
Approximating Rank-width and Clique-width
Quickly

SANG-IL OUM

KAIST

Rank-width was defined by Oum and Seymour [2006. Approximating clique-width and branch-
width. J. Combin. Theory Ser. B 96, 4, 514–528] to investigate clique-width. They constructed

an algorithm that either outputs a rank-decomposition of width at most f(k) for some function f

or confirms that rank-width is larger than k in time O(|V |9 log |V |) for an input graph G = (V,E)
and a fixed k. We develop three separate algorithms of this kind with faster running time. We

construct an O(|V |4)-time algorithm with f(k) = 3k + 1 by constructing a subroutine for the

previous algorithm; we avoid generic algorithms minimizing submodular functions used by Oum
and Seymour. Another one is an O(|V |3)-time algorithm with f(k) = 24k by giving a reduction

from graphs to binary matroids; then we use an approximation algorithm for matroid branch-width

by Hliněný [2005. A parametrized algorithm for matroid branch-width. SIAM J. Comput. 35, 2,
259–277]. Finally we construct an O(|V |3)-time algorithm with f(k) = 3k − 1 by combining the

ideas of above two cited papers.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory—Graph

algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Approximation algorithms, branch-width, clique-width, rank-

width, , matroids

1. INTRODUCTION

Graph complexity measures such as tree-width and branch-width are important
for algorithmic purposes and for understanding the structure of families of graphs.
One of them is the clique-width, defined by Courcelle and Olariu [2000]. We discuss
its definition in the next section. Many NP-hard graph problems are solvable in
polynomial time if a tree-like decomposition corresponding to clique-width, called

This research was partially supported by NSF grant 0354742 while the author was at Georgia

Institute of Technology and was also partially supported by the SRC Program of Korea Science
and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (No.

R11-2007-035-01002-0).

An earlier paper on the first two algorithms appeared in Proceedings of the 31st International
Workshop on Graph-Theoretic Concepts in Computer Science, 2005, Lecture Notes in Comput.

Sci. 3787, Springer-Verlag, pp. 49–58. and is also contained in the author’s Ph.D. Thesis: Graphs
of Bounded Rank-width, Princeton University, 2005.
Author’s address: Department of Mathematical Sciences, KAIST, Daejeon, 305-701 Republic of
Korea, e-mail: sangil@kaist.edu.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 202008 ACM 0000-0000/202008/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 202008, Pages 1–21.

2 · Sang-il Oum

Paper Running time f(k) Remark

Oum and Seymour O(n9 logn) 3k + 1 Works for any symmetric submodular

[2006] functions with some conditions.

Section 3 O(n4) 3k + 1 Provides a subroutine for [Oum and

Seymour 2006] designed for rank-
width.

Section 4 O(n3) 24k Uses matroids and Hliněný’s [2005]

Section 5 O(n3) 3k − 1 Uses monadic second-order logic.

Table I. Old and new approximation algorithms for rank-width of an n-vertex graph.

a k-expression, is given as an input in addition to the adjacency list of the input
graph. (In fact, the clique-width is the minimum k so that there is a k-expression
of G.) In general, every graph problem expressible in monadic second-order logic
with quantifications over vertices and vertex sets (MS1-logic) can be solved in linear
time if the input graph is given with a k-expression [Courcelle et al. 2000]. How-
ever, problems such as deciding whether the graph is Hamiltonian [Wanke 1994]
and finding the chromatic number [Kobler and Rotics 2003] are not expressible in
monadic second-order logic but have nevertheless polynomial-time algorithms on
graphs of bounded clique-width if the input graph is given with a k-expression.

Therefore we hope to have, for each fixed k, a polynomial-time algorithm to find
a k-expression of an input graph if the input graph has clique-width at most k.
This problem is still open when k > 3. Corneil et al. [2000] solved this problem
when k = 3.

Instead, Oum and Seymour [2006] found an “approximation” algorithm that
either outputs a (23k+2 − 1)-expression or confirms that the clique-width of G is
larger than k. This can be combined with algorithms requiring a k-expression and
therefore those algorithms no longer have to require a k-expression as an input
to be polynomial-time algorithms. To obtain this approximation algorithm, they
defined another graph width parameter, called the rank-width and showed that
rank-width is at most clique-width and clique-width is at most 21+rank-width−1. In
addition, they showed a polynomial-time algorithm to find a rank-decomposition
of width 3k + 1 or to confirm that the rank-width is larger than k. (Rank-width is
defined as the minimum possible width of all rank-decompositions. We will discuss
its definition in the next section.)

In this paper we improve their results; we present three separate algorithms with
faster running time that, for fixed k, output a rank-decomposition of width at most
f(k) for some function f or confirm that the rank-width is larger than k. We
summarize them in Table I.

The following is one of the consequences.

Corollary 1.1. Let k be a fixed positive integer. There is an O(|V (G)|3)-time
algorithm that either outputs an (8k−1)-expression of an input graph G or confirms
that the clique-width of G is larger than k.

Courcelle and Oum [2007] showed that, for each k, there is a formula of modulo-2
counting monadic second-order logic (C2MS logic) expressing that the rank-width
is at most k. C2MS logic is an extension of first order logic, which allows set
variables denoting sets of objects (in our case, sets of vertices) and the set predicate
ACM Journal Name, Vol. V, No. N, Month 202008.

Approximating Rank-width and Clique-width · 3

Even(X) expressing that the set denoted by the set variable X is finite and has
even cardinality. In fact, every graph problem expressible in C2MS logic can also
be solved in linear time if an input graph is given with a k-expression [Courcelle
1997] (or see [Courcelle and Oum 2007] for the brief explanation). The following
theorem is a consequence of our paper combined with [Courcelle and Oum 2007].

Theorem 1.2. For fixed k, there is an O(|V (G)|3)-time algorithm to test whether
the rank-width of a graph G is at most k.

We remark that, if k is not fixed and is given with an input, then testing whether
the clique-width at most k is NP-complete, shown by Fellows, Rosamond, Rotics
and Szeider [2006]. It is also NP-complete to test whether the rank-width is at
most k if k is given with an input. This can be deduced from NP-hardness of
finding branch-width of graphs [Seymour and Thomas 1994] by relating the rank-
width of bipartite graphs and the branch-width of binary matroids [Oum 2005b]
and using the theorem [Fomin et al. 2004; Hicks and McMurray Jr. 2007; Mazoit
and Thomassé 2005] stating that the branch-width of the cycle matroid of a graph
with at least one cycle is equal to the branch-width of the graph.

2. PRELIMINARIES

In this paper, all graphs are simple, undirected, and finite.

2.1 Cut-rank functions.

For a matrix M = (mij : i ∈ R, j ∈ C) over a field F , if X ⊆ R and Y ⊆ C, let
M [X,Y] denote the submatrix (mij : i ∈ X, j ∈ Y). For a graph G, let A(G) be
its adjacency matrix over GF(2).

For a graph G and two disjoint subsets X,Y ⊆ V (G), we define

ρ∗G(X,Y) = rk(A(G)[X,Y])

where rk is the matrix rank function; and we define the cut-rank function ρG of G
by letting ρG(X) = ρ∗G(X,V (G) \X) for X ⊆ V (G).

Both ρ and ρ∗ satisfy the following submodular inequalities.

Proposition 2.1 [Oum and Seymour 2006]. Let G be a graph. Let X1, Y1, X2, Y2

be subsets of V (G) such that X1 ∩ Y1 = X2 ∩ Y2 = ∅. Then,

ρ∗G(X1, Y1) + ρ∗G(X2, Y2) ≥ ρ∗G(X1 ∩X2, Y1 ∪ Y2) + ρ∗G(X1 ∪X2, Y1 ∩ Y2).

Moreover, if X1, X2 ⊆ V (G) then

ρG(X1) + ρG(X2) ≥ ρG(X1 ∩X2) + ρG(X1 ∪X2).

2.2 Rank-width.

A subcubic tree is a tree with at least two vertices such that every vertex is incident
with at most three edges. A leaf of a tree is a vertex incident with exactly one
edge. A rank-decomposition of a graph G = (V,E) is a pair (T,L) of a subcubic
tree T and a bijective function L : V → {t : t is a leaf of T}. (If |V | ≤ 1 then G
admits no rank-decomposition.)

For an edge e of T , the connected components of T \ e induce a partition (X,Y)
of the set of leaves of T . The width of an edge e of a rank-decomposition (T,L)

ACM Journal Name, Vol. V, No. N, Month 202008.

