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Abstract

We prove that one can express the vertex-minor relation on finite undirected graphs
by formulas of monadic second-order logic (with no edge set quantification) extended
with a predicate expressing that a set has even cardinality. We obtain a slight
weakening of a conjecture by Seese stating that sets of graphs having a decidable
satisfiability problem for monadic second-order logic have bounded clique-width. We
also obtain a polynomial-time algorithm to check that the rank-width of a graph is
at most k for any fixed k. The proofs use isotropic systems.
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1 Introduction

The notion of tree-width, introduced by Robertson and Seymour [44], plays an
essential role in the theory of graph minors. For instance, they proved in [45]
that a set of graphs does not contain a fixed planar graph as a minor if and
only if this set has bounded tree-width.
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Tree-width is also important in the theory of fixed-parameter tractablilty,
see the book by Downey and Fellows [23]. In particular, many NP-complete
graph problems such as 3-colorability have algorithms taking time f(k)n
for n-vertex graphs of tree-width at most k. Furthermore, every graph prob-
lem specified by a formula of monadic second-order logic has such algorithms.
Monadic second-order logic, MS logic in short, is the extension of first-order
logic with set variables. In this language, one can write properties of the form
“there exists a set such that . . .”. This result actually holds for a strong ver-
sion of MS logic, denoted by MS2 logic, called monadic second-order logic
with edge set quantifications. MS2 logic allows to use variables denoting sets
of edges in addition to variables denoting sets of vertices. (For the main defi-
nitions and results on MS logic and detailed examples of formulas, the reader
is referred to the book chapter [13]. The preliminary sections of any of the
articles [11,12,14,16,18] also contain definitions and examples. )

Finally, MS2 logic is decidable on the set of graphs of tree-width at most k.
There is even a kind of converse, that we will call Seese’s Theorem [49], stating
that if a set of graphs has a decidable satisfiability problem for MS2 formulas,
then it has bounded tree-width. The proof rests upon the result by Robertson
and Seymour [45] that if a set of finite graphs has unbounded tree-width, then
every square grid is isomorphic to a minor of some of its graphs.

The clique-width of a graph is also an important notion for the construction
of polynomial-time graph algorithms. It is based on certain hierarchical graph
decompositions. Every graph problem specified by a formula of MS logic (with-
out edge set quantifications) is fixed parameter tractable when clique-width
is a parameter. MS logic is also decidable on the set of graphs of clique-width
at most k. These results actually hold for an extension of MS logic, called
counting monadic second-order logic (CMS logic in short). In CMS logic, it is
allowed to use predicates of the form Cardp(X), expressing that |X| is a mul-
tiple of an integer p greater than 1. C2MS formulas generalize MS formulas
by allowing the set predicate Card2(X), for which we will write Even(X) for
simplicity. Hence, C2MS is a sublanguage of CMS, strictly more expressive
than MS.

The statement analogous to Seese’s Theorem for MS formulas (without edge
set quantifications) is a conjecture, also made by Seese in [49], of which we
prove a weakening in this article. This conjecture says that if a set of graphs has
a decidable satisfiability problem for MS formulas, then it has bounded clique-
width. (We will explain the original form of the conjecture and its equivalence
to this formulation in Section 5.4.) Its hypothesis concerns less formulas, hence
is weaker than that of Seese’s Theorem. Since a set of graphs has bounded
clique-width if it has bounded tree-width, Seese’s Theorem actually establishes
another weakening of the conjecture.
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We will actually prove a slight weakening of the conjecture, by assuming that
the considered set of graphs has a decidable satisfiability problem for C2MS
formulas.

Our proof uses the notion of rank-width, introduced by Oum and Seymour [42].
It is equivalent to clique-width in the sense that a set of graphs has bounded
rank-width if and only if it has bounded clique-width. Furthermore, the set
of graphs of rank-width at most k is characterized by a finite set of excluded
vertex-minors, a crucial notion that has for rank-width the good properties
that minors have for tree-width.

The local complementation of a graph G at a vertex x consists in replacing
the subgraph of G induced by neighbors of x by its complement graph. Two
graphs are locally equivalent if one is obtained from another by a sequence of
local complementations. A graph H is a vertex-minor of G if H is an induced
subgraph of a graph that is locally equivalent to G. We prove that the vertex-
minors of G can be defined inside G by C2MS formulas. This is not at all
obvious because local complementations relative to neighbors can interact in
quite complicated ways. However, we can do so by using the notion of isotropic
system, introduced by Bouchet [2,3]. Isotropic systems represent graphs by
certain vector spaces over GF(2) and help us to handle local complementations
algebraically. The corresponding computations can be formalized in C2MS
logic. The summations in GF(2) necessitate the use of the even cardinality set
predicate.

Two main results follow from these constructions. First, the set of graphs of
rank-width at most k, for every fixed k, is characterized by a C2MS formula.
With results by Seymour and Oum [42], this gives a polynomial-time algorithm
for deciding whether a graph has rank-width at most k. By contrast, we do
not know the complexity of deciding whether the clique-width of a graph is
at most k for fixed k > 3. We remark that Oum and Seymour [42] provided
an approximation algorithm suitable for proving results on fixed-parameter
tractability. Recently Fellows, Rosamond, Rotics, and Szeider [27,28] have
shown that the problem of deciding whether a graph has clique-width at most
k is NP-complete if k is given as an input.

The second result is the above discussed weakening of Seese’s Conjecture. This
latter result extends to countable graphs.

This article is organized as follows. Sections 2, 3, 4 review definitions, nota-
tion and results on graphs, matroids, isotropic systems, and the relationships
between these different notions. Section 5 reviews monadic second-order logic
and its use for expressing properties and transformations of graphs, matroids,
and isotropic systems. The various forms of Seese’s Conjecture are recalled in
this section. In section 6, we show how the notion of a vertex-minor can be
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formalized in C2MS logic. This formalization is done via a logical formalization
of isotropic systems and their so-called fundamental graphs. The application
to the recognition of graphs of given rank-width follows then. We apply these
constructions in Section 7 to prove our weakening of Seese’s Conjecture. In
Section 8 we give an alternative proof of it based on binary matroids and us-
ing results by Geelen, Gerards, and Whittle [30] and Hliněný and Seese [34].
Section 9 is a conclusion.

2 Graphs, clique-width and rank-width

In this section, we review the notion of clique-width, and give a survey of
results about rank-width, which will be necessary to understand this paper.
We assume graphs are undirected, simple (no loops and parallel edges), and
finite, except at the end of Section 7 where we discuss countable graphs.

2.1 Definitions of clique-width and rank-width

A graph is defined as a pair (V,E) where V is the set of vertices and E is the
set of edges. We write V (G) and E(G), or sometimes VG and EG to specify
the graph under consideration.

Clique-width is, like tree-width and branch-width, a graph complexity mea-
sure. It is defined in terms of algebraic expressions denoting graphs up to
isomorphism. The operations used in these expressions have been introduced
in [19] for denoting hypergraphs. Their restriction to graphs yields the notion
of clique-width which has been defined and investigated first in Courcelle and
Olariu [20], and then in subsequent papers among which we quote Corneil et
al. [8].

Let k be a positive integer. A k-graph is a graph given with a function lab
from its vertices to [k] = {1, ..., k}. Hence it is defined as a triple (V,E, lab).
We call lab(v) the label of a vertex v. We have the following operations on
k-graphs.

(1) For each i ∈ [k], we define a constant i for denoting a k-graph having one
vertex labeled by i.

(2) For distinct i, j ∈ [k], we define a unary function ηi,j such that

ηi,j(V,E, lab) = (V,E ′, lab)

where E ′ is E augmented with the set of all edges joining a vertex labeled
by i to a vertex labeled by j.
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Fig. 1. Illustration of η1,3(ρ3→2(η2,3(η1,2(1⊕ 2)⊕ η1,3(1⊕ 3)))⊕ 3)

(3) We let ρi→j be a unary function such that

ρi→j(V,E, lab) = (V,E, lab′)

where

lab′(v) =

j if lab(v) = i,

lab(v) otherwise.

This mapping relabels every vertex labeled by i into j.
(4) Finally, we use the binary operation ⊕ that makes the union of two

disjoint copies of its arguments. (Hence G ⊕ G 6= G unless G is empty,
and the number of vertices of G⊕G is twice that of G.)

A well-formed expression t over these symbols is called a k-expression. Its
value is a k-graph G = val(t). The set of vertices of val(t) can be defined
as the set of occurrences of the constant symbols in t. However, we will also
consider that an expression t designates all k-graphs isomorphic to val(t). A
graph is considered as a 1-graph whose vertices are (necessarily) labeled by 1.
The clique-width of a graph G, denoted by cwd(G), is the minimum k such
that G = val(t) for some k-expression t.

Remark. The set of graphs of clique-width 1 is the set of graphs without edges.
The set of graphs of clique-width at most two is the set of cographs, which are
graphs having no induced path of three edges, see [20].

In this paper, the notion of rank-with, introduced by Oum and Seymour [42], is
used widely. Let us review its definition. We will define the cut-rank function,
rank-decompositions, and rank-width.

To describe the cut-rank function, we need a few notations. Let us denote
A(G) for the adjacency matrix of a graph G, that is a 0-1 V (G) × V (G)
matrix where an entry is 1 if the column vertex is adjacent to the row vertex.
We assume that the underlying field of A(G) is GF(2), the field with just two
elements, 0 and 1. For a R×C matrix M = (mij)i∈R,j∈C and subsets X ⊆ R,
Y ⊆ C, we denote by M [X,Y ] the X × Y submatrix (mij)i∈X,j∈Y of M .

Let P(A) be the set of all subsets of A and let Z be the set of integers. The cut-
rank function of a graph G is defined as the function cutrkG : P(V (G)) → Z
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Fig. 2. Illustration of Rank-decompositions

such that

cutrkG(X) = rank(A(G)[X,V (G) \X]),

where rank is the linear rank function of matrices over GF(2).

A tree is subcubic if it has at least two vertices and every vertex is incident
with at most three edges. A leaf of a tree is a vertex incident with exactly one
edge. A rank-decomposition of a graph G is a pair (T,L) of a subcubic tree T
and a bijection L : V (G) → {t : t is a leaf of T}. (If |V (G)| ≤ 1 then G has
no rank-decomposition.)

For each edge e of T , the connected components of T \ e induce a parti-
tion (Xe, Ye) of the set of leaves of T . The width of an edge e is defined as
cutrkG(L−1(Xe)). The width of a rank-decomposition (T,L) is the maximum
width of all edges of T . The rank-width of a graph G, denoted by rwd(G),
is the minimum k such that there is a rank-decomposition (T,L) of width k.
(We assume that rwd(G) = 0 if |V (G)| ≤ 1.)

Remark. Informally, its definition is a modification of that of branch-width,
introduced by Robertson and Seymour [47]. Bouchet defined the cut-rank
function under the name of connectivity function in [5].

The following proposition explains the most important reason why the rank-
width is useful to study the clique-width.

Proposition 2.1 (Oum and Seymour [42]). For every graph G,

rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1.
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Moreover, there is anO(|V (G)|2)-time algorithm to convert a rank-decomposition
of width k of G into a (2k+1 − 1)-expression of the graph.

By this inequality, a set C of graphs has bounded clique-width if and only if
it has bounded rank-width.

Remark. A graph G is called distance-hereditary if in every connected induced
subgraph of G, the distance between every pair of vertices in the subgraph
is equal to the distance in G. Oum [39] showed that these graphs are those
of rank-width at most 1. Combined with Proposition 2.1, this gives another
proof of the theorem by Golumbic and Rotics [31] stating that every distance-
hereditary graph has clique-width at most three.

