A Polynomial Kernel for Block Graph Vertex Deletion

O-joung Kwon

Institute for Computer Science and Control,
Hungarian Academy of Sciences in Budapest, Hungary

Joint work with

Eun Jung Kim (CNRS - LAMSADE, France)

IPEC 2015
17th, Sep, 2015
Feedback Vertex Set

Input: A graph $G = (V, E)$, an integer k

Parameter: k

Question: $\exists S \subseteq V$ with $|S| \leq k$ such that $G - S$ is a forest?
Feedback Vertex Set

Input: A graph $G = (V, E)$, an integer k

Parameter: k

Question: $\exists S \subseteq V$ with $|S| \leq k$ such that $G - S$ is a forest?

First FPT algorithms: Bodlaender (92) and Downey and Fellows (93)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Function $f(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raman, Saurabh, Subramanian (02)</td>
<td>$\left(\frac{12 \log k}{\log \log k} + 6\right)^k$</td>
</tr>
<tr>
<td>Kanj, Pelsmajer, Schaefer (04)</td>
<td>$\log(k)^k$</td>
</tr>
<tr>
<td>Guo et al. (06)</td>
<td>c^k for some constant c</td>
</tr>
<tr>
<td>Dehne et al. (07)</td>
<td>$2^{O(k)}$</td>
</tr>
<tr>
<td>Chen et al. (08)</td>
<td>5^k</td>
</tr>
<tr>
<td>Cao, Chen, Liu (10)</td>
<td>3.83^k</td>
</tr>
<tr>
<td>Kociumaka and Pilipczuk (14)</td>
<td>3.619^k</td>
</tr>
</tbody>
</table>
Feedback Vertex Set

Input: A graph $G = (V, E)$, an integer k
Parameter: k
Question: $\exists \ S \subseteq V$ with $|S| \leq k$ such that $G - S$ is a forest?

First FPT algorithms: Bodlaender (92) and Downey and Fellows (93)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Function $f(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raman, Saurabh, Subramanian (02)</td>
<td>$\left(\frac{12 \log k}{\log \log \log k} + 6 \right)^k$</td>
</tr>
<tr>
<td>Kanj, Pelsmajer, Schaefer (04)</td>
<td>$\log(k)^k$</td>
</tr>
<tr>
<td>Guo et al. (06)</td>
<td>c^k for some constant c</td>
</tr>
<tr>
<td>Dehne et al. (07)</td>
<td>$2^{O(k)}$</td>
</tr>
<tr>
<td>Chen et al. (08)</td>
<td>5^k</td>
</tr>
<tr>
<td>Cao, Chen, Liu (10)</td>
<td>3.83^k</td>
</tr>
<tr>
<td>Kociumaka and Pilipczuk (14)</td>
<td>3.619^k</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Kernel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burrage et al. (06)</td>
<td>$O(k^{11})$</td>
</tr>
<tr>
<td>Bodlaender (07)</td>
<td>$O(k^3)$</td>
</tr>
<tr>
<td>Thomassé (10)</td>
<td>$O(k^2)$</td>
</tr>
</tbody>
</table>
Feedback Vertex Set

Input: A graph $G = (V, E)$, an integer k

Parameter: k

Question: $\exists S \subseteq V$ with $|S| \leq k$ such that $G - S$ is a forest?

First FPT algorithms: Bodlaender (92) and Downey and Fellows (93)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Function $f(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raman, Saurabh, Subramanian (02)</td>
<td>$(12 \log \frac{k}{\log \log k} + 6)^k \log(k)^k$</td>
</tr>
<tr>
<td>Kanj, Pelsmajer, Schaefer (04)</td>
<td>c^k for some constant c</td>
</tr>
<tr>
<td>Guo et al. (06)</td>
<td>$2^{O(k)}$</td>
</tr>
<tr>
<td>Dehne et al. (07)</td>
<td>5^k</td>
</tr>
<tr>
<td>Chen et al. (08)</td>
<td>3.83^k</td>
</tr>
<tr>
<td>Cao, Chen, Liu (10)</td>
<td>3.619^k</td>
</tr>
<tr>
<td>Kociumaka and Pilipczuk (14)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Kernel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burrage et al. (06)</td>
<td>$O(k^{11})$</td>
</tr>
<tr>
<td>Bodlaender (07)</td>
<td>$O(k^3)$</td>
</tr>
<tr>
<td>Thomassé (10)</td>
<td>$O(k^2)$</td>
</tr>
</tbody>
</table>

Can we obtain similar results for bigger interesting graph classes?
Block graph

Blocks: maximal connected subgraphs having no cut vertices.