4 · Sang-il Oum

is ρG(L−1(X)). The width of (T,L) is the maximum width of all edges of T . The
rank-width rw(G) of G is the minimum of the width of all rank-decompositions of
G. (If |V | ≤ 1, we define rw(G) = 0.)

2.3 Clique-width.

The notion of clique-width was first introduced by Courcelle and Olariu [2000]. Let
k be a positive integer. We call (G, lab) a k-graph if G is a graph and lab is a
mapping from its vertex set to {1, 2, . . . , k}. We call lab(v) the label of a vertex v.

We need the following definitions and operations on k-graphs.

(1) For i ∈ {1, . . . , k}, let ·i denote a k-graph with a single vertex labeled by i.
(2) For distinct i, j ∈ {1, 2, . . . , k}, we define a unary operator ηi,j such that

ηi,j(G, lab) = (G′, lab)

where V (G′) = V (G) and E(G′) = E(G) ∪ {vw : v, w ∈ V (G), lab(v) =
i, lab(w) = j}. This adds edges between vertices labeled by i and vertices
labeled by j.

(3) We let ρi→j be the unary operator such that

ρi→j(G, lab) = (G, lab′)

where

lab′(v) =

{
j if lab(v) = i,

lab(v) otherwise.

This mapping relabels every vertex labeled by i into j.
(4) Finally, ⊕ is a binary operation that makes the disjoint union. Note that

G⊕G 6= G.

A well-formed expression t written with these symbols is called a k-expression. The
k-graph produced by performing these operations in order therefore has vertex set
the set of occurrences of the constant symbols in t; and this k-graph (and any
k-graph isomorphic to it) is called the value val(t) of t. If a k-expression t has
value (G, lab), we say that t is a k-expression of G. The clique-width of a graph G,
denoted by cw(G), is the minimum k such that there is a k-expression of G.

For instance, K4 (the complete graph with four vertices) can be constructed by

η1,2(·2 ⊕ ρ2→1(η1,2(·2 ⊕ ρ2→1(η1,2(·1 ⊕ ·2))))).

Therefore, K4 has a 2-expression, and cw(K4) ≤ 2. It is easy to see that cw(K4) >
1, and therefore cw(K4) = 2. We remark that an n-vertex graph of clique-width at
most k can have arbitrary long k-expressions, but such long k-expressions can be
shortened to k-expressions of length O(n) by removing useless operations.

Oum and Seymour [2006] showed that having small clique-width is equivalent to
having small rank-width as follows.

Proposition 2.2 [Oum and Seymour 2006]. For every graph G,

rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1.

Moreover for fixed k, there is an O(|V (G)|2)-time algorithm that transforms a rank-
decomposition of width k into a (2k+1 − 1)-expression of the input graph G.

ACM Journal Name, Vol. V, No. N, Month 202008.

Approximating Rank-width and Clique-width · 5

2.4 Local complementation.

For two sets A and B, let A∆B = (A \B) ∪ (B \A).

Definition 2.3. Let G = (V,E) be a graph and v ∈ V . The graph obtained by
applying local complementation at v to G is

G ∗ v = (V,E∆{xy : xv, yv ∈ E, x 6= y}).

The graph obtained by pivoting an edge uv is defined by G∧uv = G ∗u ∗ v ∗u. We
say that H is locally equivalent to G if H can be obtained by applying a sequence
of local complementations to G.

A pivoting is well-defined because G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v if u and v are
adjacent [Oum 2005b]. Both local complementation and pivoting have appeared in
several papers, notably in Bouchet’s papers [1988; 1989; 1990; 1994].

It is easy to show the following Proposition.

Proposition 2.4 [Bouchet 1989]; see [Oum 2005b]. Let G′ = G ∗ v. Then
for every X ⊆ V (G), we have

ρG(X) = ρG′(X).

The following lemma will be used in Section 3.

Lemma 2.5 [Oum 2005b]. Let G be a graph and v ∈ V (G). Suppose that
(X1, X2) and (Y1, Y2) are partitions of V (G) \ {v}. If w is a neighbor of v then

ρG\v(X1) + ρG∧vw\v(Y1) ≥ ρG(X1 ∩ Y1) + ρG(X2 ∩ Y2)− 1.

3. FIRST ALGORITHM

We show that, for fixed k, there is an O(n4)-time algorithm that, with a n-vertex
graph, outputs a rank-decomposition of width at most 3k + 1 or confirms that the
input graph has rank-width larger than k. Oum and Seymour [2006] used generic
algorithms minimizing submodular functions [Iwata et al. 2001] to find a set Z
minimizing the cut-rank function ρG(Z) such that X ⊆ Z ⊆ V (G) \ Y for given
disjoint subsets X, Y of V (G) satisfying |X|, |Y | ≤ 3k. If this can be done in time
γ then we obtain an O(n(n2 + γ))-time algorithm to output a rank-decomposition
of width at most 3k+ 1 or confirm that the input graph has rank-width larger than
k. In [Oum and Seymour 2006], γ is O(n8 log n), and therefore the O(n9 log n)-time
algorithm is obtained.

To obtain an O(n4)-time algorithm, we construct a direct combinatorial algo-
rithm that minimizes the cut-rank function. We first define blocking sequences,
introduced by Geelen [1995]. Let G be a graph and A,B be two disjoint subsets of
V (G). A sequence v1, v2, . . . , vm of distinct vertices in V (G) \ (A ∪ B) is called a
blocking sequence for (A,B) in G if it satisfies the following:

(i) ρ∗G(A,B ∪ {v1}) > ρ∗G(A,B).
(ii) ρ∗G(A ∪ {vi}, B ∪ {vi+1}) > ρ∗G(A,B) for all i ∈ {1, 2, . . . ,m− 1}.
(iii) ρ∗G(A ∪ {vm}, B) > ρ∗G(A,B).
(iv) No proper subsequence satisfies (i)—(iii).

The following proposition appears frequently in applications of blocking sequences.
ACM Journal Name, Vol. V, No. N, Month 202008.

6 · Sang-il Oum

Proposition 3.1. Let G be a graph and A,B be two disjoint subsets of V (G).
The following are equivalent:

(i) There is no blocking sequence for (A,B) in G.
(ii) There exists Z such that A ⊆ Z ⊆ V (G) \B and ρG(Z) = ρ∗G(A,B).

Proof. (i)→(ii): Let k = ρ∗G(A,B). We construct the auxiliary digraph D =
((V (G) \ (A ∪B)) ∪ {A◦, B◦}, E) from G such that

i) (A◦, x) ∈ E if ρ∗G(A,B ∪ {x}) > k for x ∈ V (G) \ (A ∪B),
ii) (x,B◦) ∈ E if ρ∗G(A ∪ {x}, B) > k for x ∈ V (G) \ (A ∪B),
iii) (x, y) ∈ E if ρ∗G(A ∪ {x}, B ∪ {y}) > k for distinct x, y ∈ V (G) \ (A ∪B).

Since there is no blocking sequence for (A,B) in G, there is no directed path from
A◦ to B◦ in D. Let J be the set of ends of directed paths in D from A◦ with at
least one edge. We claim that ρG(A ∪ J) = k.

To prove this, we would like to show that ρ∗G(A ∪X,B ∪ Y) = k for all X ⊆ J ,
Y ⊆ V (G) \ (A ∪B ∪ J). First notice that ρ∗G(A ∪X,B ∪ Y) ≥ ρ∗G(A,B) = k and
therefore it is enough to prove that ρ∗G(A ∪X,B ∪ Y) ≤ k.

We proceed by induction on |X| + |Y |. If |X| ≤ 1 and |Y | ≤ 1, then we have
ρ∗G(A,B) ≤ ρ∗G(A∪X,B ∪Y) ≤ k because there is no directed path from A◦ to B◦

in D.
If |X| > 1 then from Proposition 2.1, for every x ∈ X we have

ρ∗G(A∪X,B∪Y)+ρ∗G(A,B∪Y) ≤ ρ∗G(A∪(X\{x}), B∪Y)+ρG(A∪{x}, B∪Y) = 2k,

because ρ∗G(A ∪ {x}, B ∪ Y) = ρ∗G(A ∪ (X \ {x}), B ∪ Y) = ρ∗G(A,B ∪ Y) = k by
induction. So, ρ∗G(A ∪X,B ∪ Y) = k.

Similarly if |Y | > 1 then for every y ∈ Y we have ρ∗G(A ∪ X,B ∪ Y) + ρ∗G(A ∪
X,B) ≤ ρ∗G(A ∪ X,B ∪ (Y \ {y})) + ρG(A ∪ X,B ∪ {y}) = 2k, and therefore
ρ∗G(A ∪X,B ∪ Y) = k.

