooted binary tree T

and a bijection µ from V to the set of all leaves of V . For a given set function f

on the subsets of a finite set V , we measure the f -width of a decomposition

(T, µ) of V as the maximum f(µ−1(Xe)) over all edges e of T where Xe is the

set of leaves that are descendents of e in T . The width of f on a finite set V ,

denoted by w(f, V), is the minimum f -width over all possible decompositions

of V . If |V | ≤ 1, then V admits no decompositions but we let w(f, V) = f(V).

From the definition, it is straightforward to observe the following lemma.

We write 2V to denote the set of all subsets of V . Let Z be the set of integers.

Throughout the paper, we let n = |V | and let M = maxX⊆V |f(X)|.

Lemma 1. Let V be a finite set and let f : 2V → Z be a function. For a subset

X of V ,

w(f,X) =

min∅6=Y (X max(f(Y), f(X \ Y),w(f, Y),w(f,X \ Y)) if |X| ≥ 2,

f(X) if |X| ≤ 1.

Lemma 1 allows a simple exponential-time algorithm based on dynamic pro-

gramming to compute w(f, V). In this paper, our model of computation is the

random access machine on which arithmetic operations on integers as well as

comparisons can be performed in a unit time only for integers of constant size.

We need at most dlog2Me bits to store f(X) and w(f,X) for each subset X

of V and so comparing f(Y), f(X \ Y), w(f, Y) and w(f,X \ Y) takes time

O(logM). Assume that evaluating f(X) takes time O(α). Then the running

time is O(2nα+
∑n

k=2

(
n
k

)
2k logM) = O(3n logM + 2nα).

2

In this paper, we will present an algorithm to compute w(f, V) in time

O(2n(n3 log n log log n logM + log2M + α)).

To construct this algorithm, we use the fast subset convolution of Björklund et

al. [1], which we will discuss in Section 2.

Our algorithm may be applied to various width parameters. We will discuss

some of them in Section 4. Rank-width of graphs was defined by Oum and

Seymour [5]. As a consequence of our algorithm, we obtain an exact algorithm

to compute the rank-width of an n-vertex graph in time O(2nn3 log2 n log log n).

This is clearly better than the above O(3n log n)-time algorithm. We remark

that it is NP -hard to compute the rank-width [4].

2 Fast Subset Convolution

We summarize the algorithm for the fast subset convolution developed in [1].

Let R be a ring. Let f : 2V → R and g : 2V → R be functions. The convolution

of f and g is the function f ∗ g : 2V → R such that

(f ∗ g)(S) =
∑
T⊆S

f(T)g(S \ T).

Theorem 2 (Björklund, Husfeldt, Kaski, and Koivisto [1]). Let V be a finite

set with n elements. Let R be a fixed ring. Given functions f : 2V → R and

g : 2V → R, the convolution f ∗ g can be computed in O(2nn2) ring operations.

Computing f ∗ g means completing a big table containing all values of (f ∗

g)(S) for all subsets S of V . For the completeness of this paper, we include

the whole algorithm for the convolution. For the correctness of the algorithm,

please refer to their paper.

Let V = {1, 2, . . . , n}.

(A) Compute f̂(k,X) =
∑

S⊆X
|S|=k

f(S) for each k ∈ {0, 1, . . . , n} and X ⊆ V as

3

follows:

f̂0(k,X) =

f(X) if |X| = k,

0 otherwise.

For j ∈ {1, 2, . . . , n},

f̂j(k,X) =

f̂j−1(k,X) if j /∈ X,

f̂j−1(k,X) + f̂j−1(k,X \ {j}) if j ∈ X.

f̂(k,X) = f̂n(k,X).

Similarly, compute ĝ(k,X) =
∑

S⊆X
|S|=k

g(S) for each k ∈ {0, 1, . . . , n} and

X ⊆ V .

(B) Compute (f̂� ĝ)(k,X) =
∑k

j=0 f̂(j,X)ĝ(k−j,X) for each k ∈ {0, 1, . . . , n}

and X ⊆ V .

(C) Compute (f∗g)(k,X) =
∑

S⊆X(−1)|X\S|(f̂�ĝ)(k, S) for each k ∈ {0, 1, . . . , n}

and X ⊆ V as follows:

(f ∗ g)0(k,X) = (f̂ � ĝ)(k,X).