A graph is a **block graph** if every its block is a complete graph.

A graph is a block graph if and only if it has no diamonds and cycles of length at least 4.

Forests \nsubseteq Block graphs \nsubseteq (Chordal graphs) \cap (Distance-hereditary graphs)
Block Graph Deletion

Input: A graph \(G = (V, E) \), an integer \(k \)

Parameter: \(k \)

Question: \(\exists S \subseteq V \) with \(|S| \leq k \) such that \(G - S \) is a block graph?
Theorem (Kim, K 15)

- **Block Graph Deletion** can be solved in time $10^k \cdot n^{O(1)}$.
- **Block Graph Deletion** admits a kernel of size $O(k^7)$.

We concentrate on the kernelization algorithm.
Theorem (Kim, K 15)

- **Block Graph Deletion** can be solved in time $10^k \cdot n^{O(1)}$.
- **Block Graph Deletion** admits a kernel of size $O(k^7)$.

We concentrate on the kernelization algorithm.

Tools:

1. **Gallai’s A-path theorem.**
 - finding a (small) hitting set S_v for obstructions containing a fixed vertex v.
 - **complete degree**.

2. **Sauer-Shelah lemma.**
 - bounding the size of blocks
 \rightarrow existence of some v that $G - (S_v \cup \{v\})$ has many components.

3. **3-expansion lemma.**
 - reducing the graph when $G - (S_v \cup \{v\})$ has many components.
(1) Gallai's A-path theorem

Let $A \subseteq V(G)$. A path in G is called an A-path if its two end vertices are on A, and all other vertices are on $V(G) - A$. An edge in $G[A]$ is also an A-path.

Theorem (Gallai 61)

For an integer k, the following are equivalent:

(1) G has no $k + 1$ vertex-disjoint A-paths.

(2) There is a vertex set T of size $\leq 2k$ such that $G - T$ has no A-paths.

We can find one of them in polynomial time.

Let us fix a vertex v, and let $N_G(v)$ be the set of neighbors of v. Consider $N_G(v)$-paths in a graph $G - v - E(G[N_G(v)])$.

Three types:

- cycle of length ≥ 4 containing v
- cycle of length ≥ 4 not containing v
- diamond containing v
Proposition

Let G be a graph and let $v \in V(G)$ and let k be a positive integer. Then in $O(kn^3)$ time, we can find either

1. $k + 1$ obstructions that are pairwise vertex-disjoint, or
2. $k + 1$ obstructions whose pairwise intersections are exactly the vertex v, or
3. $S_v \subseteq V(G)$ with $|S_v| \leq 7k$ such that $G - S_v$ has no obstructions containing v.

Proof:

- We may assume that there is a vertex set T of size $4k$ hitting all obstructions containing at least one vertex of $G - (\{v\} \cup N_G(v))$. All other obstructions are diamonds in $G[\{v\} \cup N_G(v)]$ containing v. We search disjoint P_3’s in $N_G(v)$.
 - Output $k + 1$ diamonds containing v, or
 - Remove at most $3k$ vertices for hitting all such diamonds.
Proposition

Let G be a graph and let $v \in V(G)$ and let k be a positive integer. Then in $O(kn^3)$ time, we can find either

(1) $k + 1$ obstructions that are pairwise vertex-disjoint, or

(2) $k + 1$ obstructions whose pairwise intersections are exactly the vertex v, or

(3) $S_v \subseteq V(G)$ with $|S_v| \leq 7k$ such that $G - S_v$ has no obstructions containing v.