(ii)→(i): Suppose that there is a blocking sequence v1, v2, . . . , vm. Then, vm /∈ Z
because ρ∗G(A ∪ {vm}, B) > ρG(Z). Similarly v1 ∈ Z because ρ∗G(A,B ∪ {v1}) >
ρG(Z). Therefore there exists i ∈ {1, 2, . . . ,m − 1} such that vi ∈ Z but vi+1 /∈
Z. But this is a contradiction, because ρG(Z) < ρ∗G(A ∪ {vi}, B ∪ {vi+1}) ≤
ρ∗G(Z, V (G) \ Z) = ρG(Z).

The proof of Proposition 3.1 is algorithmic. We summarize the algorithm as follows.

Algorithm 3.2. Find a blocking sequence for (A,B) in G.

Input. A graph G = (V,E) and two disjoint subsets A and B of V .
Output. One of the following:

(1) a blocking sequence v1, v2, . . . , vm for (A,B) in G, or
(2) a set Z such that A ⊆ Z ⊆ V \B, ρG(Z) = ρ∗G(A,B).

(B1) Construct the auxiliary digraph D = ((V \ {A,B}) ∪ {A◦, B◦}, E′) such that
i) (A◦, x) ∈ E′ if ρ∗G(A,B ∪ {x}) > ρ∗G(A,B) for all x ∈ V (G) \ (A ∪B),

ii) (x,B◦) ∈ E′ if ρ∗G(A ∪ {x}, B) > ρ∗G(A,B) for all x ∈ V (G) \ (A ∪B),
iii) (x, y) ∈ E′ if ρ∗G(A ∪ {x}, B ∪ {y}) > ρ∗G(A,B) for all distinct x, y ∈

V (G) \ (A ∪B).

ACM Journal Name, Vol. V, No. N, Month 202008.

Approximating Rank-width and Clique-width · 7

(B2) Find a shortest directed path from A◦ to B◦ in D.
If there is no such path then let J be the set of ends of all directed paths from
A◦ in D with at least one edge. Then ρG(A ∪ J) = ρ∗G(A,B) by the proof of
Proposition 3.1. Output Z = A ∪ J and stop.
Otherwise let A◦, v1, v2, . . . , vm, B

◦ be the shortest path in D. Then output
v1, v2, . . . , vm as a blocking sequence for (A,B) in G.

Proposition 3.3. Let G = (V,E) be a graph and A,B be disjoint subsets of V .
If v1, v2, . . . , vm is a blocking sequence for (A,B) in G then there is a vertex w ∈ B
adjacent to vm. Furthermore,

(1) if m > 1 then v1, v2, . . . , vm−1 is a blocking sequence for (A,B) in G ∧ wvm,
(2) if m = 1 then ρ∗G∧wvm

(A,B) = ρ∗G(A,B) + 1.

Proof. Let k = ρ∗G(A,B). Since ρ∗G(A ∪ {vm}, B) > k, there is a vertex w ∈ B
adjacent to vm.

We prove one short lemma to be used:
Lemma: If X and Y are disjoint subsets of V such that A ⊆ X, B ⊆ Y , vm /∈ X∪Y
and ρ∗G(X,Y) = k then ρ∗G∧wvm

(X,Y) = ρ∗G(X,Y ∪ {vm}).
Let us prove the lemma. Let H = G[X ∪ Y ∪ {vm}] (the induced subgraph of G

on X ∪Y ∪{vm}). We observe that ρ∗G∧wvm
(X ∪{vm}, Y) = ρH∧wvm

(X ∪{vm}) =
ρH(X ∪ {vm}) = ρ∗G(X ∪ {vm}, Y) and ρ∗G∧wvm

(X,Y ∪ {vm}) = ρH∧wvm
(X) =

ρH(X) = ρ∗G(X,Y ∪ {vm}). Then,

ρ∗G∧wvm
(X,Y) + ρ∗G(X,Y) ≥ ρ∗G(X,Y ∪ {vm}) + ρ∗G(X ∪ {vm}, Y)− 1

≥ ρ∗G(X,Y ∪ {vm}) + k

= ρ∗G∧wvm
(X,Y ∪ {vm}) + ρ∗G(X,Y).

It follows that ρ∗G∧wvm
(X,Y) = ρ∗G∧wvm

(X,Y ∪ {vm}) and the lemma is proved.
Now let us prove the Proposition by using the lemma.
(1) We claim that if m > 1 then v1, v2, . . . , vm−1 is a blocking sequence for (A,B)

in G ∧ wvm.
Let us first check the axiom (i) of blocking sequences. By applying Lemma 2.5

for G[A ∪B ∪ {v1, vm}] (the subgraph of G induced on A ∪B ∪ {v1, vm}), we have

ρ∗G∧wvm
(A,B∪{v1})+ρ∗G(A∪{v1}, B) ≥ ρ∗G(A,B∪{v1, vm})+ρ∗G(A∪{v1, vm}, B)−1.

Since ρ∗G(A,B∪{v1, vm} ≥ ρ∗G(A,B∪{v1}) ≥ k+ 1, ρ∗G(A∪{v1, vm}, B) ≥ ρ∗G(A∪
{vm}, B) ≥ k+ 1, and ρ∗G(A∪{v1}, B) = k, we obtain that ρ∗G∧wvm

(A,B ∪{v1}) ≥
k + 1.

To check (ii), we apply the same inequality we obtain that

ρ∗G∧wvm
(A ∪ {vi}, B ∪ {vi+1}) + ρ∗G(A ∪ {vi, vi+1}, B)
≥ ρ∗G(A ∪ {vi}, B ∪ {vi+1, vm}) + ρ∗G(A ∪ {vi, vi+1, vm}, B)− 1 ≥ 2k + 1

for each i ∈ {1, 2, 3, . . . ,m−2} and therefore ρ∗G∧wvm
(A∪{vi}, B∪{vi+1}) ≥ k+1.

To obtain (iii), we apply the above lemma. By letting X = A ∪ {vm−1} and
Y = B, we obtain that ρ∗G∧wvm

(A∪{vm−1}, B) = ρ∗G(A∪{vm−1}, B∪{vm}) ≥ k+1.
To show (iv), we claim that no subsequence of v1, v2, . . . , vm−1 satisfies the axiom

(i)—(iii) for blocking sequences. By the lemma, ρ∗G∧wvm
(A,B ∪ {vi}) = k for

ACM Journal Name, Vol. V, No. N, Month 202008.

8 · Sang-il Oum

each i > 1 by letting X = A, Y = B ∪ {vi}. Similarly we have ρ∗G∧wvm
(A ∪

{vi}, B ∪ {vj}) = k for i, j such that 1 ≤ i < i + 1 < j ≤ m − 1. Finally
ρ∗G∧wvm

(A ∪ {vj}, B) = k for each j < m − 1 by letting X = A ∪ {vj}, Y = B.
Thus, no subsequence of v1, v2, . . . , vm−1 is a blocking sequence of G ∧ wvm.

Therefore, v1, v2, . . . , vm−1 is a blocking sequence for (A,B) in G ∧ wvm.
(2) If m = 1 then we obtain ρ∗G∧wv1

(A,B) = ρ∗G(A,B ∪ {v1}), by the previous
lemma with letting X = A and Y = B. Since v1 is a blocking sequence, we have
ρ∗G(A,B ∪ {v1}) ≥ k + 1. Since ρ∗G(A,B ∪ {v1}) ≤ ρ∗G(A,B) + 1, we conclude that
ρ∗G∧wv1

(A,B) = k + 1.

Proposition 3.3 is now used to find a cut with minimum cut-rank while separating
A and B, as follows.

Algorithm 3.4. Find a set Z minimizing ρG(Z) while separating A and B.

Input. A graph G = (V,E) and two disjoint subsets A and B of V .
Output. A subset Z of vertices such that A ⊆ Z ⊆ V \B and

ρG(Z) = min
A⊆X⊆V \B

ρG(X).

(M1) Let G0,0 = G.
(M2) For each integer i ≥ 0, we run Algorithm 3.2 to find a blocking sequence

vi
1, v

i
2, . . . , v

i
m for (A,B) in Gi,0 or a set Z such that ρGi,0(Z) = ρ∗Gi,0

(A,B).
If the set Z is obtained, then output Z and stop.
Otherwise, for each j = 0, 1, . . . ,m−1, find a vertex w ∈ B adjacent to vm−j

in Gi,j and let Gi,j+1 = Gi,j ∧ wvm−j.
We let Gi+1,0 = Gi,m.