2.2 Algorithmic aspects

One of the main motivations to study clique-width is the fact that on graphs
of clique-width at most k for fixed k, if the input graph is given by the k-
expression, then many hard problems can be solved in polynomial time. For
instance, there are polynomial-time algorithms to decide whether a graph has
a Hamiltonian path or circuit [25,52], to find the chromatic number [35], and
more strikingly, to solve graph problems expressible in CMS logic, see Section
5.5. This approach requires the k-expression to be given as an input. Oum
and Seymour [42] removed this requirement.

Theorem 2.2 (Oum and Seymour [42]). Let k be fixed. There is an
O(n9 log n)-time algorithm that either confirms that an n-vertex input graph
has rank-width greater than k or outputs a rank-decomposition of width at
most 3k + 1.

Combined with Proposition 2.1, the above algorithm can give a (8k − 1)-
expression, which can be used as an input to algorithms based on the given
k-expression. We remark that Oum [41] improved the running time of Theorem
2.2 to O(n3).

So we have an “approximation” algorithm saying that either the input graph
has clique-width at most f(k) or its clique-width is greater than k, where
f(k) = 8k − 1. How about recognizing graphs of clique-width at most k? It is
easy when k = 1. When k = 2, there is a linear-time algorithm by Corneil,
Perl, and Stewart [9] that recognize cographs, which are the graphs of clique-
width at most two. When k = 3, there is a polynomial-time algorithm by
Corneil et al. [8]. The complexity of deciding cwd(G) ≤ k is still unknown
for k > 3. However we will describe a polynomial-time algorithm to recognize
graphs of rank-width at most k for a fixed k in Section 6.
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2.3 Vertex-minor and well-quasi-ordering

The minor relation on graphs is essential for understanding the structure of
many classes of graphs such as the class of graphs embeddable on surfaces
without crossings and the class of graphs of tree-width at most k. Robertson
and Seymour [48] proved that every minor-closed class of graphs is character-
ized by finitely many excluded minors. Their theorem extends Kuratowski’s
theorem for planar graphs.

It will be interesting to find a graph relation meaningful with clique-width
and rank-width. Courcelle and Olariu [20] showed that the clique-width of an
induced subgraph of a graph G is at most the clique-width of the graph G.
But the induced subgraph relation is not rich enough to yield theorems similar
to those with the minor relation. For example, the cycles form an infinite list
of graphs of clique-width at most four in which none of them is an induced
subgraph of another.

For sets A and B, A∆B = (A \ B) ∪ (B \ A). Let G = (V,E) be a graph
and v ∈ V . The graph obtained by local complementation at v is defined by
G ∗ v = (V,E∆{xy : xv, yv ∈ E, x 6= y}). A graph H is locally equivalent to
G if H is obtained from G by a sequence of local complementations. A graph
H is a vertex-minor of G if H is obtained from G by a sequence of vertex
deletions and local complementations.

From the definition, it is easy to show the following lemma.

Lemma 2.3. Let H and G be graphs and v be a vertex of H.

(1) If H ∗ v is an induced subgraph of G, then H is an induced subgraph of
G ∗ v.

(2) A graph H is a vertex-minor of G if and only if H is an induced subgraph
of a graph that is locally equivalent to G.

(3) A graph locally equivalent to a vertex-minor of G is also a vertex-minor
of G.

Bouchet [5] showed that cut-rank is preserved by local complementations.
Therefore, rank-width is preserved too. So, we deduce the following proposi-
tion.

Proposition 2.4 (Oum [39]). If H is a vertex-minor of G, then rwd(H) ≤
rwd(G).

The following theorem is an analogy of the theorem by Robertson and Seymour
[46] on minors and tree-width of graphs and of the theorem by Geelen, Gerards,
and Whittle [29] on minors and branch-width of matroids.
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Theorem 2.5 (Oum [40]). For every infinite sequence G1, G2, G3, . . . of
graphs having bounded clique-width, there exist i and j such that i < j and
Gi is isomorphic to a vertex-minor of Gj. In other words, we say that a set
of graphs of bounded clique-width is well-quasi-ordered by the vertex-minor
relation up to isomorphism.

From the previous theorem, we obtain the following corollary, which has a
more direct proof by Oum [39].

Corollary 2.6 (Oum [39,40]). For every integer k, there is a finite set Ck of
graphs such that for every graph G, rwd(G) ≤ k if and only if no vertex-minors
of G are isomorphic to a graph in Ck.

If Ck contains two graphs H and H ′, and H ′ is locally equivalent to a graph
isomorphic toH, then one can replace Ck by C ′k = Ck\{H ′}. Hence, in Corollary
2.6, we may assume that Ck contains no two isomorphic graphs and no two
locally equivalent graphs (up to isomorphism).

3 Matroids

In this section, we review the concept of a matroid, its connections with bi-
partite graphs, and the grid theorem for matroids.

3.1 Matroid and branch-width

A pair M = (E, I) of a finite set E and a set I of independent subsets of E
is called a matroid if

(i) ∅ ∈ I,
(ii) if B ∈ I and A ⊆ B, then A ∈ I,
(iii) for every subset Z of E, the maximal independent subsets of Z have the

same size r(Z).

We call r the rank function of a matroid M. For more about matroids, we
refer to the book by Oxley [43].

A matroid M = (E, I) is called binary if there exists a matrix N over GF(2)
such that E is a set of column vectors of N and

I = {X ⊆ E : X is linearly independent as a set of vectors}.
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For a matroid M = (E, I), the dual matroid M∗ = (E, I ′) of M is defined as
follows:X is independent inM∗ if and only if there is a maximally independent
set B in M such that B ∩X = ∅.

For e ∈ E(M), M\ e is a matroid (E \ {e}, I ′) such that X is independent in
M\e if X ⊆ E\{e} is independent in M. This operation is called the deletion
of e. M/e is defined by (M∗ \ e)∗. This operation is called the contraction
of e. A matroid N is called a minor of M if N can be obtained from M by
applying a sequence of deletions and contractions.

The connectivity λM(X) ofM = (E, I) is defined as r(X)+r(E\X)−r(E)+1.

A branch-decomposition of a matroidM = (E, I) is a pair (T,L) of a subcubic
tree T and a bijection L : E → {t : t is a leaf of T}. (If |E| ≤ 1 then M has
no branch-decomposition.) For each edge e of T , the connected components of
T \ e induce a partition (Xe, Ye) of the set of leaves of T . The width of an edge
e is defined as λM(L−1(Xe)). The width of a branch-decomposition (T,L) is
the maximum width of all edges of T . The branch-width of a matroid M is
the minimum k such that there is a branch-decomposition (T,L) of width k.
(We assume that the branch-width of M is 1 if |E| ≤ 1.)

3.2 Bipartite graphs and binary matroids

Let G = (V,E) be a bipartite graph with a bipartition V = A ∪ B. Let
M be the A × B submatrix A(G)[A,B] of the adjacency matrix of G. Let
Bin(G,A,B) be the binary matroid on V , represented by the A × V matrix(
IA M

)
, where IA is the A× A identity matrix. If M = Bin(G,A,B), then

G is called a fundamental graph of M.

It is straightforward to prove the following.

Proposition 3.1 (Oum [39]). Let G = (V,E) be a bipartite graph with a
bipartition V = A ∪ B. Let M = Bin(G,A,B). Then, for every subset X of
V , we have

λM(X) = cutrkG(X) + 1,

and therefore the branch-width of M is exactly one more than the rank-width
of G.

We recall that G ∗ u denotes the local complementation of G at the vertex u,
as defined in Section 2.3.

Proposition 3.2 (Oum [39]). Let G = (V,E) be a bipartite graph with a
bipartition V = A ∪B. Let M = Bin(G,A,B). Then,
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(1) Bin(G,B,A) = M∗,
(2) For uv ∈ E(G), Bin(G ∗ u ∗ v ∗ u,A∆{u, v}, B∆{u, v}) = M.

(3) Bin(G \ v, A \ {v}, B \ {v}) =

M / v if v ∈ A,
M\ v if v ∈ B.

From (2) and (3), we deduce the following corollary.

Corollary 3.3 (Oum [39]). Let N , M be binary matroids, and H, G be
fundamental graphs of N , M respectively. If N is a minor of M, then H is a
vertex-minor of G.

3.3 Grid theorem

From Proposition 3.1, theorems about the branch-width of binary matroids
give corollaries about the rank-width of bipartite graphs. One of the theorems
about branch-width of binary matroids was proved by Geelen, Gerards, and
Whittle [30]. Here is the restatement of their theorem in the context of binary
matroids.

Theorem 3.4 (Grid theorem for matroids). For every positive integer k,
there is an integer l such that if M is a binary matroid with branch-width at
least l, then M contains a minor isomorphic to the cycle matroid of the k× k
grid.

Oum [39] showed the following corollary from the above theorem. We define
a graph Sk, for k > 1 as follows. Let A = {ai : 1 ≤ i ≤ k2 − 1} and B = {bi :
1 ≤ i ≤ k2 − k}. The graph Sk is a bipartite graph with V (Sk) = A ∪B such
that ai and bj are adjacent if and only if i ≤ j < i+ k (see Fig. 8).

Corollary 3.5 (Oum [39]). For every positive integer k, there is an integer
l such that if a bipartite graph G has rank-width at least l, then it contains a
vertex-minor isomorphic to Sk

This corollary will be used in the Section 7.

4 Isotropic systems

Bouchet [2] introduced the notion of isotropic system and developed it in
subsequent articles. Isotropic systems represent in an algebraic way the equiv-
alence classes of graphs by local equivalence. So far they have been used in
very few circumstances, but they provide a really powerful tool to study locally
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equivalent graphs, vertex-minors, and related notions.

4.1 Definition

Let K be the two-dimensional vector space over GF(2). We may write K =
{0, α, β, γ} with 0 = α+α = β + β = γ + γ = α+ β + γ. We define a bilinear
form 〈 , 〉 by

〈x, y〉 =

1 if x 6= y, x 6= 0, and y 6= 0,

0 otherwise.

For a finite set V , the set KV of functions from V to K form a vector space
over GF(2) with a bilinear form 〈 , 〉 defined as follows:

for a, b ∈ KV , 〈a, b〉 =
∑
v∈V

〈a(v), b(v)〉.

An isotropic system is a pair S = (V, L) of a finite set V and a subspace L of
KV such that dim(L) = |V | and 〈x, y〉 = 0 for all x, y ∈ L.

A vector a in KV is complete if a(v) 6= 0 for all v ∈ V . Two vectors a, b ∈ KV

are supplementary if 〈a(v), b(v)〉 = 1 for all v ∈ V . For a ∈ KV and P ⊆ V ,
we define the restriction a[P ] ∈ KV of the vector a to P as a vector in KV

such that

(a[P ]) (v) =

a(v) if v ∈ P ,

0 otherwise.

4.2 Fundamental base and fundamental graphs

Bouchet [3] studied a connection between isotropic systems and graphs. A
vector x of KV is called an Eulerian vector of an isotropic system S = (V, L)
if x is complete and x[P ] /∈ L for all nonempty subset P of V .

Proposition 4.1 (Bouchet [3]). Let S = (V, L) be an isotropic system. For
every complete vector c of KV , there is an Eulerian vector a of S, supplemen-
tary to c.

Proposition 4.2 (Bouchet [3, (4.3)]). Let a be an Eulerian vector of an
isotropic system S = (V, L). For every v ∈ V , there exists a unique vector
bv ∈ L such that

(i) bv(v) 6= 0,
(ii) bv(w) = 0 or a(w) for all w 6= v.
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Furthermore, the family {bv}v∈V is a basis of L. The unique family {bv}v∈V is
called the fundamental basis of S with respect to an Eulerian vector a.

Remark. In his paper [3, (4.3)], Bouchet wrote a weaker statement, saying
that the family {bv} is uniquely determined. But, in his proof, he proved the
stronger one, which is the above statement. This stronger statement is helpful
for Proposition 6.3.