Proof:

- We may assume that there is a vertex set T of size $4k$ hitting all obstructions containing at least one vertex of $G - (\{v\} \cup N_G(v))$. All other obstructions are diamonds in $G[\{v\} \cup N_G(v)]$ containing v. We search disjoint P_3’s in $N_G(v)$.

 - Output $k + 1$ diamonds containing v, or
 - Remove at most $3k$ vertices for hitting all such diamonds.

Preprocessing : for each vertex v, run the algorithm given in the proposition.
If we find $k + 1$ obstructions that are disjoint, then say NO.
If we find $k + 1$ obstructions whose pairwise intersections are v, then remove v, and let $k' := k - 1$.
⇒ a reduced graph
For a reduced graph G, $\forall v \in V(G)$, $\exists S_v$ with $|S_v| \leq 7k$ where $G - S_v$ has no obstructions containing v.

Especially, the neighborhood of v in $G - S_v$ forms a disjoint union of complete graphs.
For a reduced graph G, $\forall v \in V(G)$, $\exists S_v$ with $|S_v| \leq 7k$ where $G - S_v$ has no obstructions containing v.

Especially, the neighborhood of v in $G - S_v$ forms a disjoint union of complete graphs.

Complete degree

In a reduced graph, **complete degree** of v is

$$\min_{T \subseteq V(G) - \{v\}, |T| \leq 7k} \text{(number of components of } N_{G - T}(v)),$$

where $G - T$ has no obstructions containing v.

You can have 1 complete-neighborhood, but cannot have 2 complete-neighborhoods on a component of $G - (\{v\} \cup S_v)$.
(2) Sauer-Shelah lemma

Suppose it is a Yes-instance, and G is sufficiently large.

Is there a vertex of large complete degree?
(2) Sauer-Shelah lemma

Suppose it is a \textsc{Yes}-instance, and G is sufficiently large.

Is there a vertex of large complete degree? \textbf{Currently NO.}

\begin{center}
\begin{tikzpicture}
\node[shape=circle,draw,inner sep=0.5mm,fill=black] (x) at (0,0) {x};
\node[shape=rectangle,fill=yellow] (y) at (0,-3) {y};
\draw (x) -- (y);
\end{tikzpicture}
\end{center}

\textbf{|S|} \leq k \\
almost complete

\textbf{Twin reduction rule :} G has $\geq k + 2$ vertices that are pairwise twins, then we remain $k + 1$ vertices and remove other vertices.

Size looks bounded by $(k + 1)2^k$.

(2) Sauer-Shelah lemma

First consider $\bigcup_{v \in S} S_v$ on $G - S$.
For the remaining part, there is no obstruction containing v for each $v \in S$.

$|S| \leq k$

$7k^2$
Theorem (Sauer-Shelah, 72)

Let M be a $S \times T$ binary matrix such that no two rows are same. For each $t \geq 2$, if $|S| \geq (|T| + 1)^{t-1}$, then there exists $S' \subseteq S$ and $T' \subseteq T$ with $|S'| = 2^t$, $|T'| = t$ where $M[S', T']$ has all possible row vectors of length t.
Theorem (Sauer-Shelah, 72)

Let M be a $S \times T$ binary matrix such that no two rows are same. For each $t \geq 2$, if $|S| \geq (|T| + 1)^{t-1}$, then there exists $S' \subseteq S$ and $T' \subseteq T$ with $|S'| = 2^t$, $|T'| = t$ where $M[S', T']$ has all possible row vectors of length t.
Theorem (Sauer-Shelah, 72)

Let M be a $S \times T$ binary matrix such that no two rows are same. For each $t \geq 2$, if $|S| \geq (|T| + 1)^{t-1}$, then there exists $S' \subseteq S$ and $T' \subseteq T$ with $|S'| = 2^t, |T'| = t$ where $M[S', T']$ has all possible row vectors of length t.

\[|S| \leq k \]

\Rightarrow a block U in the above part has size $\geq (k + 1)^1$, then $\exists U' \subseteq U, S' \subseteq S$ with $|U'| = 2^2, |S'| = 2$ where all patterns from U' to S' appear.