Proposition 3.5. Algorithm 3.4 is correct and its running time is O(|V |5).

Proof. Clearly, Gi,0 is obtained from G by a sequence of pivotings and there-
fore if we obtain Z at Gi,0, then ρ∗Gi,0

(A,B) = ρGi,0(Z) = ρG(Z) and ρG(X) =
ρGi,j (X) ≥ ρ∗Gi,j

(A,B) for all A ⊆ X ⊆ V \B.
If there is a blocking sequence with m vertices in Gi,0, then we apply m pivotings.

By Proposition 3.3, we reduce the length of the blocking sequence by each pivoting,
and after all m pivotings, we have

ρ∗Gi+1,0
(A,B) = ρ∗Gi,m

(A,B) = ρ∗Gi,0
(A,B) + 1.

Since ρ∗Gi+1,0
(A,B) ≤ minA⊆X⊆V \B ρG(X) ≤ |V |, the loop (M2) runs at most |V |

times and it will eventually find no blocking sequences at Gi,0 for some i.
Now let us consider the running time. We store the graph G in the adjacency

matrix A(G) by preprocessing the input adjacency list in time O(|V |2).
To perform (B1) of Algorithm 3.2 on Gi,0, we first diagonalize A(Gi,0)[A,B],

which is the matrix for ρ∗Gi,0
(A,B). This can be done in time O(|V |3). Then each

of i) and ii) of Algorithm 3.2 can be done in time O(|V |2) for each vertex x. For
each pair x, y, iii) can be done in time O(|V |2). Overall, it takes time O(|V |4) to
construct the auxiliary digraph D.

Finding a shortest directed path in (B2) of Algorithm 3.2 is done in time O(|V |2).
If there is no shortest directed path, we can find J in time O(|V |2) by the depth-first
search.
ACM Journal Name, Vol. V, No. N, Month 202008.

Approximating Rank-width and Clique-width · 9

Since m ≤ |V |, we need apply at most |V | pivotings to get Gi+1,0 from Gi,0 in
(M2) and this can be done in time O(|V |4). Notice that we also need time to find
w in B and |B| ≤ |V |.

Since minA⊆X⊆V \B ρG(X) ≤ ρG(A) ≤ |V |, the number of iterations in (M2) is
at most |V |. Therefore, the running time of Algorithm 3.4 is O(|V |5).

Proposition 3.5 is enough to be used for our purposes, but if we limit the size of
|A| and |B|, then we can achieve a better running time as follows.

Proposition 3.6. Let l be a fixed constant. If we require the input of Algorithm
3.4 to satisfy |A|, |B| ≤ l, then the running time of Algorithm 3.4 is O(|V |3).

Proof. We assume that the graph G is stored in the adjacency matrix by pre-
processing the adjacency list in time O(|V |2).

Since the rank of (l+ 1)× (l+ 1) or (l+ 1)× l matrices can be evaluated in time
O(l3) = O(1), (B1) of Algorithm 3.2 is done in time O(|V |2).

Finding a shortest directed path in (B2) of Algorithm 3.2 is done in time O(|V |2).
If there is no shortest directed path, we can find J in time O(|V |2) by the depth-first
search.

In order to get Gi+1,0 from Gi,0, we need at most |V | pivotings because m ≤ |V |.
Therefore it can be done in time O(|V |3); notice that since |B| ≤ l, it takes a
constant time to find w.

Since minA⊆X⊆V \B ρGi,0(X) ≤ ρGi,0(A) ≤ l, the number of iterations in (M2) is
at most l. Therefore the running time of Algorithm 3.4 for fixed l is O(|V |3).

As we discussed in the beginning of this section, we obtain the following theorem.

Theorem 3.7. For fixed k, there is an algorithm, for the input graph G =
(V,E), that either concludes that rw(G) > k or outputs a rank-decomposition of
G of width at most 3k + 1; and its running time is O(|V |4).

Proof. The running time of Oum and Seymour’s algorithm [2006] isO(|V |(|V |2+
γ)) where γ is the time to find a set Z minimizing ρG. Their algorithm used generic
algorithms minimizing submodular functions to find a set Z containing A not meet-
ing B and minimizing ρG(Z) for some |A|, |B| ≤ 3k. Instead we use Algorithm 3.4.
In particular both A and B has size at most 3k and therefore we use the running
time proved in Proposition 3.6 instead of Proposition 3.5. So γ = O(|V |3). So the
new running time is O(|V |4).

Since we can convert the rank-decomposition of width k to a (2k+1− 1)-expression
(a decomposition related to clique-width) in time O(|V |2) [Oum and Seymour 2006],
we obtain the following corollary.

Corollary 3.8. For fixed k, there is an algorithm, for the input graph G =
(V,E), that either concludes that cw(G) > k or outputs a (23k+2− 1)-expression of
G; and its running time is O(|V |4).

4. SECOND ALGORITHM

In the second algorithm, we will transform our problem into a matroid problem
and then use Hliněný’s algorithm [2005] on matroid branch-width. It turns out

ACM Journal Name, Vol. V, No. N, Month 202008.

10 · Sang-il Oum

that the rank-width of bipartite graphs is essentially equivalent to the branch-
width of binary matroids [Oum 2005b]. We will discuss this after showing that we
can transform our problem into a problem on bipartite graphs.

4.1 Graphs to Bipartite Graphs.

Courcelle [2006] showed that Seese’s conjecture [Seese 1991] is true if and only if
it is true for bipartite graphs by using a graph transformation B from graphs to
bipartite graphs described as follows. For a graph G = (V,E), B(G) is defined as
a bipartite graph on the vertex set V × {1, 2, 3, 4} such that

(i) if v ∈ V and i ∈ {1, 2, 3} then (v, i) is adjacent to (v, i+ 1) in B(G),
(ii) if vw ∈ E then (v, 1) is adjacent to (w, 4) in B(G).

q qq
�@ q q qq q qq q qq q q

J
J
JJ

J
J
JJ

�
�
�
�Z

Z
Z
Z

Fig. 1. K3 and B(K3)

A theorem by Courcelle [2006] combined with Proposition 2.2 implies that there
exist two functions f1 and f2 such that f1(rw(G)) ≤ rw(B(G)) ≤ f2(rw(G)), but
does not give explicit constructions of f1 and f2. We will prove this inequality when
f1(k) = k/4 and f2(k) = max(2k, 1). This result will be used in the next section.

Proposition 4.1. For every graph G, we have rw(B(G)) ≤ max(2 rw(G), 1).

Proof. If the rank-width of G is zero then G has no edges at all and it is easy
to see that the rank-width of B(G) is 1.

Now we assume that the rank-width of G is non-zero. We claim that rw(B(G)) ≤
2 rw(G). Let k be the rank-width of G. Then there is a rank-decomposition (T,L)
of G of width k. Let N be the set of leaves of T .

We aim to construct a rank-decomposition (T ′,L′) of B(G) so that its width is at
most 2k. Let T ′ be a tree such that V (T ′) = (V (T)×{0})∪ (N ×{1, 2, 3, 4, 12, 34})
and

(i) if vw ∈ E(T) then (v, 0) is adjacent to (w, 0) in T ′,
(ii) for all v ∈ N , (v, 12) is adjacent to both (v, 1) and (v, 2) in T ′,
(iii) for all v ∈ N , (v, 34) is adjacent to both (v, 3) and (v, 4) in T ′,
(iv) for all v ∈ N , (v, 0) is adjacent to both (v, 12) and (v, 34) in T ′.

Informally speaking, we obtain T ′ from T by replacing each leaf with a rooted
binary tree having four leaves. For each vertex (v, i) of B(G), we define L′((v, i)) =
(L(v), i) ∈ V (T ′). Then (T ′,L′) is a rank-decomposition of B(G).

We claim that the width of (T ′,L′) is at most 2k.
For each edge e = vw ∈ E(T), let (X,Y) be a partition of N induced by the

connected components of T \ e. Then, the edge (v, 0)(w, 0) of E(T ′) induces a
partition (X × {1, 2, 3, 4}, Y × {1, 2, 3, 4}) of N × {1, 2, 3, 4}. We observe that
L′−1(X × {1, 2, 3, 4}) = L−1(X)× {1, 2, 3, 4}. It is straightforward to see that

ρB(G)(L′−1(X × {1, 2, 3, 4}) = 2ρG(L−1(X)) ≤ 2k.
ACM Journal Name, Vol. V, No. N, Month 202008.