We can construct graphs from isotropic systems as follows. The fundamental
graph of S with respect to an Eulerian vector a is defined as a graph G such
that V (G) = V and v and w are adjacent in G if and only if v 6= w and
bv(w) 6= 0, where {bv : v ∈ V } is the fundamental basis of S with respect to
a. The fundamental graph G is undirected because 〈bv, bw〉 = 0 implies that
bv(w) 6= 0 if and only if bw(v) 6= 0.

Now we discuss how to construct isotropic systems from graphs. Let nG(v) be
the set of neighbors of a vertex v of a graph G. For a graph G = (V,E) and
supplementary vectors a, b in KV , let S(G, a, b) be an isotropic system (V, L)
such that L is a vector space spanned by {a[nG(v)] + b[{v}] : v ∈ V }. If an
isotropic system S is equal to S(G, a, b), then the triple (G, a, b) is called the
graphic presentation of the isotropic system S.

Proposition 4.3 (Bouchet [3]). For an isotropic system S = (V, L), let a
be the Eulerian vector, let G be the fundamental graph with respect to an
Eulerian vector a, and let {bv : v ∈ V } be the corresponding fundamental
basis. If we let b ∈ KV such that b(v) = bv(v) for all v ∈ V , then (G, a, b) is a
graphic presentation of S.

Conversely, if G = (V,E) is a graph and a, b are supplementary vectors in KV ,
then S = S(G, a, b) is an isotropic system such that the vector a is Eulerian
and G is the fundamental graph of S with respect to the Eulerian vector a.

4.3 Isomorphism and locally equivalent graphs

Let G be a fundamental graph of an isotropic system S. Bouchet [3] proved
that all fundamental graphs of S are locally equivalent to G and moreover
every graph locally equivalent to G is a fundamental graph of S.

What can we say about two isotropic systems sharing the same fundamental
graph? Let us clarify the notion of isomorphism of isotropic systems. A per-
mutation π of K is linear if π(0) = 0. Let V be a finite set and Π = (πv)v∈V

be a family of linear permutations of K. For every vector a in KV , we let
Π(a) be the vector defined by (Π(a))(v) = πv(a(v)) for all v ∈ V . The map-
ping Π is a linear automorphism of KV . If S = (V, L) is an isotropic system,
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then (V,Π(L)) is an isotropic system, denoted by Π(S) and said to be strongly
isomorphic to S.

Let G = (V,E) be a graph, let a and b be supplementary vectors in KV , and
let S = S(G, a, b) be an isotropic system. Then it is easy to see that Π(S) =
S(G,Π(a),Π(b)) is another isotropic system having G as a fundamental graph.
The following lemma states a converse.

Lemma 4.4. Two isotropic systems with same fundamental graph are strongly
isomorphic.

Proof. We first prove the following fact. If x, x′, y, y′ belong to K \ {0}, with
x 6= y, x′ 6= y′, then there exists a unique linear permutation of K mapping x
to x′ and y to y′. Without loss of generality, we can assume that x = α and
y = β. By applying, if necessary, a linear permutation, we can also assume
that x′ = α. There are two cases to consider. Either y′ = β or y′ = γ. In both
cases we get a unique linear permutation.

Now consider S = (G, a, b) and S ′ = (G, a′, b′). By applying the above obser-
vation to a(v), a′(v), b(v), b′(v) for each v in V , we can find a unique Π such
that Π(a) = Π(a′) and Π(b) = Π(b′). Hence S ′ = Π(S).

We can consider two strongly isomorphic isotropic systems as the same math-
ematical object, because the three elements of K \ {0} are indistinguishable.

Two isotropic systems S = (V, L) and S ′ = (V ′, L′) are called isomorphic if
there exist a bijection h : V ′ → V and a family Π = (πv)v∈V of linear permu-
tations of K such that L′ = {b ∈ KV ′

: there exists a ∈ L such that b(v′) =
πh(v′)(a(h(v

′))) for all v′ ∈ V ′}. Intuitively, h induces a bijection between L′

and Π(L). Hence S and S ′ are isomorphic if and only if the fundamental
graphs of S are isomorphic to the fundamental graphs of S ′. Therefore, up to
isomorphism, isotropic systems represent classes of locally equivalent graphs.

5 Monadic second-order logic

We review background results on monadic second-order (MS) logic and trans-
formations of structures expressed in this language and its extensions. We
discuss the links between clique-width and MS logic, and we present Seese’s
Conjecture. For the main definitions and results on MS logic and some ex-
amples of formulas, the reader is referred to the book chapter [13], or the
preliminary sections of any of the articles [11,12,14,16,18]. However all neces-
sary definitions are given in full in the present section.

14



5.1 Relational structures and monadic second-order logic

Let R = {A,B,C, . . .} be a finite set of relation symbols and set predicates,
each of them given with a nonnegative integer ρ(A) called its arity. We denote

by ST R(R) the set of R-structures S = 〈DS, (AS)A∈R〉 where AS ⊆ D
ρ(A)
S if

A ∈ R is a relation symbol, and AS ⊆ (P(DS))ρ(A) if A is a set predicate.
Unless otherwise specified, structures will be finite, which means that their
domains DS will be finite.

A graph G without parallel edges can be defined as an {edg}-structure G =
〈V, edg〉 where V is the set of vertices of G and edg ⊆ V ×V is a binary relation
representing the edges. Since we will consider simple undirected graphs, the
relation edg will be symmetric and anti-reflexive (edg(x, x) will never hold).

Remark. We write G = 〈V, edg〉 and not G = (V,E) to stress the fact that,
in this logical representation, the edges are defined by a binary relation on V
and not as a set of objects apart from V , as in the case of MS2 logic mentioned
in the introduction where quantified variables may denote sets of edges.

A matroid M can be represented by a structure M = 〈E, Indep〉 where
Indep(F ) holds if and only if F is an independent set of M. See Hliněný [32,33]
about MS logic for matroids. An isotropic system S = (V, L) can be repre-
sented by a structure 〈V,Member〉 where Member(X, Y, Z) holds if and only
if X,Y, Z are pairwise disjoint subsets of V and L contains a vector a ∈ KV

such that for each v ∈ V ,

a(v) =


α if v ∈ X,
β if v ∈ Y,
γ if v ∈ Z,
0 otherwise.

We denote also by S the {Member}-structure representing an isotropic system
S. We will use subscripts G, M, S in notation like VG, edgG, IndepM, MemberS
if it is necessary to make precise the relevant graph, matroid or isotropic
system.

We recall that monadic second-order logic (MS logic for short) is the exten-
sion of first-order logic by variables denoting subsets of the domains of the
considered structures, and new atomic formulas of the form x ∈ X expressing
the membership of x in a set X. (Uppercase letters will denote set variables,
lowercase letters will denote ordinary first-order variables). If A is an n-ary
set predicate, then we will use atomic formulas of the form A(X1, . . . , Xn). We
will denote by MS(R,W ) the set of MS formulas written with the set R of
relation and set predicate symbols and having their free variables in a set W
consisting of individual as well as of set variables.
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As a typical and useful example of MS formula, we give a formula with free
variables x and y expressing that (x, y) belongs to the reflexive and transitive
closure of a binary relation A:

∀X
(
x ∈ X ∧ ∀u, v[(u ∈ X ∧ A(u, v)) =⇒ v ∈ X] =⇒ y ∈ X

)
If the relation A is not given in the structure but defined by an MS formula,
then one replaces A(u, v) by this formula with appropriate substitutions of
variables.

We will use an extension of MS logic, referred by C2MS logic and called
modulo-2 counting monadic second-order logic, using the set predicate Even(X)
expressing that |X| is even. Since we consider structures with finite domains,
that a set X has odd cardinality can be expressed by the formula ¬Even(X).
An even larger extension called counting monadic second-order logic, referred
by CMS logic, uses set predicates Cardp(X) meaning that |X| is a multiple of
an integer p > 1. We will denote by C2MS(R,W ) and CMS(R,W ) instead
of MS(R,W ) the corresponding sets of formulas that can use modulo 2 and
modulo p cardinality predicates (for all p) respectively.

We have a strict inclusion of languages considered as sets of formulas: MS ⊂
C2MS ⊂ CMS. The corresponding hierarchy of expressive powers is strict. It
can be proved that no MS formula ϕ(X) can express, in every structure, that
a set X has even cardinality [10], and similarly, that the property that the
cardinality of X is a multiple of three cannot be expressed by a C2MS formula.
(The argument by Courcelle [10] can be adapted.) However, for particular
classes C of structures, if there exists an MS formula defining a linear ordering
of each structure in C (the formal definition will be given in Section 7), then
the Cardp predicates can be expressed by MS formulas and so, CMS is no
longer more expressive than MS. For instance Even(X) can be expressed as
follows: the set X is partitioned into two sets Y and Z such that the least
element of X is in Y , the largest one is in Z and the successor of an element in
Y (respectively in Z) is in Z ( respectively in Y ). Courcelle [12] investigated
linear orders by MS formulas.

Let C be a set of (finite) relational structures that represent graphs, matroids,
isotropic systems, or other combinatorial objects like hypergraphs and partial
orders. The MS satisfiability problem for C is the following decision problem:

for every closed MS formula ϕ,
we ask whether there exists a structure in C that satisfies ϕ.

This decision problem does not concern particular properties like planarity of
a graph, but all properties expressible in monadic second-order logic. Note that
C is fixed and the input is any formula of MS logic. This problem is trivially
decidable if C is finite, because we assume that relational structures are finite
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and the validity of a formula in a single finite structure can be decided, simply
by applying the definition. If C is the set of all finite trees, then the MS
satisfiability problem is decidable, as a consequence of deep results relating
MS logic and tree-automata due to Doner [22] and Thatcher and Wright [50];
these results are presented in the book chapter by Thomas [51].

Seese [49] conjectured that roughly speaking, if a set of graphs has a decidable
MS satisfiability problem, then it is, in a precise sense, definable from finite
trees by MS formulas. This conjecture can be formulated for extensions of MS
logic, like C2MS or CMS logic. Note that the condition “the C2MS satisfiability
problem for C is decidable” is a priori stronger than “the MS satisfiability
problem for C is decidable”, because the intended algorithm must take more
formulas as input in the former case. Hliněný and Seese [34] stated that there
exists a set of countable trees having a decidable MS satisfiability problem
but an undecidable C2MS satisfiability problem. Actually there also exists a
set of finite trees with the same property [private email exchange with Seese].

5.2 Transductions of relational structures

We now define some transformations of relational structures that can be for-
malized in MS logic (or its extensions). They are called MS transductions,
because they generalize transformations of words and trees called transduc-
tions in formal language theory. They are similar to polynomial reductions
which make it possible to compare algorithmic problems, because if a set of
structures has a decidable MS satisfiability problem, then so has its image un-
der an MS transduction. They make it possible to transfer decidability results
from a set of structures to another one.

The basic idea is to specify a structure T inside a given structure S in terms
of subsets of DS specified by set variables called parameters, and by means of
a fixed sequence of MS (or CMS) formulas. In particular, we will be able to
describe all vertex-minors of a graph inside this graph, by means of C2MS for-
mulas and appropriately chosen sets of vertices taken as values of parameters.

Actually, the general definition of an MS transduction allows to define T inside
a structure built from a fixed number of disjoint copies of the given structure
S. For the most general definition, we refer the reader to articles by Courcelle
[11,13,16]. We only define formally the special transductions that will be useful
for the main proofs.

