Graphs of small rank-width are pivot-minors of graphs of small tree-width

O-joung Kwon
(Joint work with Sang-il Oum)

June 22, 2012
Graphs of small rank-width are pivot-minors of graphs of small tree-width

O-joung Kwon
(Joint work with Sang-il Oum)

June 22, 2012
Preliminaries

- For a graph G, $V(G)$ denote the vertex set of G and $E(G)$ denote the edge set of G.
- A tree is **subcubic** if every non-leaf vertex has degree 3.
- A tree is **caterpillar** if there is a path in the tree such that every vertex in the tree is incident with a vertex in that path.
A rank-decomposition \((T, L)\) of \(G\) consists of a subcubic tree \(T\), bijective function \(L\) from \(V(G)\) to leaves of \(T\).
A rank-decomposition \((T, L)\) of \(G\) consists of a subcubic tree \(T\), bijective function \(L\) from \(V(G)\) to leaves of \(T\).
A rank-decomposition \((T, L)\) of \(G\) consists of a subcubic tree \(T\), bijective function \(L\) from \(V(G)\) to leaves of \(T\).
• **Width of an edge of** T: the rank of the matrix with the partition induced by the edge.
• Width of an edge of T: the rank of the matrix with the partition induced by the edge.

$$\begin{pmatrix}
 a_1 & a_2 & a_3 \\
 1 & 1 & 1 \\
 a_4 \\
 1 & 0 & 0 \\
 a_5 \\
 1 & 0 & 1 \\
 a_6 \\
 0 & 0 & 1 \\
 a_7
\end{pmatrix} = 3$$
• Width of an edge of T: the rank of the matrix with the partition induced by the edge.

$$\text{Width of } e = \text{rank} \begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & 1 & 1 & 1 \\ a_5 & 1 & 0 & 0 \\ a_6 & 1 & 0 & 1 \\ a_7 & 0 & 0 & 1 \end{pmatrix} = 3$$
• Width of an edge of T: the rank of the matrix with the partition induced by the edge.
• Width of (T, L): maximum width of all edges in T
• Rank-width of G: minimum width of all rank-decompositions of G
• If we restrict to use only caterpillar subcubic trees, then we call it the linear rank-width of G
Tree-decomposition
(84, Robertson and Seymour)

- A tree-decomposition \((T, \{B_v\}_{v \in V(T)})\) of \(G\) consists of a tree \(T\), mapping from each vertex \(v\) of \(T\) to a subset \(B_v\) of \(V(G)\). and it satisfies following axioms.
 1. Two vertices of an edge must be contained in a bag.
 2. If \(x\) is the path from \(v\) to \(w\) in \(T\), then \(B_v \cap B_w \subseteq B_x\).

\(B_v\) is called a bag.

\[\begin{array}{c}
\text{Tree-decomposition} \\
(84, \text{Robertson and Seymour}) \\
\end{array} \]

- A tree-decomposition \((T, \{B_v\}_{v \in V(T)})\) of \(G\) consists of a tree \(T\), mapping from each vertex \(v\) of \(T\) to a subset \(B_v\) of \(V(G)\). and it satisfies following axioms.
 1. Two vertices of an edge must be contained in a bag.
 2. If \(x\) is the path from \(v\) to \(w\) in \(T\), then \(B_v \cap B_w \subseteq B_x\).

\(B_v\) is called a bag.
• Width of \((T, \{B_v\}_{v \in V(T)})\): \(\max\{|B_v| - 1 : v \in V(T)\}\)

• **Tree-width** of \(G\): minimum width of all tree-decompositions of \(G\)

• If we restrict to use only paths, we call it the **path-width** of \(G\)
Local complementation and pivoting

We are interested in two operations.

- **Local complementation** on a vertex $v \in V$
 \[
 G * v = (V, E \Delta \{xy : x, y \in \delta(v)\})
 \]
Local complementation and pivoting

- **Local complementation** on a vertex \(v \in V \)
 \[
 G * v = (V, E \Delta \{ xy : x, y \in \delta(v) \})
 \]

- **Pivot-operation** on an edge \(uv \in E \)
 \[
 G \land uv = G * u * v * u
 \]
Local complementation and pivoting

- **Local complementation** on a vertex \(v \in V \)
 \[G \ast v = (V, E \Delta \{xy : x, y \in \delta(v)\}) \]

- **Pivot-operation** on an edge \(uv \in E \)
 \[G \land uv = G \ast u \ast v \ast u \]
Local complementation and pivoting

- **Local complementation** on a vertex \(v \in V \)
 \[G * v = (V, E \Delta \{xy : x, y \in \delta(v)\}) \]

- **Pivot-operation** on an edge \(uv \in E \)
 \[G \land uv = G * u * v * u \]
Why these operations?