Approximating Rank-width and Clique-width · 11

We now consider remaining edges of T ′. Each of them induces a partition (X,Y)
of leaves of T ′ such that |X| ≤ 2 or |Y | ≤ 2. So, ρB(G)(L′−1(X)) ≤ 2. Therefore
we obtain that the width of (T ′,L′) is at most 2k.

Proposition 4.2. Let G = (V,E) be a graph and (T ′,L′) be a rank-decomposition
of B(G) of width k. If T is a minimum subtree of T ′ containing all leaves in
L′(V × {1}) and L : V → {t : t is a leaf of T} is a bijective function defined as
L(v) = L′((v, 1)), then (T,L) is a rank-decomposition of G of width at most 4k.

In particular this implies that rw(G) ≤ 4 rw(B(G)).

Proof. Let e be an edge of T . Since T is a subtree of T ′, e is also an edge of
T ′. Let (X,Y) be a partition of leaves of T ′ induced by connected components of
T ′ \ e.

For subsets A1, A2, A3, A4 of V , we denote the set (A1 × {1}) ∪ (A2 × {2}) ∪
(A3 × {3}) ∪ (A4 × {4}) by A1|A2|A3|A4 to simplify our notation. Let L′−1(X) =
A1|A2|A3|A4. Let Ai = V \ Ai for i ∈ {1, 2, 3, 4}. Because the width of (T ′,L′) is
k, we have

ρB(G)(A1|A2|A3|A4) = ρ∗B(G)(A1|A2|A3|A4, A1|A2|A3|A4) ≤ k.

We now claim that for each i ∈ {1, 2, 3}

ρ∗B(G)((Ai×{i})∪ (Ai+1×{i+ 1}), (Ai×{i})∪ (Ai+1×{i+ 1}) = |Ai∆Ai+1|. (1)

To see this, we look at the matrix defining the cut-rank functions.

ρ∗B(G)((Ai × {i}) ∪ (Ai+1 × {i+ 1}), (Ai × {i}) ∪ (Ai+1 × {i+ 1})

= rk

(Ai × {i} Ai+1 × {i+ 1}

Ai × {i} 0 (0-1 submatrix)
Ai+1 × {i+ 1} (0-1 submatrix) 0

)
= ρ∗B(G)(Ai × {i}, Ai+1 × {i+ 1}) + ρ∗B(G)(Ai+1 × {i+ 1}, Ai × {i+ 1}).

Both cut-rank functions can be evaluated.

ρ∗B(G)(Ai × {i}, Ai+1 × {i+ 1}) = rk

(Ai \Ai+1 Ai+1 \Ai

Ai \Ai+1 identity matrix 0
Ai ∩Ai+1 0 0

)
= |Ai \Ai+1|.

By symmetry, we also obtain that ρ∗B(G)(Ai+1×{i+ 1}, Ai×{i+ 1}) = |Ai+1 \Ai|.
Since |Ai \Ai+1|+ |Ai+1 \Ai| = |Ai∆Ai+1|, the equation (1) is proved.

Since ρ∗B(G)((Ai × {i}) ∪ (Ai+1 × {i + 1}), (Ai × {i}) ∪ (Ai+1 × {i + 1})) ≤
ρB(G)(A1|A2|A3|A4), we have |Ai∆Ai+1| ≤ k for each i ∈ {1, 2, 3}. By adding
these inequalities for i ∈ {1, 2, 3}, we obtain that |A1∆A4| ≤ 3k.

LetM be the adjacency matrix ofG. We observe that rk(M [A4, A1]) = ρ∗B(G)(A4×
{4}, A1 × {1}) ≤ ρB(G)(A1|A2|A3|A4) ≤ k. Then we have the following bound of

ACM Journal Name, Vol. V, No. N, Month 202008.

12 · Sang-il Oum

ρG(A1):

ρG(A1) = rk(M [A1, A1])

≤ rk(M [A4 ∪ (A1∆A4), A1])

≤ rk(M [A4, A1]) + rk(M [A1∆A4, A1]) ≤ 4k.

Therefore the width of (T,L) is at most 4k.

4.2 Binary Matroids and Branch-width.

Let us review matroid theory. For general matroid theory, we refer to Oxley’s book
[1992]. We call M = (E, I) a matroid if E is a finite set and I is a collection of
subsets of E, satisfying

(i) ∅ ∈ I
(ii) If A ∈ I and B ⊆ A then B ∈ I.
(iii) For every Z ⊆ E, the maximal subsets of Z in I have the same size r(Z). We

call r(Z) the rank of Z.

An element of I is called independent in M. We let E(M) = E. A matroid
M = (E, I) is binary if there exists a matrix N over GF(2) such that E is a
set of column vectors of N and I = {X ⊆ E : X is linearly independent}. The
connectivity function λM of M is λM(X) = r(X) + r(E \X)− r(E) + 1.

Let G = (V,E) be a bipartite graph with a bipartition V = A ∪ B. Let
Bin(G,A,B) be the binary matroid on V , represented by the A× V matrix

(A B

A IA A(G)[A,B]
)
,

where IA is the A × A identity matrix. If M = Bin(G,A,B) then G is called a
fundamental graph of M.

A branch-decomposition of a matroid M is a pair (T,L) of a subcubic tree T
and a bijective function L : E(M)→ {t : t is a leaf of T}. (If |E(M)| ≤ 1 then M
admits no branch-decomposition.)

For an edge e of T , the connected components of T \ e induce a partition (X,Y)
of the set of leaves of T . The width of an edge e of a branch-decomposition
(T,L) is λM(L−1(X)). The width of (T,L) is the maximum width of all edges
of T . The branch-width bw(M) of M is the minimum of the width of all branch-
decompositions of M. (If |E(M)| ≤ 1, we define bw(M) = 1.) Branch-width has
been defined by Robertson and Seymour [1991].

The following proposition links branch-width of binary matroids with rank-width
of bipartite graphs.

Proposition 4.3 [Oum 2005b]. Let G = (V,E) be a bipartite graph with a
bipartition V = A ∪ B and let M = Bin(G,A,B). Then for every X ⊆ V ,
λM(X) = ρG(X) + 1.

Corollary 4.4 [Oum 2005b]. Let G = (V,E) be a bipartite graph with a bi-
partition V = A ∪ B and let M = Bin(G,A,B). Then the branch-width of M is
one more than the rank-width of G.

ACM Journal Name, Vol. V, No. N, Month 202008.

Approximating Rank-width and Clique-width · 13

4.3 Using Binary Matroids.

We will now show another algorithm that approximate rank-width as in Section 3,
but in time O(n3) with a worse approximation ratio. We take a different approach
based on Propositions 4.1 and 4.2. We use the following algorithm for binary
matroids developed by Hliněný [2005].

Theorem 4.5 [Hliněný 2005, Theorem 4.12]. For fixed k, there is an O(n3)-
time algorithm that, for a binary matroid with n elements, either obtains a branch-
decomposition of width at most 3k+1 or confirms that the given matroid has branch-
width larger than k+ 1. We assume that binary matroids are given by their matrix
representations.

This algorithm can be used to approximate rank-width of a bipartite graph G
because we can run this algorithm for binary matroids having G as a fundamental
graph. By Propositions 4.1 and 4.2, we obtain a bipartite graph B(G) for each graph
G such that 1

4 rw(G) ≤ rw(B(G)) ≤ max(2 rw(G), 1). Moreover we can construct
B(G) in time O(n2) when n = |V (G)| and transform the rank-decomposition of
B(G) of width m into a rank-decomposition of G of width at most 4m in linear
time by Proposition 4.2. Therefore we obtain the following algorithm.

Corollary 4.6. For fixed k, there is an O(n3)-time algorithm that, for an n-
vertex graph, either obtains a rank-decomposition of width at most 24k or confirms
that the rank-width of the input graph is larger than k.

Proof. Let G = (V,E) be the input graph. We may assume that E(G) 6= ∅.
First we construct B(G) in time O(n2). We run the algorithm of Theorem 4.5 with
an input consisting ofM = Bin(B(G), V ×{1, 3}, V ×{2, 4}) and the constant 2k.

If it confirms that the branch-width of M is larger than 2k + 1, then the rank-
width of B(G) is larger than 2k, and therefore the rank-width of G is larger than
k.

If it outputs a branch-decomposition ofM of width at most 6k+1, then the out-
put is a rank-decomposition of B(G) of width at most 6k. This can be transformed
into a rank-decomposition of G of width at most 24k in linear time by Proposition
4.2.