We let R and Q be two finite sets of relation symbols. Let W be a finite
set of set variables, called parameters. In order to describe a transforma-
tion of R-structures into Q-structures in MS logic, we define a definition
scheme as follows. A definition scheme is a tuple of formulas of the form
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∆ = (ϕ, ψ, (θA)A∈Q) where

(a) ϕ ∈MS(R,W ),
(b) ψ ∈MS(R,W ∪ {x1}),
(c) θA ∈MS(R,W ∪ {x1, · · · , xρ(A)}) for each relation symbol A,
(d) θA ∈MS(R,W ∪ {X1, · · · , Xρ(A)}) for each set predicate A.

We now wish to describe how an R-structure is transformed into a Q-structure
by a definition scheme. Let S be an R-structure and γ be a W -assignment in
S, that is a mapping from the variables in W to subsets of the domain DS of S.
The Q-structure T with domain DT ⊆ DS is defined in (S, γ) by a definition
scheme ∆ = (ϕ, ψ, (θA)A∈Q) if

(i) (S, γ) |= ϕ,
(ii) DT = {d ∈ DS : (S, γ, d) |= ψ},
(iii) for each A in Q, if A is a relation symbol then

AT = {(d1, · · · , dρ(A)) ∈ DT
ρ(A) : (S, γ, d1, · · · , dρ(A)) |= θA},

and if A is a set predicate then

AT = {(U1, · · · , Uρ(A)) ∈ (P(DT ))ρ(A) : (S, γ, U1, · · · , Uρ(A)) |= θA}.

The notation (S, γ, d1, · · · , dρ(A)) |= θA means (S, γ′) |= θA, where γ′ is the
assignment extending γ, such that γ′(xi) = di for all i = 1, . . . , ρ(A); a similar
convention is used for (S, γ, d) |= ψ and (S, γ, U1, · · · , Uρ(A)) |= θA.

Let us describe the roles of the formulas of a definition scheme ∆. Condition
(i) expresses that the values of the parameters specified by the assignment
γ satisfy a condition specified by ϕ. Condition (ii) defines the domain of the
output structure T as a subset of that of the input structure S. This restric-
tion is specified by the formula ψ(x1). Since this formula may also have the
parameters as free variables, the domain of T may depend on γ. Condition
(iii) defines the relations A of T by means of the formulas θA evaluated in S;
they also depend on γ. Similarly we define the set predicates of T . An example
will be given shortly.

We use the functional notation def∆(S, γ) for T because T is associated
uniquely with S, γ, and ∆ whenever it is defined, in other words, whenever
(S, γ) |= ϕ.

The transduction defined by a definition scheme ∆ is the mapping ST R(R) →
P(ST R(Q)) defined as follows:

def∆(S) = {T : T = def∆(S, γ) for some W -assignment γ in S}.

A mapping ST R(R) → P(ST R(Q)) is an MS transduction if it is equal to
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Fig. 3. The graph Gn in Example 5.1

def∆ for some definition scheme ∆. If the formulas in the considered definition
scheme are C2MS formulas or CMS formulas, then the associated mapping is
called a C2MS transduction or a CMS transduction respectively. Hence, like for
formulas, we have a hierarchy of classes of transductions: MS⊂C2MS⊂CMS.

A mapping τ : ST R(R) → P(ST R(Q)) is isomorphic to def∆ if, for each R-
structure S, every Q-structure T in def∆(S) is isomorphic to some Q-structure
T ′ in τ(S) and vice versa.

Example 5.1 (Local complementation). If G is a graph and X is a set
of independent vertices, then the local complementations associated with the
vertices in X can be performed in any order. We denote by G ∗X the graph
obtained by these local complementations. The mapping LC that associates
with G the set of graphs G∗X for all independent sets X of vertices is a C2MS
transduction defined by the definition scheme (ϕ, ψ, θedg) where

(i) ϕ is ∀x, y(x ∈ X ∧ y ∈ X =⇒ ¬ edg(x, y)) (expressing that X is a set of
independent vertices),

(ii) ψ is true (because V (G) = V (G ∗X) and so there is no need to restrict
the domain),

(iii) θedg(x, y) is (x 6= y)∧
[
edg(x, y) ⇔ Even ({z ∈ X : edg(x, z) ∧ edg(y, z)})

]
.

The mapping LC is thus a C2MS transduction with one parameter X. The set
predicate Even is necessary, because the mapping LC is provably not an MS
transduction; consider the graphs Gn with vertices 1, 2, . . . , n and edges 1-2,
1-i, 2-i for i = 3, . . . , n (Fig. 3). Let X ⊆ {3, . . . , n}. Then G ∗X = G if and
only if |X| is even. And in the graphs Gn, evenness is not MS expressible (see
[13]).

5.3 Fundamental properties of CMS transductions

The following proposition says that if T = def∆(S, γ), then the monadic
second-order properties of T can be expressed as monadic second-order prop-
erties of (S, γ). This is why definable transductions are useful.

Proposition 5.2. (1) Let ∆ = (ϕ, ψ, (θA)A∈Q) be a definition scheme, written
with a set W of parameters. Let V be a set of variables disjoint from W .
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For every formula β in MS(Q, V ), there is a formula β# in MS(R, V ∪W )
such that, for every R-structure S, every W -assignment γ in S, and every
V -assignment η in S, we have the following: (S, η ∪ γ) |= β# if and only if

(i) def∆(S, γ) is defined,
(ii) η is a V -assignment in def∆(S, γ), and
(iii) (def∆(S, γ), η) |= β.

(2) If ∆ is a C2MS (respectively CMS) definition scheme or β is a C2MS
(respectively CMS) formula, then the same holds for some C2MS (respectively
CMS) formula β#.

We call β# the backwards translation of β relative to the transduction def∆.
Note that, even if T = def∆(S, γ) is well-defined, the mapping η is not neces-
sarily a V -assignment in T , because the domain of T can be a proper subset
of DS.

Proof sketch. The formula is β# of the form ϕ1 ∧ β̂ where ϕ1 is independent
of β and β̂ is defined inductively from β. We let V = {u1, . . . , um, U1, . . . , Uq}.

Let ϕ1 be

ϕ ∧ ψ[u1] ∧ · · · ∧ ψ[um] ∧ ∀u(u ∈ U1 =⇒ ψ[u]) ∧ · · · ∧ ∀u(u ∈ Uq =⇒ ψ[u]).

This expresses that def∆(S, γ) is well-defined and η is a V -assignment in
def∆(S, γ). (We denote by ψ[u] the formula resulting from the substitution of
u for x1 in ψ).

We now define β̂ recursively. If β is x = y or x ∈ X or Even(X) or Cardp(X),

then β̂ is β.

If β is β1∧β2, or β1∨β2 or ¬β1, then β̂ is β̂1∧ β̂2, or β̂1∨ β̂2 or ¬β̂1 respectively.

If β is ∃u.β1, then β̂ is ∃u.(ψ[u] ∧ β̂1).

If β is ∃X.β1, then β̂ is ∃X.[∀u(u ∈ X =⇒ ψ[u]) ∧ β̂1].

Universal quantifications are treated as negated existential quantifications.

If β is A(y1, . . . , yρ(A)) for some relation symbol A, then β̂ is θA[y1, . . . , yρ(A)]
(where θA[y1, . . . , yρ(A)] is obtained by substituting y1, . . . , yρ(A) for x1, . . . , xρ(A)

in θA; the free variables of θA are among x1, . . . , xρ(A) and the parameters).

If β is A(Y1, . . . , Yρ(A)) for some set predicate A, then β̂ is θA[Y1, . . . , Yρ(A)]
(where θA[Y1, · · · , Yρ(A)] is obtained as above by substitution of variables).
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It is straightforward to verify that β̂ has the desired property by induction on
the structure of β.

Proposition 5.3 (Courcelle [11,13]).

(1) If a set of structures has a decidable MS satisfiability problem (respec-
tively C2MS satisfiability problem), then so has its image under an MS
transduction (respectively under a C2MS transduction).

(2) The composition of two MS transductions (respectively of two C2MS
transductions) is an MS transduction (respectively a C2MS transduction).

Proof. We only prove (1). Let C be a set of structures having a decidable
MS satisfiability problem, and τ be an MS transduction with parameters
Y1, . . . , Yp. For a given closed MS formula β, we want to know whether T |= β
for some T ∈ τ(C). Consider any T = def∆(S, γ) in τ(C) for S in C. Then, by
using Proposition 5.2, T |= β if and only if (S, γ) |= β# (since β is closed, the
set V is empty). Hence T |= β for some T ∈ τ(C) if and only if (S, γ) |= β#

for S in C and some γ. Equivalently we can express it as S |= ∃Y1, . . . , Yp.β
#

for S in C. Since C has a decidable MS satisfiability problem, we can decide
the existence of such a structure S. Therefore we can decide the existence of
a structure in τ(C) satisfying β.

Since every MS transduction is a C2MS transduction, the composition of an
MS transduction and a C2MS transduction is a C2MS transduction.

5.4 Seese’s Conjecture

Seese [49] asked the following question:

Is it true that if a set of graphs has a decidable monadic second-order theory,
then it is interpretable in a set of trees?

This question concerns infinite as well as finite graphs. We say that a class
C of structures has a decidable monadic second-order theory if there exists
an algorithm that decides whether an input MS formula ϕ is valid for all
structures in C. We observe that a formula ϕ is true in every structure in C if
and only if the formula ¬ϕ is not safisfied in any structure of C. Hence, C has
a decidable monadic theory if and only if it has a decidable MS satisfiability
problem.

Proposition 5.4. Let C be a set of graphs. The following are equivalent.

(i) The set C has bounded clique-width.
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(ii) The set C is the image of a set of trees under an MS transduction.
(iii) The set C is the image of a set of trees under a C2MS transduction.

Proof. The first equivalence is proved in [18,24]. One can also replace “trees”
by “binary trees” and “is the image” by “is contained in the image”. For the
last equivalence, let us consider a set C of graphs that is the image of a set
T of trees under a C2MS transduction η. There exist a set B of binary trees
and a bijective MS transduction β of B onto T . Hence C = η ◦ β(B), and
η ◦ β is a C2MS transduction. But on binary trees a linear order is definable
by an MS formula. Hence the atomic formulas Even(X) in the formulas of the
definition scheme of η ◦ β can be replaced by MS formulas, and η ◦ β also has
an MS definition scheme. Hence C is the image of a set of trees under an MS
transduction.

This proof also works for CMS instead of C2MS. One important consequence
of this result and Proposition 5.3.2 is that the image of a set of graphs of
bounded clique-width under a CMS transduction has bounded clique-width.
This is not immediate from the definitions of clique-width operations on the
one hand, and of CMS transductions on the other.

By Proposition 2.1, clique-width can be replaced by rank-width in this state-
ment. Clique-width is also defined for directed graphs [20] and Proposition 5.4
is valid for them.

Using the terminology of the present article, the conjecture by Seese [49] can
be stated as follows.

Conjecture. If a set of graphs has a decidable MS satisfiability problem,
then it is contained in the image of a set of trees under an MS transduction,
equivalently, it has bounded clique-width.

Any two isomorphic graphs satisfy the same formulas, have the same clique-
width and one is the image of a set of trees under an MS transduction if
and only if the other is. Concrete constructions will handle graphs but this
conjecture and the related statements actually concern isomorphism classes of
graphs.

This conjecture has been proved for various graph classes: planar graphs
[49], graphs of bounded degree, graphs without a fixed graph as a minor,
uniformly k-sparse graphs (meaning that every subgraph H satisfies that
|E(H)| ≤ k|V (H)|) [14], interval graphs, line graphs, partial orders of di-
mension 2 [16]. Furthermore, Courcelle [16] proved the following.

Proposition 5.5 (Courcelle [16]). Seese’s Conjecture is valid for graphs if
and only if it is valid for one of the following classes: bipartite graphs, directed
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graphs, comparability graphs, and partial orders.

We can ask a similar question for matroids. Hliněný and Seese [34] answered
positively for matroids representable over a fixed finite field.