For j ∈ {1, 2, . . . , n},

(f ∗ g)j(k,X) =

(f ∗ g)j−1(k,X) if j /∈ X,

(f ∗ g)j−1(k,X)− (f ∗ g)j−1(k,X \ {j}) if j ∈ X.

(f ∗ g)(k,X) = (f ∗ g)n(k,X).

(D) Compute (f ∗ g)(X) = (f ∗ g)(|X|, X) for each subset X of V .

4

3 Computing the width of f

Lemma 3. Let V be a finite set with n elements. Let k be some number.

Suppose that we are given a big table containing the true/false information

whether or not f(X) ≤ k for each subset X of V . Then we can decide whether

w(f, V) ≤ k in time O(2n(n3 log n log log n)).

Proof. Let us assume that n = |V | ≥ 2, because otherwise the width of f on V

is trivial. For all subsets X of V and i ∈ {1, 2, . . . , n}, let

gi(X) =

1 if 1 ≤ |X| ≤ i, X 6= V, w(f,X) ≤ k, and f(X) ≤ k,

1 if i = n, X = V, and w(f,X) ≤ k,

0 otherwise.

(1)

Then Lemma 1 implies the following:

w(f,X) ≤ k if and only if

(g|X|−1 ∗ g|X|−1)(X) 6= 0 if |X| ≥ 2,

f(X) ≤ k if |X| ≤ 1.
(2)

The equation (2) allows us to compute gi+1 from gi recursively as follows. Con-

structing g1 is trivial. By Theorem 4, we can compute gi ∗ gi from gi and so we

can compute gi+1 from gi in O(2nn2) ring operations.

However, if we look carefully, we can compute gi+1 from gi in O(2nn) ring

operations as follows. First, since we need the values of (gi ∗ gi)(X) only when

|X| = i+1, we only need to compute (gi ∗gi)(i+1, X) in (C). So if we are given

(ĝi � ĝi)(i+ 1, X) for all subsets X of V , then we can compute (gi ∗ gi)(i+ 1, X)

for all subsets X of V with O(2nn) ring operations. Second, to compute (ĝi �

ĝi)(i + 1, X) for all subsets X of V in (B), we need ĝi(j,X) for all 1 ≤ j ≤ i.

However, observe that ĝi(j,X) =
∑

S⊆X
|S|=j

gi(S) = ĝj(j,X) whenever 0 < j ≤ i

and so if j < i, we already have the values of ĝi(j,X). So we only need the

values of ĝi(i,X), which can be computed in O(2nn) ring operations by (A).

Therefore we can compute the values of (gi ∗ gi)(X) and gi+1(X) for all subsets

5

X of size i+ 1 in O(2nn) ring operations and hence we can build gn from g1 in

O(2nn2) ring operations.

Since gi(X) ∈ {0, 1}, the numbers appearing during the ring operations do

not exceed n bits. Two n-bit integers can be multiplied in timeO(n log n log log n)

[7] (recently improved to n log n 2O(log∗ n) in [3]), and therefore each ring opera-

tion can be done in time O(n log n log log n). Overall we we can compute gn from

g1 in time O(2nn3 log n log log n) and so we can answer whether w(f, V) ≤ k in

time O(2nn3 log n log log n).

Theorem 4. Let V be a finite set with n elements. Let f be an integer-valued

function defined on the subsets of V . Let M = maxX⊆V |f(X)|. We assume

that f is given by an oracle and each oracle call takes time O(α). Then we

can compute the width of f on V exactly in time O(2n(n3 log n log log n logM +

log2M + α)).

Proof. We call the oracle 2n times to precompute values f(X) for all subsets

X of V . Then by binary search we find k such that the width of f on V is at

most k. For each fixed k, we first compute whether or not f(X) ≤ k; this takes

time O(2n logM). Then we compute gn in time O(2nn3 log n log log n) for fixed

k. Since the width of f on V is within −M and M , we can find the minimum

k in O(logM) tries.

We remark that the constant hidden inO(2n(n3 log n log log n logM+log2M+

α)) can be reduced when f(X) = f(V \X) for all subsets X of V . This is be-

cause if the width is at most k, then there is a decomposition T of f -width at

most k such that the root splits V into two sets of at most m = b2n/3c vertices

and therefore (gm ∗ gm)(V) = 1 if and only if w(f, V) ≤ k. So in this case, it is

not necessary to compute gm+1, gm+2, . . ., gn and this would save about 1/3 of

the computation.