5. THIRD ALGORITHM

In this section we aim to combine the idea of Oum and Seymour [2006] with that
of Hliněný [2005]. The main bottleneck of the algorithm by Oum and Seymour
was the subroutine minimizing the cut-rank functions. In the first algorithm, we
improve the running time by constructing such an algorithm faster than generic
algorithms minimizing submodular functions. Here we use monadic second-order
logic to achieve a better running time. Given a monadic second-order formula
with free variables representing sets of vertices, in order to produce a satisfying
assignment to the free variables, we need a k-expression of the input graph. We
will construct a k-expression from subgraphs iteratively. Hliněný [2005] used a
similar idea on matroids of bounded branch-width and formulas of an appropriate
version of monadic second-order logic. Since we are able to find such assignments in
linear time in this case, we can use a lemma that is refined from the paper by Oum
and Seymour [2006] to reduce 3k + 1 to 3k − 1 in the approximation algorithm.

ACM Journal Name, Vol. V, No. N, Month 202008.

14 · Sang-il Oum

5.1 Monadic second-order logic.

We consider a graph G without parallel edges as a relational structure 〈V (G), edg〉
where edg(x, y) is true if and only if two vertices x and y are adjacent in G. Monadic
second-order logic is the extension of first-order logic allowing variables denoting
subsets of the domains of the considered relational structure. On graphs, the do-
main is the set of vertices. Thus monadic second-order formulas on graphs are logic
formulas which can use ∃, ∀, ∨, ∧, ¬, ∈, true, and edg with first-order variables
each representing a vertex and set variables each representing a set of vertices. This
logic is often called monadic second-order logic of the first kind (MS1 logic), to dis-
tinguish from that of the second kind (MS2 logic). Monadic second-order logic of
the second kind is more general; it allows set variables, each representing a set of
edges or a set of vertices.

5.2 Refining the Greedy Algorithm for Rank-width.

There is a notion called a tangle, that is strongly related to branch-width and rank-
width. Here we define it for rank-width. For a graph G = (V,E), a ρG-tangle of
order k + 1 is a set T of subsets of V satisfying the following three axioms.

(T1) If ρG(X) ≤ k then either X ∈ T or V \X ∈ T .
(T2) For all X1, X2, X3 ∈ T , we have X1 ∪X2 ∪X3 6= V .
(T3) V \ {v} /∈ T for all v ∈ V .

Robertson and Seymour [1991] showed that the minimum order of a ρG-tangle is
equal to the rank-width. Their theorem (3.1) in [Robertson and Seymour 1991]
is for arbitrary symmetric submodular functions and in this paper we state its
corollary for rank-width.

Theorem 5.1. For a graph G, no ρG-tangle of order k + 1 exists if and only if
the rank-width of G is at most k.

We use Theorem 5.1 to prove the following lemma.

Lemma 5.2. Let k be a fixed positive integer. Let G = (V,E) be a graph and
(A,B) be a partition of V such that ρG(B) = 3k − 1. If the rank-width of G is at
most k, then there exists a partition (S, T) of V such that

(i) ρG(S) ≤ k,
(ii) ρ∗G(S ∩A,B) ≥ k and ρ∗G(T ∩A,B) ≥ k,

(iii) S ∩B 6= ∅ and T ∩B 6= ∅.

Proof. Suppose that there is no such partition (S, T) of V . We will seek a
contradiction by showing a ρG-tangle of order k + 1. Let

T = {X ⊆ V : ρG(X) ≤ k and (X ⊆ A or ρ∗G(X ∩A,B) ≤ k − 1)}.

We claim that T is a ρG-tangle of order k + 1,
(T3) is trivial. Let us show (T1). Suppose that ρG(X) ≤ k. If X ⊆ A then

X ∈ T . If V \ X ⊆ A then V \ X ∈ T . Now we may assume that X ∩ B 6=
∅ and (V \ X) ∩ B 6= ∅. By our assumption, either ρ∗G(X ∩ A,B) ≤ k − 1 or
ρ∗G((V \X) ∩A,B) ≤ k − 1. So either X ∈ T or V \X ∈ T .
ACM Journal Name, Vol. V, No. N, Month 202008.

Approximating Rank-width and Clique-width · 15

We will now show (T2). Suppose that X1, X2, X3 ∈ T such that X1 ∪X2 ∪X3 =
V . Thus we know that for each i = 1, 2, 3, we have either Xi ⊆ A or ρ∗G(Xi∩A,B) ≤
k − 1. However, if Xi ⊆ A then ρ∗G(Xi ∩ A,B) = ρ∗G(Xi, B) ≤ ρG(Xi) ≤ k. Thus
we have ρ∗G(Xi, B) ≤ k for all i = 1, 2, 3. Since

∑3
i=1 ρ

∗
G(Xi ∩ A,B) ≥ ρ∗G(A,B) =

3k − 1, we may assume that X1, X2 ⊆ A.
Since X1 ∪X2 ∪X3 = V , we deduce that X3 6⊆ A and therefore ρ∗G(X3 ∩A,B) ≤

k − 1. Since V \X3 ⊆ A, we have ρ∗G(A \X3, B) ≤ ρG(V \X3) ≤ k and therefore

ρ(A) = 3k − 1 ≤ ρ∗G(A \X3, B) + ρ∗G(X3 ∩A,B) ≤ 2k − 1,

a contradiction. We just showed that T satisfies (T2). We conclude that T is a
ρG-tangle of order k + 1, contradictory to Theorem 5.1.

An important consequence of Lemma 5.2 is the following lemma, which will allow
us to use a greedy algorithm to find a rank-decomposition.

Lemma 5.3. Let k be a fixed positive integer. Let G = (V,E) be a graph and
(A,B) be a partition of V such that ρG(B) ≤ 3k− 1 and |B| ≥ 2. If the rank-width
of G is at most k, then there exists a partition (X,Y) of B such that X 6= ∅, Y 6= ∅,
and ρG(X) ≤ 3k − 1 and ρG(Y) ≤ 3k − 1.

Proof. If ρG(B) ≤ 3k − 2 then let X be a subset of B with |X| = 1 and let
Y = B \X. Then

ρG(Y) = ρG((V \B) ∪X) ≤ ρG(V \B) + ρG(X) ≤ 3k − 2 + 1

and ρG(X) ≤ 1 ≤ 3k − 1.
Therefore we may assume that ρG(B) = 3k − 1. By Lemma 5.2, there exists a

partition (S, T) of V such that ρG(S) ≤ k, ρ∗G(S ∩ A,B) ≥ k, ρ∗G(T ∩ A,B) ≥ k,
and S ∩B, T ∩B 6= ∅. By the submodular inequality,

ρG(S) + ρG(A) ≥ ρG(S ∩A) + ρG(S ∪A).

Since ρG(S ∩A) ≥ ρ∗G(S ∩A,B) ≥ k and ρG(S) ≤ k, we deduce that ρG(T ∩B) =
ρG(S ∪A) ≤ ρG(A) = 3k − 1.

Similarly, from the inequality

ρG(T) + ρG(A) ≥ ρG(T ∩A) + ρG(T ∪A),

we deduce that ρG(S ∩B) ≤ 3k − 1. Then (S ∩B, T ∩B) is a wanted partition of
B.

We note that in fact rw(B(G)) = max(2 rw(G), 1) for all graphs G, shown in [Oum
2005a]. But we are not aware of any methods to transform any rank-decomposition
of B(G) of width max(2k, 1) into that of G of width k quickly.

5.3 Improving Rank-decompositions Iteratively.

By Lemma 5.3, if we can find such a partition (X,Y) in polynomial time, we can
construct a rank-decomposition of width at most 3k − 1 by a greedy algorithm. If
we are given an l-expression of G for fixed l, then we can use dynamic programming
to find such a partition. We use the fact that given a monadic second-order formula
with free variables representing sets of vertices, we can find an assignment of the
free variables to satisfy the formula in linear time if the k-expression is given as an

ACM Journal Name, Vol. V, No. N, Month 202008.

16 · Sang-il Oum

input [Courcelle et al. 2000]. The next algorithm will require an l-expression of the
input graph G. We need a lemma.

Lemma 5.4. For every k, there is a monadic second-order formula µk(X) with a
free set variable X such that µk(X) is true in a graph G if and only if ρG(X) ≤ k.

Proof. Let Y = V (G) \ X and let M = A(G)[X,Y], the submatrix of the
adjacency matrix of G with rows indexed by X and columns indexed by Y . Then
ρG(X) = rk(M) ≤ k if and only if no k + 1 distinct row vectors of M are linearly
independent. Then we test whether every set of k+1 distinct vertices of X contains
a nonempty subset Z such that each vertex of Y has even number of neighbors in
Z. Hence, we express µk(X) as follows: For every choice of x1, . . . , xk+1 in V (G),
one of the following is true:

—xi /∈ X for some i = 1, 2, . . . , k + 1.
—xi = xj for some 1 ≤ i < j ≤ k + 1.
—There exists a nonempty subset Z of {x1, x2, . . . , xk+1} such that every vertex

not in X has an even number of neighbors in Z.