One of the main results of this article is the proof of the following weakening
of the conjecture.

Theorem 5.6. If a set of graphs has a decidable C2MS satisfiability problem,
then it is contained in the image of a set of trees under an MS transduction,
or equivalently, it has bounded clique-width and bounded rank-width.

The proof of Proposition 5.5 yields the corresponding results for directed
graphs, partial orders, etc.

For all particular cases where the conjecture has been proved, the proofs use,
via some reductions based on MS transductions, the result of Robertson and
Seymour [45] saying that excluding a planar graph as a minor implies bounded
tree-width. Theorem 5.6 uses the analogous result by Geelen, Gerards, and
Whittle [30] which implies that bipartite graphs not containing certain graphs,
transformable by MS transductions into grids, as vertex-minors have bounded
rank-width. We will also give another proof using binary matroids and re-
sults by Geelen, Gerards, and Whittle [30] and Hliněný and Seese [34]. For
both proofs, connections between bipartite graphs and binary matroids are
essential.

5.5 Evaluation of CMS formulas

We explain why and how CMS formulas can be evaluated in linear time on
graphs of clique-width at most k that are given by k-expressions.

The quantifier-height qh(ϕ) of a CMS formula is defined as follows.

(i) qh(ϕ) = 0 if ϕ is atomic (of the form x = y or x ∈ X or Cardp(X) or
A(u1, · · · , un) or A(U1, · · · , Un)).

(ii) qh(¬ϕ) = qh(ϕ).
(iii) qh(ϕ1 ∧ ϕ2) = qh(ϕ1 ∨ ϕ2) = max{qh(ϕ1), qh(ϕ2)}.
(iv) qh(∃u.ϕ) = qh(∀u.ϕ) = qh(∃U.ϕ) = qh(∀U.ϕ) = 1 + qh(ϕ).

We denote by CpMSh(R, ∅) the set of CMS formulas of quantifier-height at
most h, written with the relation symbols in a finite set R and the set pred-
icates Cardq for q ≤ p. This set is infinite because if it contains a formula ϕ,
then it also contains all the formulas ϕ∨ϕ∨· · ·∨ϕ. However all these formulas
are equivalent. One can actually replace (by an algorithm) every formula ϕ in
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CpMSh(R, ∅) by a canonical formula Can(ϕ) in CpMSh(R, ∅) which is equiv-
alent to ϕ (so they has the same truth value in every R-structure). This can
be done in such a way that Can(CpMSh(R, ∅)) is finite. This classical fact is
described formally in [21]. The cardinality of Can(CpMSh(R, ∅)) is however a
tower of exponentials of height proportional to h.

For every p,R, h as above, and for every R-structure S, we let

Thp,R,h(S) = {ϕ ∈ Can(CpMSh(R, ∅)) : S |= ϕ }.

We call it the (p,R, h)-theory of S. Thus, there are finitely many (p,R, h)-
theories, and each of them is a finite set of formulas.

A k-graph G = (VG, EG, labG) is represented by the relational structure

〈VG, edgG, p1G, ..., pkG〉,

also denoted by G, where edgG is the edge relation and piG(x) holds when
lab(x) = i. The following proposition summarizes well-known results. Similar
forms have been published in [10,36].

Proposition 5.7 ([13, Theorem 5.7.5]). Let us fix a positive integer k.

(1) Let R = {edg, p1, ..., pk} with edg of arity two and pi of arity 1. For
all positive integers p, h, i, j (where i, j ∈ [k] and i 6= j), there exist
mappings fk,⊕, fk,ηi,j

, fk,ρi→j
on subsets of Can(CpMSh(R, ∅)) such that

for all k-graphs G and H,

Thp,R,h(ηi,j(G)) = fk,ηi,j
(Thp,R,h(G)),

Thp,R,h(ρi→j(G)) = fk,ρi→j
(Thp,R,h(G)),

Thp,R,h(G⊕H) = fk,⊕(Thp,R,h(G), Thp,R,h(H)).

(2) If a graph G is given as val(t) for some k-expression t, then Thp,R,h(G)
can be computed in time proportional to the size of t.

(3) Every CMS graph property can be evaluated on graphs of clique-width
at most k, given by a k-expression, in time proportional to the number
of vertices.

Proof. (1) Let us observe that the mapping ηi,j is a quantifier-free transduction
(a transduction defined by a definition scheme consisting of formulas without
quantifiers and without parameters). From the proof of Proposition 5.2, it
follows that the backwards translation (denoted by #) associated with ηi,j

does not increase quantifier-height and does not add new counting modulo set
predicates. Hence for every formula ϕ in CpMSh(R, ∅), ηi,j(G) |= ϕ if and only
if G |= ϕ#. This is equivalent to G |= Can(ϕ#). Furthermore, ϕ# belongs to
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CpMSh(R, ∅). Hence, we can take, for every subset Φ of Can(CpMSh(R, ∅)),

fk,ηi,j
(Φ) = {ϕ ∈ Can(CpMSh(R, ∅)) : Can(ϕ#) ∈ Φ}.

The proof is similar for ρi→j.

The case of ⊕ is a particular case of a result by Feferman and Vaught [26].
The proof is in [10, Lemma (4.5)]. We also refer the reader to the survey by
Makowsky [36] for the history and the numerous consequences of this result.

(2) Consider a graph G = val(t) where t is a k-expression.

Each set Thp,R,h(val(i)) can be computed from the definitions. Then, using
(1), we can compute Thp,R,h(val(t)) by induction on the structure of t. For
example, if t = t1 ⊕ t2, then we get

Thp,R,h(val(t)) = fk,⊕(Thp,R,h(val(t1)), Thp,R,h(val(t2))).

(3) To know whether val(t) |= ϕ, we compute by (2) the set Thp,R,h(val(t))
where p and h are the smallest integers such that ϕ ∈ CpMSh(R, ∅). Then
we determine whether Can(ϕ) belongs to Thp,R,h(val(t)) and this gives the
answer.

This method applies to optimization and enumeration (counting) problems
formalized in monadic second-order logic. We refer the reader to the survey
by Makowsky [36].

6 Logical expression of vertex-minors

6.1 From a graph to locally equivalent graphs

We will represent an isotropic system S = (V, L) by the structure 〈V,MemberS〉
(also denoted by S) where the ternary set predicate MemberS(X, Y, Z) holds
if and only if X, Y, Z are pairwise disjoint subsets of V and the vector a ∈ KV

is in L when

a(v) =


α if v ∈ X,
β if v ∈ Y,
γ if v ∈ Z,
0 otherwise.

Proposition 6.1. There exists an MS transduction that maps an isotropic
system S to the set of isotropic systems strongly isomorphic to S.
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Proof. A strong isomorphism of isotropic systems with base set V is defined
from a family Π = (πv)v∈V of linear permutations ofK. Since a linear permuta-
tion is nothing but a permutation of {α, β, γ}, there are six such permutations,
say π1, . . . , π6. Hence a family Π as above can be specified by six set variables
W1, . . . ,W6 forming a partition of V , with the condition that πv = πi if and
only if v ∈ Wi. With this assumption, it is then straightforward to write an
MS formula expressing MemberΠ(S) in terms of MemberS and W1, . . . ,W6.

We recall a construction from Proposition 4.3. Let α, β, γ be the vectors in
KV such that α(v) = α, β(v) = β, and γ(v) = γ for all v ∈ V . If G = 〈V, edg〉
is a graph, then we denote by S(G) the isotropic system S(G,α, β). This
definition of S(G) corresponds to the particular choice of the pair (α, β) of
supplementary complete vectors.

Proposition 6.2.

(1) The set predicate MemberS(G) is expressible in 〈V, edg〉 by a C2MS for-
mula.

(2) The mapping from a graph G to the isotropic systems S(G) is a C2MS
transduction.

(3) There is a C2MS transduction that maps a graph G to the set of isotropic
systems strongly isomorphic to S(G), which is the set of isotropic systems
having G as a fundamental graph.

Proof. (1) We first show how to define S(G) = (V, L) in logical terms. Let
bGv = α[nG(v)] + β[{v}]. By definition of S(G), the set {bGv : v ∈ V (G)} is a
basis of L. We represent a vector c ∈ KV by a triple (X,Y, Z) of subsets of
V such that X, Y , Z are pairwise disjoint and c = α[X] + β[Y ] + γ[Z]. The
vector α[X] + β[Y ] + γ[Z] is in L if and only if there exists a subset U of V
such that

∑
x∈U b

G
x = α[X] + β[Y ] + γ[Z].

From the definitions, we have

bGx (v) =


α if x is adjacent to v,

β if x = v,

0 otherwise.

Thus

∑
x∈U

bGx (v) =


β if v ∈ U and |nG(v) ∩ U | is even (because α+ α = 0),

γ if v ∈ U and |nG(v) ∩ U | is odd (because α+ β = γ),

0 if v /∈ U and |nG(v) ∩ U | is even,

α if v /∈ U and |nG(v) ∩ U | is odd.
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From these observations, it is easy to write a C2MS formula expressing these
conditions.

(2) The mapping S from graphs to isotropic systems is thus a C2MS trans-
duction.

(3) From S(G), we obtain all strongly isomorphic isotropic systems by ap-
plying the MS transduction of Proposition 6.1. The composition of these two
transductions is a C2MS transduction.

Remark. In the definition of S(G) we have chosen the particular pair (α, β) of
supplementary vectors so that it is easy to encode S(G) by logical formulas
because all components are the same. By taking any other pair, we obtain an
isotropic system strongly isomorphic to S(G). The transformation of S(G) into
the isotropic systems strongly isomorphic to it is done by using Proposition
6.1. Applying a family Π of permutations to S(G) is exactly the same thing
as changing (α, β) into another pair of supplementary vectors.

We now consider the inverse transformation.

Proposition 6.3. The mapping from an isotropic system to the set of its
fundamental graphs is an MS transduction ν.

Proof. Let S = (V, L) be an isotropic system. Let a be a vector in KV , de-
scribed by (Xa, Ya, Za). We can express that the vector a is complete by the
condition V = Xa ∪ Ya ∪ Za. (The corresponding logical formula is ∀x, x ∈
Xa ∨ x ∈ Ya ∨ x ∈ Za, but we omit the detailed form.) The vector a is an
Eulerian vector of S if a is complete and a[U ] /∈ L when U is a nonempty
subset of V . This is equivalent to the following MS logic formula:

(V = Xa ∪ Ya ∪ Za)∧
∀X∀Y ∀Z

(
X ⊆ Xa, Y ⊆ Ya, Z ⊆ Za,MemberS(X, Y, Z) ⇒ X = Y = Z = ∅

)
So we can thus “select” an Eulerian vector and express by an MS formula that
it is actually Eulerian. The parameters of the transduction that we are defining
are the variables Xa, Ya, Za representing an Eulerian vector. By Proposition
4.3, for every v in V , there exists a unique vector bv in L such that

bv(v) 6= 0 and bv(w) ∈ {0, a(w)} for w 6= v.

The fundamental graph of S with respect to the Eulerian vector a is a graph
(V,E) such that two vertices v and w are adjacent if bv(w) 6= 0. (Differ-
ent graphs are obtained from other Eulerian vectors, but they are all locally
equivalent).

The translation in MS logic is easy. We let ν1(X, Y, Z,Xa, Ya, Za, v) be the
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formula:

Member(X, Y, Z) ∧ v ∈ X ∪ Y ∪ Z
∧∀w[w 6= v ⇒ {(w ∈ X ⇒ w ∈ Xa)∧(w ∈ Y ⇒ w ∈ Ya)∧(w ∈ Z ⇒ w ∈ Za)}].

It expresses that (X,Y, Z) represents bv. Now two vertices v and w in the
fundamental graph G are adjacent if and only if

v 6= w ∧ ∃X, Y, Z[ν1(X, Y, Z,Xa, Ya, Za, v) ∧ w ∈ X ∪ Y ∪ Z].