$\rightarrow \exists$ diamond containing v, contradiction.

\rightarrow Each block of $G - S$ has size at most $7k^2 + k$.
Theorem (Sauer-Shelah, 72)

Let M be a $S \times T$ binary matrix such that no two rows are same. For each $t \geq 2$, if $|S| \geq (|T| + 1)^{t-1}$, then there exists $S' \subseteq S$ and $T' \subseteq T$ with $|S'| = 2^t$, $|T'| = t$ where $M[S', T']$ has all possible row vectors of length t.

$|S| \leq k$

\Rightarrow a block U in the above part has size $\geq (k + 1)^1$, then $\exists U' \subseteq U$, $S' \subseteq S$ with $|U'| = 2^2$, $|S'| = 2$ where all patterns from U' to S' appear.

$\rightarrow \exists$ diamond containing v, contradiction.

\rightarrow Each block of $G - S$ has size at most $7k^2 + k$.

$\Rightarrow G - S$ is close to a little 'blow-up' of a tree rather than a complete graph.

$\Rightarrow \exists v \in S$ of large complete degree.
(3) 3-expansion lemma

Theorem

Let \((G, k)\) be a reduced instance of Block Graph Deletion that is a YES-instance. If \(G\) has at least \(c \cdot k^7\) vertices then \(G\) has a vertex of complete degree at least \((21 + \epsilon)k\).

\[\exists v\] such that \(G - (S_v \cup \{v\})\) has at least \(21k\) components that are block graphs.
(3) 3-expansion lemma

Theorem

Let \((G, k)\) be a reduced instance of Block Graph Deletion that is a YES-instance. If \(G\) has at least \(c \cdot k^7\) vertices then \(G\) has a vertex of complete degree at least \((21 + \epsilon)k\).

\[\exists v \text{ such that } G - (S_v \cup \{v\}) \text{ has at least } 21k \text{ components that are block graphs.} \]

Reduction:

1. Add a pair of disjoint paths of length 2 between \(v\) and \(S_v\), and remove all edges between \(v\) and selected components.
2. If a vertex of degree 1 appears, then we remove it.
(3) 3-expansion lemma

Theorem

Let (G, k) be a reduced instance of Block Graph Deletion that is a YES-instance. If G has at least $c \cdot k^7$ vertices then G has a vertex of complete degree at least $(21 + \epsilon)k$. Therefore, there exists a vertex v such that $G - (S_v \cup \{v\})$ has at least $21k$ components that are block graphs.

Reduction: (1) Add a pair of disjoint paths of length 2 between v and S_v, and remove all edges between v and selected components. (2) If a vertex of degree 1 appears, then we remove it.

Caution: The number of vertices is increased.
(3) 3-expansion lemma

Theorem

Let (G, k) be a reduced instance of Block Graph Deletion that is a YES-instance. If G has at least $c \cdot k^7$ vertices then G has a vertex of complete degree at least $(21 + \epsilon)k$. Then there exists v such that $G - (S_v \cup \{v\})$ has at least $21k$ components that are block graphs.

Reduction:

1. Add a pair of disjoint paths of length 2 between v and S_v, and remove all edges between v and selected components.
2. If a vertex of degree 1 appears, then we remove it.

Caution: The number of vertices is increased.

$|V(G)| + s$ is decreased where s is the number of edges that are not incident with a vertex of degree 2.
Further problems

- Improve the size of kernel.
- Does Chordal Vertex Deletion admit a polynomial kernel?
- Does Distance-hereditary Vertex Deletion admit a polynomial kernel?
- Block graphs are graphs whose blocks are P_3-free. What about other vertex deletion problems to graphs whose blocks satisfy a certain property?
Further problems

- Improve the size of kernel.

- Does Chordal Vertex Deletion admit a polynomial kernel?

- Does Distance-hereditary Vertex Deletion admit a polynomial kernel?

- Block graphs are graphs whose blocks are P_3-free. What about other vertex deletion problems to graphs whose blocks satisfy a certain property?

Thanks!