Since Z is a subset of {x1, . . . , xk+1}, this can be expressed by first-order variables.
Thus µk can be written with a single set variable X.

To illustrate Lemma 5.4, we show µ2(X). In the following formula, x ∼ y means
that x is adjacent to y.

µ2(X) = ∀x1∀x2∀x3(x1 /∈ X) ∨ (x2 /∈ X) ∨ (x3 /∈ X)
∨ (x1 = x2) ∨ (x2 = x3) ∨ (x3 = x1)
∨ (∀y, y /∈ X ⇒ y 6∼ x1)
∨ (∀y, y /∈ X ⇒ y 6∼ x2)
∨ (∀y, y /∈ X ⇒ y 6∼ x3)
∨ (∀y, y /∈ X ⇒ (y 6∼ x1 ∧ y 6∼ x2) ∨ (y ∼ x1 ∧ y ∼ x2))
∨ (∀y, y /∈ X ⇒ (y 6∼ x2 ∧ y 6∼ x3) ∨ (y ∼ x2 ∧ y ∼ x3))
∨ (∀y, y /∈ X ⇒ (y 6∼ x3 ∧ y 6∼ x1) ∨ (y ∼ x3 ∧ y ∼ x1))
∨ (∀y, y /∈ X ⇒

((y 6∼ x1 ∧ y 6∼ x2 ∧ y 6∼ x3)
∨ (y ∼ x1 ∧ y ∼ x2 ∧ y 6∼ x3)
∨ (y ∼ x1 ∧ y 6∼ x2 ∧ y ∼ x3)
∨ (y 6∼ x1 ∧ y ∼ x2 ∧ y ∼ x3))).

Algorithm 5.5. Let k, l be fixed constants. We assume that k ≥ 1.

Input. A graph G, an l-expression t of G, and a subset B of V (G) such that
ρG(B) ≤ 3k − 1.

Output. If |B| = 1 then it outputs (T,L) where T is a graph with a single vertex,
called a root, and L : B → V (T) is a function.

If |B| > 1 then it either confirms that the rank-width of G is larger than k or
outputs a pair (T,L) of a rooted binary tree T and a bijection L from B to leaves
ACM Journal Name, Vol. V, No. N, Month 202008.

Approximating Rank-width and Clique-width · 17

of T such that for each edge e of T , if L(X) is the set of all leaves of T which are
descendants of e, then ρG(X) ≤ 3k − 1.

(B1) If |B| = 1 then we know what to do. Output (T,L).
(B2) Now we assume that |B| ≥ 2.

Find a nonempty partition (X,Y) of B such that ρG(X) ≤ 3k−1 and ρG(Y) ≤
3k−1 by searching an assignment satisfying a monadic second-order formula

ϕ(X,B) = ((X 6= ∅) ∧ (X 6= B) ∧ (X ⊆ B) ∧ µ3k−1(X) ∧ µ3k−1(B \X)).

(The above expression is not exactly a monadic second-order formula. But we
can easily express it in monadic second-order logic. For instance, µ3k−1(B\X)
can be translated into ∀Y ((∀x, x ∈ Y ⇔ (x /∈ X ∧ x ∈ B))⇒ µ3k−1(Y).)
If there is no such partition of B, then the rank-width of G is larger than k.
Stop.

(B3) Run this algorithm recursively with B = X and B = Y . If the algorithm
confirms that the rank-width of G is larger than k, then stop.
Otherwise, we obtain a pair (TX ,LX) from B = X and a pair (TY ,LY) from
B = Y .

(B4) Let T be a rooted tree obtained by joining TX and TY (creating a new root
and make it adjacent to roots of TX and TY). Let L(v) = LX(v) if v ∈ X
and L(v) = LY (v) if v ∈ Y . Output (T,L).

By Lemma 5.3, it is obvious that Algorithm 5.5 is correct. For (B2), we need a
subroutine to search an assignment to satisfy a monadic second-order formula. The
following lemma is based on [Courcelle et al. 2000, Theorem 4].

Lemma 5.6. Let k be a constant and let ϕ be a monadic second-order formula
with free set variables X and B. Let G be a graph given by a k-expression t and let
B be a set of vertices of G. Then in time O(|t|), we can check whether there exists
a set X such that (X,B) satisfies ϕ in G and furthermore we can output such a set
X if it exists.

(We write |t| to denote the size of the k-expression t.)

Proof. We consider G as a k-graph defined by t. (A k-graph is a vertex-labeled
graph with labels in {1, 2, . . . , n}.) First, we transform a k-expression t into a 2k-
expression t′ such that in every subexpression of t′, labels k+1, k+2, . . . , 2k specify
vertices in B. To find such a 2k-expression t′, we transform ·i in t to ·i+k if the
vertex represented by ·i is in B and transform ρi→j in t into ρi→j ◦ ρi+k→j+k and
ηi,j in t into ηi,j ◦ηi,j+k ◦ηi+k,j ◦ηi+k,j+k. Let G′ be a 2k-graph defined by t′. Thus
G is identical to G′ if we ignore labels of vertices.

By translating x ∈ B into the condition that the label of x is k + 1, k + 2, . . .,
or 2k, we transform ϕ on G into ϕ′ on G′ with one free variable X. Then ϕ(X,B)
holds on G if and only if ϕ′(X) holds on G′.

Now we use [Courcelle et al. 2000, Theorem 4]. Their theorem provides an O(|t′|)-
time algorithm to find the maximum |X| such that ϕ′(X) is true on G′. In addition,
their algorithm actually finds one set X with the maximum size which satisfies ϕ′

on G′. (This is not clearly stated in their theorem but in their proof [Courcelle et al.
2000, line 13–14 of page 146], they store one assignment to satisfy each formula at

ACM Journal Name, Vol. V, No. N, Month 202008.

18 · Sang-il Oum

every node during dynamic programming. We can simply read the true assignment
for the top node.) We remark that taking the maximum size is not relevant in our
situation.

Let us calculate the running time of Algorithm 5.5. Let n = |V (G)|. We first
remark that the size of the k-expression defining G can be big but we can transform
any k-expression into another k-expression of size O(n). Furthermore, the (2k+1 −
1)-expression obtained from a rank-decomposition of width at most k always has
size O(n), and this is the only construction that we will use later. Thus we assume
that t has size O(n). Then (B2) can be done in time O(n) by Lemma 5.6. (B4) can
be done in time O(1). At (B3) we call this algorithm recursively. The total number
of recursive calls is at most n, and therefore the running time of this algorithm is
O(n2).

We note that ifB = V then Algorithm 5.5 will either output a rank-decomposition
of G of width at most 3k − 1 or confirm that the rank-width is larger than k. But
Algorithm 5.5 requires an l-expression as an input. How can we provide it? One
of the obvious method is to use our second algorithm in Section 4 to provide an l-
expression for Algorithm 5.5. Then the overall running time is O(n3). This method
is perfectly valid and we can deduce Theorem 5.8 and Corollary 5.9.

However, we present another method so that three main algorithms in this paper
are independent of one another.

Algorithm 5.7. Let G = (V,E) be a graph with V = {v1, v2, . . . , vn}. Let Gi

be the subgraph of G induced by {v1, v2, . . . , vi}. We may assume that |V | ≥ 2. Let
k be a fixed positive integer.

Input. A graph G.

Output. Either outputs a rank-decomposition of width at most 3k− 1 or certifies
that the rank-width of G is larger than k.

(A1) Let i = 2 and let (T2,L2) be a rank-decomposition of G2, so that T2 is a tree
with two vertices and L2 is a bijection from {v1, v2} to leaves of T2.

(A2) Increase i by 1.
We assume that we have a rank-decomposition (Ti−1,Li−1) of Gi−1 of width
at most 3k − 1.

(A3) Let T ′i be a tree obtained from Ti−1 by subdividing an arbitrary edge of Ti−1

and attaching a leaf. We let L′i(vi) be the new leaf and L′i(vj) = Li−1(vj) for
all j < i.
Then (T ′i ,L′i) is a rank-decomposition of Gi of width at most 3k.

(A4) By using Proposition 2.2, we obtain a (23k+1 − 1)-expression ti of Gi.