Hence we have constructed an MS transduction ν that transforms an isotropic
system given with a triple (Xa, Ya, Za) of sets representing an Eulerian vector
into the corresponding fundamental graph.

Corollary 6.4. There exists a C2MS transduction that maps a graph G to
the set of graphs locally equivalent to G.

Proof. In Proposition 6.2, we constructed a C2MS transduction S that maps
a graph to an isotropic system. In Proposition 6.3, we obtained an MS trans-
duction ν with parameters Xa, Ya, Za that maps an isotropic system to the set
of its fundamental graphs. By results recalled in Section 4, the composition
ν ◦ S of these transductions is the desired one. It is a C2MS transduction by
Proposition 5.3.2, with parameters Xa, Ya, Za.

6.2 From a graph to its vertex-minors

Theorem 6.5.

(1) There exists a C2MS transduction µ that maps a graph to the set of its
vertex-minors.

(2) For every graph H, there is a closed C2MS logic formula expressing that
a graph contains a vertex-minor isomorphic to H.

Proof. (1) A graph H is a vertex-minor of a graph G if and only if H is an
induced subgraph of a graph G′ that is locally equivalent to G. Hence the map-
ping from a graph to the set of its vertex-minors is the composition µ of two
transductions: the C2MS transduction in Corollary 6.4 and the MS transduc-
tion with a parameter U that maps a graph to the set of its induced subgraphs.
Hence their composition is a C2MS transduction with four parameters Xa, Ya,
Za, and U .

(2) For every graph H with vertices 1, . . . , n, we can construct a closed MS
formula κH that is valid in a graph if and only if this graph is isomorphic to
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Fig. 4. Obstructions for circle graphs

H. This formula is written as following.

∃x1, . . . , xn[“x1, . . . , xn are pairwise distinct”

∧ “every vertex is equal to xi for some i”

∧ “for all i, j, edg(xi, xj) ⇔ i and j are neighbors in H”]

This formula is actually a first-order formula, because no set quantification
is used. The backwards translation relative to the transduction µ in (1) is
a C2MS formula κ#

H with free variables Xa, Ya, Za, and U . It is valid on a
graph G if and only if its vertex-minor defined by the sets Xa, Ya, Za, and
U (“defined” in the sense of the first part of the corollary) is isomorphic to
H. Hence G has a vertex-minor isomorphic to H if and only if it satisfies
∃Xa, Ya, Za, U.κ#

H .

Let us discuss one application of Theorem 6.5. A circle graph is the intersection
graph of a set of chords of a circle so that vertices are chords of a circle and
two vertices are adjacent if and only if the corresponding chords intersect.

Corollary 6.6. There exist C2MS formulas expressing that a graph is a circle
graph, a distance-hereditary graph, or a graph locally equivalent to a tree.

Proof. Bouchet [6] proved that a graph is a circle graph if and only if it has
no vertex-minor isomorphic to one of W5,W7 or Y6 shown in Fig. 4. The result
follows then from Theorem 6.5.

The articles by Bouchet [4,6] show that a graph is distance-hereditary if and
only if it does not have a vertex-minor isomorphic to C5. We obtain thus the
result in the same way.

For graphs locally equivalent to trees, the result follows from the definition
by Theorem 6.5 and the fact [13] that the class of trees is characterized by an
MS formula.

Remark. (1) The case of distance-hereditary graphs is given as an example
of a set of graphs characterized by known excluded vertex-minors. There are
not so many yet. This set is also characterized by an infinite set of excluded
induced subgraphs, namely the cycles Cn for n ≥ 5 and three particular graphs
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Fig. 5. G is a vertex-minor of a tree T , but not locally equivalent to a tree

(Bandelt and Mulder [1]). A definition of this set by an MS formula is easily
derivable from this characterization because the infinitely many cycles Cn for
n ≥ 5 can easily be characterized by a unique MS formula.

(2) The set of graphs locally equivalent to trees is not closed under taking
vertex-minors. By using the characterization by Bouchet [4] one can prove
that the graph G in Fig. 5 is not locally equivalent to a tree but it is a vertex-
minor of the tree T in Fig. 5. One might ask for a characterization of the set
of vertex-minors of trees. Since these graphs have rank-width at most 1, they
are characterized by a finite set of excluded vertex-minors.

Example 6.7. Let G be the “house” with vertices 1, 2, 3, 4, 5 forming the
cycle 1-2-3-4-5-1, augmented with the edge 2-5 (Fig. 6).

Let us illustrate the isotropic system S(G) = S(G,α, β). If we use the con-
struction of Proposition 6.2, we obtain the isotropic system S = ({1, 2, 3, 4, 5}, L)
where L is a subspace of KV with the following basis:

bG1 = (β, α, 0, 0, α), bG2 = (α, β, α, 0, α), bG3 = (0, α, β, α, 0),

bG4 = (0, 0, α, β, α), bG5 = (α, α, 0, α, β).

We note that every nonzero linear combination of them has an entry hav-
ing β or γ and therefore α = (α, α, α, α, α) is an Eulerian vector. And so
{bG1 , bG2 , bG3 , bG4 , bG5 } is a fundamental basis of S(G) with respect to α.

The subspace L contains 32 vectors spanned by bG1 , bG2 , bG3 , bG4 , bG5 . We list
some of them here.

bG1 + bG3 + bG4 = (β, 0, γ, γ, 0), bG2 + bG3 + bG5 = (0, β, γ, 0, γ),

bG1 + bG2 = (γ, γ, α, 0, 0), bG1 + bG5 = (γ, 0, 0, α, γ),

bG2 + bG4 + bG5 = (0, γ, 0, γ, β).
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Fig. 6. G and C in Example 6.7
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It is straightforward to observe that the above five vectors again form a basis.
Moreover, we can see that γ = (γ, γ, γ, γ, γ) is an Eulerian vector. In fact,
{bG1 + bG3 + bG4 , b

G
2 + bG3 + bG5 , b

G
1 + bG2 , b

G
1 + bG5 , b

G
2 + bG4 + bG5 } is the fundamental

basis of S(G) with respect to γ. The corresponding fundamental graph C with
respect to the Eulerian vector γ is given in Fig. 6.

We can transform C into G by the following sequence of local complementa-
tions: 1, 4, 2, 5, 3. The successive Eulerian vectors are

(γ, γ, γ, γ, γ) for C,

(α, γ, γ, γ, γ) for C ∗ 1,

(α, γ, γ, α, γ) for C ∗ 1 ∗ 4,

(α, α, γ, α, γ) for C ∗ 1 ∗ 4 ∗ 2,

(α, α, γ, α, α) for C ∗ 1 ∗ 4 ∗ 2 ∗ 5,

(α, α, α, α, α) for C ∗ 1 ∗ 4 ∗ 2 ∗ 5 ∗ 3 = G.

6.3 Computing a set of excluded vertex-minors

We recalled in Section 2 that the vertex-minor relation is a well-quasi-ordering
of the set of graphs of rank-width at most k. It follows by standard arguments,
that if a set L of graphs of bounded clique-width is closed under taking vertex-
minors and isomorphisms, then it is characterized by a finite set X of excluded
vertex-minors (so that a graph belongs to L if and only if none of its vertex-
minors is isomorphic to a graph in X).

How can we compute this finite set? Does there exist an algorithm that would
compute this finite set by using input the bound k and a finite formal descrip-
tion of the set L, typically a logical formula?

This question is not trivial. For the graph minor relation, Courcelle, Downey,
and Fellows [17] proved that that for a minor-closed set L of graphs a mem-
bership algorithm for L is not sufficient to compute the finite set OM(L) of
excluded minors. Formally, there is no algorithm taking as input an MS for-
mula or a Turing Machine characterizing L and producing within a finite time
the finite set OM(L) whenever L is minor-closed.

The following proposition may help in particular cases to compute finite sets of
excluded vertex-minors. For every set L of graphs closed under isomorphism,
let OV M(L) be the set of graphs not in L whose all proper vertex-minors are in
L. Proper means that at least one vertex is deleted. For every set K of graphs,
let ForbV M(K) be the set of graphs that have no vertex-minor isomorphic to a
graph in K. If L is closed under isomorphism and taking vertex-minors, then

L = ForbV M(OV M(L)). (6.1)
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We are interested in the computation of OV M(L) when this set is finite up to
isomorphism, and in its replacement by a smallest possible set.

Lemma 6.8. Let ξ be a closed CMS formula and let L = {G : G |= ξ}.
Then we can algorithmically construct a closed CMS formula ξ′ such that
OV M(L) = {G : G |= ξ′}.

Proof. We will use the C2MS-transduction µ of Theorem 6.5 that maps a
graph G to the set of its vertex-minors. The parameters of this transduction
are Xa, Ya, Za, and U . Let (ϕ, ψ, θedg) be the definition scheme of µ. Then ϕ
is the MS formula with free variables Xa, Ya, Za, and U , expressing that the
parameters are correctly chosen so that a vertex-minor is defined from them
by µ. The defined vertex-minor is proper if and only if U 6= V (G). We let ξ#

be the backwards translation of ξ with respect to µ.

So the desired formula ξ′ is ¬ξ ∧ ∀Xa, Ya, Za, U [ϕ ∧ (∃x, x /∈ U) =⇒ ξ#].

Note that this construction is correct even if L is not closed under taking
vertex-minors. When it is closed under taking vertex-minors, then (6.1) holds.
In addition, if L has bounded rank-width, then OV M(L) is finite up to isomor-
phism by Theorem 2.5. Our objective is to find a “small” finite set K such
that L = ForbV M(K).

It is clear that we do not need two isomorphic graphs in K. Furthermore,
we do not need two locally equivalent graphs in K because if a graph H is
vertex-minor of a graph locally equivalent to G, then H is isomorphic to a
vertex-minor of G; hence we can take K as a subset of OV M(L) such that for
each graph G in OV M(L), there is a unique graph in K locally equivalent to
a graph isomorphic to G. We call such a set K a minimal set of vertex-minor
obstructions of L.

We now wish to do this by an algorithm.

Lemma 6.9. For every integer k and every closed CMS formula ϕ, we can
decide whether the set L = {G : cwd(G) ≤ k,G |= ϕ} is finite up to isomor-
phism. Moreover, there exists an algorithm enumerating L when it is finite.
In other words, we can compute an integer m from k and ϕ such that either
all graphs in L have at most m vertices or L has arbitrarily large graphs.

Proof sketch. For each k, the graphs of clique-width at most k are the values
of the finite terms built with a finite set Fk of binary operations and nullary
symbols where 1, . . . , k are the labels (see Section 2). The nullary symbol i
denotes the graph with a single vertex labeled by i, for each i = 1, . . . , k. There
are only finitely many inequivalent compositions of the unary operations with
k labels that relabel vertices (denoted by ρi→j) and create edges (denoted by
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ηi,j). (Two compositions are equivalent if they define the same function.) For
each equivalence class of these compositions, we select a representative λ and
we define a binary operation ⊗λ by G ⊗λ H = λ(G ⊕ H). Hence we obtain
the desired finite signature Fk consisting of k nullary symbols and the binary
operations ⊗λ.

The value of each term t in T (Fk) is a graph val(t) of clique-width at most k,
and the number of vertices of val(t) is equal to the number of occurrences of
nullary symbols in t. The height of t (the length of a longest branch from the
root to a leaf when considering t as a rooted tree) is between log2(|V |) and
|V |, where V is the set of vertices of val(t). Every graph of clique-width at
most k is the value of a term in T (Fk), and there are only finitely many terms
denoting a graph.