6

4 Applications

4.1 Rank-width

Let G = (V,E) be a simple graph. The cut-rank function ρG(X) is defined

as the rank of the X × (V \X) matrix A = (aij)i∈X,j∈V \X over GF(2) where

aij = 1 if ij ∈ E, and aij = 0 if ij /∈ E. Rank-width was defined by Oum and

Seymour [5]. The rank-width of a graph G can be equivalently defined as the

width of ρG on V .

Then Theorem 2 implies the following.

Corollary 5. The rank-width of an n-vertex simple graph can be computed in

time O(2nn3 log2 n log log n).

Proof. Apply Theorem 2 with M ≤ bn/2c and α = O(n3).

4.2 Carving-width

Carving-width was introduced by Seymour and Thomas [8]. For a graph G =

(V,E) and a subset X of V , let ηG(X) be the number of edges of G having one

end in X and the other end in V \X. Then the carving-width can be defined

as the width of ηG on V .

Corollary 6. The carving-width of a graph G (possibly with parallel edges) can

be computed in time O(2n(n3 log n log log n logm + m)), when n is the number

of vertices and m is the number of edges.

Proof. We have M = maxX⊆V |ηG(X)| ≤ m.

4.3 Branch-width

Branch-width was introduced by Robertson and Seymour [6]. For a graph G =

(V,E) and a subset X of the edge-set E, let bG(X) be the number of vertices

meeting an edge in X as well as an edge in E \X. Then the branch-width can be

equivalently regarded as the width of bG on E. So if e = |E| and n = |V |, then

7

we can obtain an exact algorithm to compute the branch-width of a graph in

time 2eeO(1). However, there is a faster algorithm known; Fomin, Mazoit, and

Todinca [2] constructed an exact algorithm to compute branch-width of graphs

in time (2
√

3)nnO(1).

Generalizing branch-width of graphs, branch-width of a connectivity func-

tion was defined similarly. For a finite set V , an integer-valued function f on

the subsets of V is a connectivity function if f(X) = f(V \X), f(X) + f(Y) ≥

f(X ∩ Y) + f(X ∪ Y), and f(∅) = 0. The branch-width of a connectivity

function f can be equivalently defined as the width of f on V . Rank-width,

carving-width, and branch-width of graphs as well as branch-width of ma-

troids are instances of branch-width of a connectivity function. So theorem

2 applies to any instances of branch-width of a connectivity function. For in-

stance, the branch-width of an n-element matroid can be computed in time

O(2n(n3 log2 n log log n + α)) when an oracle answers the connectivity of the

matroid in time O(α).

Acknowledgment. I would like to thank Dieter Kratsch. He posed the ques-

tion and suggested to check Theorem 2.

References

[1] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius:

fast subset convolution. In STOC ’07: Proceedings of the thirty-ninth annual

ACM symposium on Theory of computing, pages 67–74, New York, NY,

USA, 2007. ACM.

[2] F. Fomin, F. Mazoit, and I. Todinca. Computing branchwidth via efficient

triangulations and blocks. Discrete Appl. Math., 2008. Accepted.

[3] M. Fürer. Faster integer multiplication. In STOC ’07: Proceedings of the

thirty-ninth annual ACM symposium on Theory of computing, pages 57–66,

New York, NY, USA, 2007. ACM.

8

[4] P. Hliněný and S. Oum. Finding branch-decompositions and rank-

decompositions. SIAM J. Comput., 38(3):1012–1032, 2008.

[5] S. Oum and P. Seymour. Approximating clique-width and branch-width. J.

Combin. Theory Ser. B, 96(4):514–528, 2006.

[6] N. Robertson and P. Seymour. Graph minors. X. Obstructions to tree-

decomposition. J. Combin. Theory Ser. B, 52(2):153–190, 1991.

[7] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Com-

puting (Arch. Elektron. Rechnen), 7:281–292, 1971.

[8] P. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,

14(2):217–241, 1994.

9

	Introduction
	Fast Subset Convolution
	Computing the width of f
	Applications
	Rank-width
	Carving-width
	Branch-width