(A5) We now apply Algorithm 5.5 to Gi with l = 23k+1−1, ti and B = {v1, v2, . . . , vi}.
It will either output a rank-decomposition (Ti,Li) (of Gi) of width at most
3k − 1 or confirm that the rank-width of Gi is larger than k.
If it confirms that rw(Gi) > k, which implies rwd(G) > k, then stop.

(A6) If i < n then go to (A2).

(A7) (Tn,Ln) is a rank-decomposition of G of width at most 3k − 1.

ACM Journal Name, Vol. V, No. N, Month 202008.

Approximating Rank-width and Clique-width · 19

In short, we obtain the rank-decomposition of Gi by using dynamic programming
based on a rank-decomposition of Gi−1. It is clear that Algorithm 5.7 is correct.
Let us analyze the running time. Let n = |V (G)|. (A3) takes time O(1). (A4)
takes time O(n2) by Proposition 2.2. (A5) takes time O(n2) because the running
time of Algorithm 5.5 is O(n2). Since the number of iterations is O(n), we conclude
that the running time of Algorithm 5.7 is O(n3). Therefore we deduce the following
theorem.

Theorem 5.8. Let k be a fixed positive integer. There is an O(|V (G)|3)-time
algorithm that either outputs a rank-decomposition (of an input graph G) of width
at most 3k − 1 or confirms that the rank-width of G is larger than k.

By Proposition 2.2, we obtain the following corollary.

Corollary 5.9. Let k be a fixed positive integer. There is an O(|V (G)|3)-time
algorithm that either outputs an (8k−1)-expression of an input graph G or confirms
that the clique-width of G is larger than k.

6. DISCUSSIONS

Many applications of clique-width are polynomial-time algorithms to solve graph
problems when inputs are restricted to graphs of bounded clique-width. Most
of them ([Wanke 1994; Courcelle et al. 2000; Espelage et al. 2001; Gerber and
Kobler 2003; Kobler and Rotics 2003]) require k-expression of the input graph as
an input to take an advantage of tree-structures. But by using [Oum and Seymour
2006], we do not need k-expressions as an explicit input, because we can generate a
(21+f(k) − 1)-expression in polynomial time and provide it as an input. The result
of this paper will make this preprocessing much faster.

Courcelle and Oum [2007] show that there is an O(|V |9 log |V |)-time algorithm
that recognizes graphs of rank-width at most k for an input graph G = (V,E) and
a fixed k; they use an approximation algorithm by Oum and Seymour [2006] as a
first step, and it is the slowest part of their algorithm. By the result of this paper,
we obtain the following.

Theorem 6.1. For fixed k, there is an O(n3)-time algorithm to decide whether
an n-vertex graph has rank-width at most k.

However, this algorithm does not produce a rank-decomposition of width at most
k even if it says such a decomposition exists. Recently, Hliněný and Oum [2008]
solved this problem; they found a cubic-time algorithm to, for fixed k, provide a
rank-decomposition of width at most k if it exists.

ACKNOWLEDGMENTS

The author would like to thank Paul Seymour, Jim Geelen, Petr Hliněný, and
Bruno Courcelle for valuable discussions. In particular, Jim Geelen suggested the
use of blocking sequences and Bruno Courcelle kindly provided many suggestions,
especially on Section 5.

REFERENCES

Bouchet, A. 1988. Graphic presentations of isotropic systems. J. Combin. Theory Ser. B 45, 1,
58–76.

ACM Journal Name, Vol. V, No. N, Month 202008.

20 · Sang-il Oum

Bouchet, A. 1989. Connectivity of isotropic systems. In Combinatorial Mathematics: Proceedings

of the Third International Conference (New York, 1985). Ann. New York Acad. Sci., vol. 555.

New York Acad. Sci., New York, 81–93.

Bouchet, A. 1990. κ-transformations, local complementations and switching. In Cycles and rays

(Montreal, PQ, 1987). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 301. Kluwer Acad.
Publ., Dordrecht, 41–50.

Bouchet, A. 1994. Circle graph obstructions. J. Combin. Theory Ser. B 60, 1, 107–144.

Corneil, D. G., Habib, M., Lanlignel, J.-M., Reed, B., and Rotics, U. 2000. Polynomial
time recognition of clique-width ≤ 3 graphs (extended abstract). In Gonnet, Gastón H. (ed.)

et al., LATIN 2000: Theoretical informatics. 4th Latin American symposium, Punta del Este,

Uruguay, April 10-14, 2000. Lecture Notes in Comput. Sci., vol. 1776. Springer, Berlin, 126–
134.

Courcelle, B. 1997. The expression of graph properties and graph transformations in monadic
second-order logic. In Handbook of graph grammars and computing by graph transformation,

Vol. 1. World Sci. Publishing, River Edge, NJ, 313–400.

Courcelle, B. 2006. The monadic second-order logic of graphs XV: On a conjecture by D. Seese.
J. Appl. Log. 4, 1, 79–114.

Courcelle, B., Makowsky, J. A., and Rotics, U. 2000. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst. 33, 2, 125–150.

Courcelle, B. and Olariu, S. 2000. Upper bounds to the clique width of graphs. Discrete

Appl. Math. 101, 1-3, 77–114.

Courcelle, B. and Oum, S. 2007. Vertex-minors, monadic second-order logic, and a conjecture

by Seese. J. Combin. Theory Ser. B 97, 1, 91–126.

Espelage, W., Gurski, F., and Wanke, E. 2001. How to solve NP-hard graph problems on

clique-width bounded graphs in polynomial time. In Graph-theoretic concepts in computer

science (Boltenhagen, 2001). Lecture Notes in Comput. Sci., vol. 2204. Springer, Berlin, 117–
128.

Fellows, M. R., Rosamond, F. A., Rotics, U., and Szeider, S. 2006. Clique-width minimiza-

tion is NP-hard. In Proceedings of the 38th annual ACM Symposium on Theory of Computing.
ACM Press New York, NY, USA, 354–362.

Fomin, F. V., Fraigniaud, P., and Thilikos, D. M. 2004. The price of connectedness in expan-

sions. Tech. Rep. 273, Department of Informatics, University of Bergen, Bergen, Norway. May.
Presented at SIAM Conference on Discrete Mathematics, Victoria, British Columbia, Canada,

June 2006.

Geelen, J. F. 1995. Matchings, matroids and unimodular matrices. Ph.D. thesis, University of

Waterloo.

Gerber, M. U. and Kobler, D. 2003. Algorithms for vertex-partitioning problems on graphs
with fixed clique-width. Theoret. Comput. Sci. 299, 1-3, 719–734.

Hicks, I. V. and McMurray Jr., N. B. 2007. The branchwidth of graphs and their cycle
matroids. J. Combin. Theory Ser. B 97, 5, 681–692.

Hliněný, P. 2005. A parametrized algorithm for matroid branch-width. SIAM J. Comput. 35, 2,

259–277, loose erratum (electronic).

Hliněný, P. and Oum, S. 2008. Finding branch-decompositions and rank-decompositions. SIAM

J. Comput.. Accepted.

Iwata, S., Fleischer, L., and Fujishige, S. 2001. A combinatorial strongly polynomial algorithm

for minimizing submodular functions. Journal of the ACM (JACM) 48, 4, 761–777.

Kobler, D. and Rotics, U. 2003. Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Appl. Math. 126, 2-3, 197–221.

Mazoit, F. and Thomassé, S. 2005. Branchwidth of graphic matroids. Manuscript.

Oum, S. 2005a. Graphs of bounded rank-width. Ph.D. thesis, Princeton University.

Oum, S. 2005b. Rank-width and vertex-minors. J. Combin. Theory Ser. B 95, 1, 79–100.

Oum, S. and Seymour, P. 2006. Approximating clique-width and branch-width. J. Combin.
Theory Ser. B 96, 4, 514–528.

ACM Journal Name, Vol. V, No. N, Month 202008.

Approximating Rank-width and Clique-width · 21

Oxley, J. G. 1992. Matroid theory. Oxford University Press, New York.

Robertson, N. and Seymour, P. 1991. Graph minors. X. Obstructions to tree-decomposition.

J. Combin. Theory Ser. B 52, 2, 153–190.

Seese, D. 1991. The structure of the models of decidable monadic theories of graphs. Ann. Pure
Appl. Logic 53, 2, 169–195.

Seymour, P. and Thomas, R. 1994. Call routing and the ratcatcher. Combinatorica 14, 2,

217–241.

Wanke, E. 1994. k-NLC graphs and polynomial algorithms. Discrete Appl. Math. 54, 2-3,
251–266.

ACM Journal Name, Vol. V, No. N, Month 202008.