The set {t ∈ T (Fk) : val(t) |= ϕ} is the set of terms in T (Fk) whose values
satisfy the closed CMS formula ϕ and so it is the set of terms having values
in L = {G : cwd(G) ≤ k,G |= ϕ}. This set of terms is defined by a finite tree-
automaton A(k, ϕ) that we can construct from k and ϕ by an algorithm: this
is the basic fact underlying the existence of algorithms which verify in linear
time the graph properties specified in CMS logic, on graphs of clique-width at
most k, given as values of terms in T (Fk). However, its number of states is a
tower of exponentials of height proportional to the quantifier depth of ϕ (see
Section 5.5).

The so-called “Pumping Lemma” for tree-automata states that, if a tree-
automaton accepts a term of height more than the number of states, then it
accepts infinitely many terms. (Terms are usually called “trees” in automata
theory.) It follows that we can decide whether the set of terms accepted by a
tree-automaton is finite, and if it is finite, then we can enumerate the accepted
terms by an algorithm. For definitions and results on tree-automata, the reader
is referred to the book by Comon et al. [7], available on-line.

The set of terms defined by A(k, ϕ) is finite if and only if the set L of graphs
is finite up to isomorphism. This can be decided, and if it is finite, then the
terms accepted by A(k, ϕ) can be enumerated. By evaluating these terms, we
obtain at least one graph isomorphic to each graph in L. It remains to remove
graphs which have isomorphic copies in the list (because two different terms
may define isomorphic graphs).

Let m = 2N where N is the number of states of A(k, ϕ). If a graph in L has
more than 2N vertices, it must be defined by a term in T (Fk) of height more
than N and therefore it follows that A(k, ϕ) accepts infinitely many terms.
The values of these terms are graphs with an unbounded number of vertices,
since the number of vertices of a graph is at least the height of a term T (Fk).
This proves the last assertion.
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Proposition 6.10. There exists an algorithm that takes as input an integer
k and a closed CMS formula ξ and produces a minimal set of vertex-minor
obstructions for L = {G : G |= ξ} if this set is closed under taking vertex-
minors and has rank-width at most k. In addition if these conditions are not
satisfied, then the algorithm stops but reports a failure or produces irrelevant
output.

Proof. Let us assume that L = {G : G |= ξ} has rank-width at most k.
Then the graphs in OV M(L) have rank-width at most k + 1. Hence they have
clique-width at most f(k), where f(k) = 2k+2 − 1 by Proposition 2.1. We let
ξ′ be a closed CMS formula obtained by Lemma 6.8. Then

OV M(L) = {G : G |= ξ′} = {G : cwd(G) ≤ f(k), G |= ξ′}.

If L is closed under taking vertex-minors, then OV M(L) is finite up to isomor-
phism and can be computed by the algorithm of Lemma 6.9, applied to the
formula ξ′ and the integer f(k). Computed means that one can construct a
finite subset K of OV M(L) that contains exactly one graph in each isomor-
phism class. Then, this set can be reduced into a subset K ′ of K such that for
any graph G in OV M(L), K ′ contains exactly one graph isomorphic to a graph
locally equivalent to G. It is clear that K ′ is a minimal set of vertex-minor
obstructions for L.

If the conditions on L are not satisfied, then the algorithm may report that
{G : cwd(G) ≤ f(k), G |= ξ′} is infinite or produce a finite set K which does
not satisfy L = ForbV M(K).

The algorithms of Lemma 6.9 and Proposition 6.10 are clearly not imple-
mentable. They are interesting as computability results.

6.4 Recognizing graphs of rank-width at most k

By Corollary 2.6, for every fixed k, there are only finitely many graphs, such
that a graph does not contain any of them as a vertex-minor if and only
if it has rank-width at most k. By Theorem 6.5, for every fixed graph H,
there is a C2MS formula expressing that H is isomorphic to a vertex-minor
of an input graph. In Theorem 2.2, we have an O(n9 log n)-time algorithm
that either confirms that the n-vertex input graph has rank-width at least
k + 1 or confirms that the rank-width is at most 3k + 1 and outputs a rank-
decomposition of width at most 3k + 1. Oum and Seymour [42] provided an
algorithm that converts the rank-decomposition into a k-expression. In Section
5.5, we recalled that every property specified by a CMS formula can be checked
in linear time on graphs given by a k-expression.
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By combining all of these, we get the following.

Theorem 6.11. For every fixed k, there is an O(n9 log n)-time algorithm to
check that the n-vertex input graph has rank-width at most k.

Instead of Theorem 2.2, we can use another algorithm by Oum [41] that runs
in time O(n3) and therefore we can produce in this theorem an algorithm
running also in time O(n3).

7 Proof of Seese’s Conjecture via vertex-minors

We will prove the following theorem in this section.

Theorem 5.6. If a set of graphs has a decidable C2MS satisfiability problem,
then it has bounded rank-width and bounded clique-width.

To prove this, we will use a family of bipartite graphs Sk for k > 1 and build
(2k − 2)× k rectangular grids by a fixed MS transduction. The graph Sk has
the following property.

Proposition 7.1. If L is a set of bipartite graphs of unbounded rank-width,
then for each k there is a graph G in L with a vertex-minor isomorphic to Sk.

Proof. Suppose not. Then, there is an integer k such that no vertex-minors of
graphs in L are isomorphic to Sk. By Corollary 3.5, there is an integer l such
that every graph in L has rank-width at most l − 1. Contradiction.

Proposition 7.2. There exists an MS transduction τ such that the (2k−2)×k
grid belongs to τ(Sk) for all k > 1.

Proof. The idea is to construct the transduction τ as the composition of several
transductions. We do not give the explicit formulas but we explain how they
can be obtained. We are given Sk as 〈V,A,B, edg〉. Our aim is to build a
(2k − 2)× k grid in Fig. 7 from Sk.

Step 1 : Ordering A and B.

We first define by MS formulas the orderings of A and B defined by the indices.
(The sets A and B are given in 〈V,A,B, edg〉 as unordered sets; the indices are
used to define Sk shortly, but are not expressed in the relational structure).
We assume that {b1} is given by means of a parameter, say Y .

Two elements b and b′ of B are consecutive if b = bi and b′ = bi+1 or vice-versa.
It is easy to see that b and b′ are consecutive if and only if |nG(b)∆nG(b′)| = 2.
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Fig. 7. Grid to be obtained from Sk by an MS transduction

It follows that we can determine the ordering on B such that b < b′ if b = bi
and b′ = bj for some j > i, because we know b1 already from Y . To see this,
we will say that b < b′ if b 6= b′ and either b = b1 or there exists a subset X
of B containing b1 and b but not b′ such that each of b and b1 is consecutive
to exactly one element of X, and each element of X \ {b, b1} is consecutive
to exactly two elements of X. This characterization is expressible by an MS
formula.

The analogous strict linear order < on A is characterized as follows. We say
that a < a′ if there exist a neighbor b of a and a neighbor b′ of a′ such
that b < b′ and either a is not adjacent to b′ or a′ is not adjacent to b. This
ordering is also expressible by an MS formula. We can thus transform Sk into
the structure S ′k = 〈V,A,B,<, edg〉 by an MS transduction τ1.

Step 2 : Some edge modifications.

The edges biai and biai+k−1 are called minimal and maximal respectively.
Each b in B is incident with the unique minimal (respectively maximal) edge,
the A-vertex of which is the least (greatest) neighbor of b, where “least” and
“greatest” are relative to <. On the drawing of S4 in Fig. 8, the minimal edges
are vertical. The maximal edges are oblique and drawn with a thick line. These
edges can be identified by MS formulas evaluated in S ′k. We build Tk from S ′k
as follows:

1) We add edges between each bi and ai+k for i = 1, . . . , k2 − 2k. This is
possible because MS formulas can identify bk2−k (as the maximal element of
B), and thus ak2−k (linked to bk2−k by a minimal edge), whence also bk2−2k+1

linked to ak2−k by a maximal edge. Hence an MS formula can identify bk2−2k

as the predecessor of bk2−2k+1. An MS formula can identify for each b the
corresponding ai+k−1 where b = bi, i ∈ {1, . . . , k2 − 2k}. The new edges to be
added between bi and ai+k can thus be defined by an MS formula, since one
can determine ai+k as the successor of ai+k−1 in A.

2) We delete all edges except the minimal edges and of course, the edges added
in 1).
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Fig. 8. Getting the grid from Sk

3) We delete the isolated vertices, which are the vertices ai for i > k2 − k.

We get thus by an MS transduction τ2 , a graph Tk, equipped with the order-
ings < of A and B.

Step 3 : Making Tk into a rectangular grid.

The graph Tk consists of k disjoint paths with 2k−2 vertices. To make Tk into
the (2k−2)×k grid, it suffices to add edges between ai and ai+1, and between
bi and bi+1 for each i ∈ I defined as I = {1, . . . , k2−k}\{pk : p = 1, . . . , k−1}.
The edges added during this step are the horizontal lines in the 6× 4 grid of
Fig. 8.

This can be done from the set U = {ai, bi : i ∈ I}. This set can be “guessed”;
it is given as a parameter to the transduction τ3 we are defining. This trans-
duction also deletes the orderings <.

We let τ be the transduction τ3 ◦ τ2 ◦ τ1. It uses actually two parameters,
Y intended to specify b1 (by Y = {b1}) and the above set U . Whenever the
sets Y and U are “correctly chosen” (so that the above construction works as
described) for a graph H isomorphic to Sk, then the structure τ(H, Y, U) is
the (2k−2)×k grid. If they are not correctly chosen, then a graph that is not
a grid may be produced. But we only demand that τ produces grids among
other graphs we need not care about. Hence, we are done.

For a graph G = (V,E), we define B(G) as a bipartite graph on a vertex set
V × {1, 2, 3, 4} such that

(i) if v ∈ V and i ∈ {1, 2, 3} then (v, i) is adjacent to (v, i+ 1) in B(G),
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(ii) if vw ∈ E then (v, 1) is adjacent to (w, 4) in B(G).

Lemma 7.3 (Courcelle [16]). The mapping from a graph G to {B(G)} is
an MS transduction.

Proof. The transformation of G into B(G) is an MS transduction that du-
plicates a fixed number of times (here four times) a given structure before
defining the new structure inside it. (This technical notion is not defined in
this paper. The reader is referred to [11,13,16].)

For a set C of graphs, let B(C) be the set {B(G) : G ∈ C}. The above lemma
implies that if C has bounded clique-width, then B(C) has bounded clique-
width by Proposition 5.4. For the converse, Courcelle [16] proved that if a set C
of graphs has unbounded clique-width, then B(C) has unbounded clique-width
as well by means of several lemmas in his paper using MS transductions. In
order to facilitate the reading of the present article, we reproduce the direct
proof by Oum [41]. We remark that Oum [38] showed that rwd(B(G)) =
max(2 rwd(G), 1), but the statement presented here is enough for our result
and the proof is conceptually simpler.

Lemma 7.4 (Oum [41]). For a graph G = (V,E), we have rwd(G) ≤
4 rwd(B(G)).

Proof. Let (T ′,L′) be a rank-decomposition of B(G) of width k = rwd(B(G)).
Let T be a minimum subtree of T ′ containing all leaves in L′(V × {1}) and
let L : V → {t : t is a leaf of T} is the bijection defined by L(v) = L′((v, 1)).
We claim that (T,L) is a rank-decomposition of G of width at most 4k.

For four subsets A1, A2, A3, A4 of V , we denote A1|A2|A3|A4 = (A1 × {1}) ∪
(A2×{2})∪(A3×{3})∪(A4×{4}). Let e be an edge of T . Since T is a subtree
of T ′, e is also an edge of T ′. Let (X, Y ) be a partition of the set of leaves of T ′

induced by the connected components of T ′ \ e. Let L′−1(X) = A1|A2|A3|A4.
Let Ai = V \Ai for i ∈ {1, 2, 3, 4}. Because the width of (T ′,L′) is k, we have

cutrkB(G)(A1|A2|A3|A4) = cutrk∗B(G)(A1|A2|A3|A4, A1|A2|A3|A4) ≤ k.
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We now claim that

r1 = cutrk∗B(G)(A1|A2|∅|∅, A1|A2|∅|∅) = |A1∆A2|. (7.1)

r2 = cutrk∗B(G)(∅|A2|A3|∅, ∅|A2|A3|∅) = |A2∆A3|. (7.2)

r3 = cutrk∗B(G)(∅|∅|A3|A4, ∅|∅|A3|A4) = |A3∆A4|. (7.3)

To see this, we look at the matrix defining the cut-rank functions.

r1 = rank




A1 × {1} A2 × {2}
A1 × {1} 0 (0-1 submatrix)

A2 × {2} (0-1 submatrix) 0




= cutrk∗B(G)(A1 × {1}, A2 × {2}) + cutrk∗B(G)(A2 × {2}, A1 × {1}).

It is easy to observe that cutrk∗B(G)(A1 × {1}, A2 × {2}) = |A1 \ A2| and

cutrk∗B(G)(A2×{2}, A1×{2}) = |A2\A1|. Since |A1\A2|+|A2\A1| = |A1∆A2|,
the equation (7.1) is proved. Similarly (7.2) and (7.3) are true.

Since ri ≤ cutrkB(G)(A1|A2|A3|A4), we have |Ai∆Ai+1| ≤ k for each i ∈
{1, 2, 3}. Adding these inequalities for all i, we obtain that |A1∆A4| ≤ 3k.

Let M be the adjacency matrix of G. We observe that rank(M [A4, A1]) =
cutrk∗B(G)(A4 × {4}, A1 × {1}) ≤ cutrkB(G)(A1|A2|A3|A4) ≤ k. Then we have
the following bound of cutrkG(A1):

cutrkG(A1) = rank(M [A1, A1])

≤ rank(M [A4 ∪ (A1∆A4), A1])

≤ rank(M [A4, A1]) + rank(M [A1∆A4, A1]) ≤ 4k.

Therefore the width of (T,L) is at most 4k.

Proof of Theorem 5.6. Let C be a set of graphs having a decidable C2MS sat-
isfiability problem and unbounded rank-width. We will get a contradiction.

The set B(C) has unbounded rank-width by the above lemma. By applying
the C2MS transduction µ of Theorem 6.5 to B(C), we obtain an infinite set of
graphs Sk among the vertex-minors of graphs in B(C) by Corollary 3.5. Then
by applying the MS transduction τ of Proposition 7.2, we get an infinite set
of (2k − 2)× k grids.

We now observe that these transformations preserve the decidability of C2MS
satisfiability, because B and τ are MS transductions, and µ is a C2MS trans-
duction. But a set of graphs containing (2k − 2)× k grids for infinitely many
k has an undecidable MS satisfiability problem by Seese’s Theorem [49]. We
have reached a contradiction.
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Fig. 10. Sketch of the first proof

Hence if C has a decidable C2MS satisfiability problem, it must have bounded
rank-width. It has also bounded clique-width.

The proof is illustrated on Fig. 10: (1) is the MS transduction of Lemma 7.3,
(2) is the vertex-minor reduction expressible by C2MS formulas by means of
isotropic systems (Theorem 6.5), and (3) is the MS transduction constructed
in Proposition 7.2. The transformation from bipartite graphs to isotropic sys-
tems is a C2MS transduction (Proposition 6.2) and the transformation from
isotropic systems to their fundamental graphs is an MS transduction (Propo-
sition 6.3).

Corollary 7.5. There exists a C2MS transduction θ such that, if C is a set
of graphs of unbounded clique-width or of unbounded rank-width, then θ(C)
contains infinitely many square grids.

Proof. We let θ = Ind ◦ τ ◦ µ ◦ B where Ind is the MS transduction that
associates with a graph the set of its induced subgraphs. It transforms the
(2k − 2)× k grid into a set of graphs containing the k × k grid.

By using an MS transduction encoding directed graphs into bipartite graphs
defined in [16], we can obtain a similar statement for directed graphs.

We now discuss extensions of Theorem 5.6.

Definition 7.6 (MS orderable classes of graphs (Courcelle [12])). We
say that a class C of graphs is MS orderable if there exists a pair

(δ(X1, . . . , Xn), σ(x, y,X1, . . . , Xn))

of MS formulas such that:

1) For every graph G in C, there exist sets of vertices X1, . . . , Xn such that

(G,X1, . . . , Xn) |= δ,
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2) For every n-tuple as above, the binary relation defined by

xRy if and only if (G, x, y,X1, . . . , Xn) |= σ

is a linear ordering of the set of vertices of G.

Theorem 7.7. If a set of graphs (respectively of directed graphs) is MS or-
derable and has a decidable MS satisfiability problem, then it has bounded
clique-width.

Proof. If a set C of (directed) graphs is MS orderable and has a decidable MS
satisfiability problem, then its C2MS satisfiability problem is decidable (and
even the CMS one is), and then we can conclude using Theorem 5.6.

The proof of this claim is as follows. Let ϕ be a CMS formula for which we
ask whether it is satisfied by some graph in C. Then we can rewrite it into an
MS formula ϕ′ by expressing the cardinality predicates in term of the linear
order defined by σ. The formula ϕ′ has thus free variables X1, . . . , Xn. Then,
for every graph G in C,

G |= ϕ if and only if G |= ∃X1, . . . , Xn(δ(X1, . . . , Xn) ∧ ϕ′).

From the initial hypothesis and since the formula ∃X1, . . . , Xn(δ(X1, . . . , Xn)∧
ϕ′) is MS (and not CMS), one can decide whether there exists a graph G in
C such that G |= ϕ.

Example 7.8. Consider the set D of directed graphs without circuits having a
directed Hamiltonian path. The relation “x = y or there exists a directed path
from x to y” is a linear ordering and it is definable by an MS formula since
MS formulas can express transitive closure. Hence D satisfies the conditions
of Theorem 7.7 and therefore Seese’s conjecture is true on D.

The validity of the conjecture for D cannot be established with the methods
of Courcelle [16], by reduction to the result of Robertson and Seymour [45] on
excluded planar minors, because these methods apply only to sets of graphs
having at most 2O(n log(n)) graphs with n vertices. But D has 2(n−2)(n−3)/2 di-
rected graphs with n vertices.

Theorem 5.6 extends easily to countable graphs. We first adapt the logical
language. The Even predicate is only meaningful for finite sets. Hence, for
countable structures, we will use the logical language Cf

2MS containing the
following set predicates: Finite(X) which says that X is finite, and Even(X)
which says that X is finite and has even cardinality. Then we can express that
the cardinality of a set is odd by the formula Finite(X) ∧ ¬Even(X).

The extension of Theorem 5.6 to countable graphs rests on the “compact-
ness” theorem by Courcelle [15] stating that a set of countable graphs has
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bounded clique-width if and only if the set of all its finite induced subgraphs
has bounded clique-width. We refer the reader to this paper for the definition
of the clique-width of countable graphs. The above characterization is enough
for the following

Theorem 7.9. If a set of finite or countable graphs has a decidable Cf
2MS

satisfiability problem, then it has bounded clique-width.

Proof. The mapping associating with a graph the set of its finite induced
subgraphs is a Cf

2MS transduction, because the finiteness set predicate makes
it possible to restrict graphs to their finite induced subgraphs. Hence the set
of finite induced subgraphs of the graphs in the set also has a decidable C2MS
satisfiability problem (by Proposition 5.3.1), hence bounded clique-width. So
the set has bounded clique-width by the compactness theorem by Courclle
[15].

8 Seese’s Conjecture proved via matroids

We give another proof of Theorem 5.6 based on binary matroids instead of
isotropic systems and using results by Hliněný and Seese [34]. They showed
that if a set of matroids representable over a fixed finite field has a decidable
monadic second-order theory, then it has bounded branch-width. The result
of Geelen, Gerards, and Whittle [30] is essential to both proofs. We assume
that matroids are given by their {Indep}-structures, described in Section 5.1.

Since binary matroids are closely related to bipartite graphs, it is natural to
show the following proposition.

Proposition 8.1. There is a C2MS transduction with two parameters A and
B that maps a bipartite graph G to the set of all binary matroids having G
as a fundamental graph.

Proof. Let N be the adjacency matrix of G. Suppose that (A,B) is a biparti-
tion of G and M = Bin(G,A,B). (Bin is defined in Section 3.2.) The binary

matroid M has a standard representation P =
(
IA N [A,B]

)
. It is enough to

show that we can express Indep(U) of M by a C2MS logic formula in terms
of the edg relation of G.

A subset U of V (G) is independent in M if and only if columns of P are
linearly independent. Thus, it is equivalent to say that there is no subset W
of U such that the sum of column vectors of P indexed by elements of W is
zero. We claim that we can write a C2MS logic formula Zero(W ) expressing
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Fig. 11. Zero(W ): the sum of column vectors in W is 0

that the sum of column vectors of P indexed by elements of W is zero. Since
each row of P corresponds to an element of A, Zero(W ) is true if and only if
for each x ∈ A, the number of neighbors of x in W is odd if x ∈ W , and even
otherwise (see Fig. 11). We may easily write this in a C2MS logic formula.

Hliněný and Seese [34] proved the following proposition but stated in a differ-
ent language.

Proposition 8.2 (Hliněný and Seese [34]). (1) The transduction associ-
ating with a matroid the set of its minors is an MS transduction.

(2) There exists an MS transduction ζ from matroids to graphs that maps the
(k− 2)× (k− 2) grid to the cycle matroid of k× k grid for k even and at least
six.

Proof. Assertion (1) is the content of Lemmas 6.4 and 6.5, and Assertion (2)
is that Lemmas 6.6 and 6.7 of [34].

Second proof of theorem 5.6. The method is similar to that of the first proof.

By Lemma 7.3 and Lemma 7.4, we need only consider a set C of bipartite
graphs of unbounded rank-width having a decidable C2MS satisfiability prob-
lem and derive a contradiction.

We will use the Proposition 3.1, which states that for a bipartite graph G with
a bipartition V (G) = A∪B, the branch-width of Bin(G,A,B) is exactly one
more than the rank-width of G.

Let us apply to C the transduction κ = ζ ◦ Bin. Then the set of matroids
Bin(C) has unbounded branch-width, hence, by a result of Geelen, Gerards,
and Whittle [30], it contains the cycle matroids of k × k grids for infinitely
many k. The transduction κ produces thus from C infinitely many square grids.
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Fig. 12. Sketch of the second proof

Since we assume that C has a decidable C2MS satisfiability problem, and since
κ is a C2MS transduction, then so has κ(C). But it cannot contain infinitely
many square grids. This is the desired contradiction.

The schema of the proof is illustrated on Figure 12: (1) is the MS transduction
of Lemma 7.3, (2) is the C2MS transduction Bin of Proposition 8.1, the MS
transductions of (3) and (4) are from [34].

9 Conclusion

We have shown how isotropic systems can be handled in C2MS logic. Together
with other results, we could prove a slight weakening of Seese’s Conjecture
and obtain polynomial-time algorithms for recognizing graphs of rank-width
at most k, for each k. Some questions remain open.

Question 1. Is the original conjecture valid?

Question 2. Is it true that if a set of relational structures without set predicates
has a decidable MS (or C2MS) satisfiability problem, then it is contained in the
image of a set of trees under an MS transduction (or a C2MS transduction).

Even though the graphs of rank-width at most k are recognizable in polynomial
time and rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1−1, this does not answer the following
question for k > 3.

Question 3. For fixed k > 3, is there a polynomial-time algorithm recognizing
graphs of clique-width at most k?
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