- These operations preserve the rank of the matrix induced by a partition of the graph.
- They also preserve the rank-width of the graph.

Definition (Oum, 05)

H : a **vertex-minor** of a graph G
if H is obtained from G by applying a sequence of local complementations and vertex deletions.

H : a **pivot-minor** of a graph G
if H is obtained from G by applying a sequence of pivoting edges and vertex deletions.

- If H is a vertex-minor or a pivot-minor of G,
then $\text{rw}(H) \leq \text{rw}(G)$.

Why these operations?

- These operations preserve the rank of the matrix induced by a partition of the graph.
- They also preserve the rank-width of the graph.

Definition (Oum, 05)

\(H \) : a **vertex-minor** of a graph \(G \) if \(H \) is obtained from \(G \) by applying a sequence of local complementations and vertex deletions.

\(H \) : a **pivot-minor** of a graph \(G \) if \(H \) is obtained from \(G \) by applying a sequence of pivoting edges and vertex deletions.

- If \(H \) is a vertex-minor or a pivot-minor of \(G \), then \(\text{rw}(H) \leq \text{rw}(G) \).
Why these operations?

- These operations preserve the rank of the matrix induced by a partition of the graph.
- They also preserve the rank-width of the graph.

Definition (Oum, 05)

H: a **vertex-minor** of a graph G if H is obtained from G by applying a sequence of local complementations and vertex deletions.

H: a **pivot-minor** of a graph G if H is obtained from G by applying a sequence of pivoting edges and vertex deletions.

- If H is a vertex-minor or a pivot-minor of G, then $\text{rw}(H) \leq \text{rw}(G)$.
Why these operations?

- These operations preserve the rank of the matrix induced by a partition of the graph.
- They also preserve the rank-width of the graph.

Definition (Oum, 05)

\(H \) : a **vertex-minor** of a graph \(G \) if \(H \) is obtained from \(G \) by applying a sequence of local complementations and vertex deletions.

\(H \) : a **pivot-minor** of a graph \(G \) if \(H \) is obtained from \(G \) by applying a sequence of pivoting edges and vertex deletions.

- If \(H \) is a vertex-minor or a pivot-minor of \(G \), then \(\text{rw}(H) \leq \text{rw}(G) \).
Why these operations?

- These operations preserve the rank of the matrix induced by a partition of the graph.
- They also preserve the rank-width of the graph.

Definition (Oum, 05)

H: a **vertex-minor** of a graph G if H is obtained from G by applying a sequence of local complementations and vertex deletions.

H: a **pivot-minor** of a graph G if H is obtained from G by applying a sequence of pivoting edges and vertex deletions.

- If H is a vertex-minor or a pivot-minor of G, then $\text{rw}(H) \leq \text{rw}(G)$.
Known results

Rank-width and tree-width of some graph classes

<table>
<thead>
<tr>
<th>Graph</th>
<th>Rank-width</th>
<th>Tree-width</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$n \times n$ grid</td>
<td>$n - 1$ (Jelinek 10)</td>
<td>n (RS 91)</td>
</tr>
</tbody>
</table>

Theorem (Oum 08)

For a graph G, $\text{rw}(G) \leq \text{tw}(G) + 1$.

In general, tree-width cannot be bounded by a function of rank-width.
Known results

Rank-width and tree-width of some graph classes

<table>
<thead>
<tr>
<th>Structure</th>
<th>Rank-width</th>
<th>Tree-width</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$n \times n$ grid</td>
<td>$n - 1$</td>
<td>n</td>
</tr>
<tr>
<td>complete graph K_n</td>
<td>1</td>
<td>$n - 1$</td>
</tr>
</tbody>
</table>

Theorem (Oum 08)
For a graph G, $\text{rw}(G) \leq \text{tw}(G) + 1$.

In general, tree-width cannot be bounded by a function of rank-width.
Known results

Rank-width and tree-width of some graph classes

<table>
<thead>
<tr>
<th></th>
<th>rank-width</th>
<th>tree-width</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$n \times n$ grid</td>
<td>$n - 1$ (Jelinek 10)</td>
<td>n (RS 91)</td>
</tr>
<tr>
<td>complete graph K_n</td>
<td>1</td>
<td>$n - 1$ (RS 91)</td>
</tr>
</tbody>
</table>

Theorem (Oum 08)
For a graph G, $\text{rw}(G) \leq \text{tw}(G) + 1$.

In general, tree-width cannot be bounded by a function of rank-width.
Known results

Rank-width and tree-width of some graph classes

<table>
<thead>
<tr>
<th>Structure</th>
<th>Rank-width</th>
<th>Tree-width</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$n \times n$ grid</td>
<td>$n - 1$ (Jelinek 10)</td>
<td>n (RS 91)</td>
</tr>
<tr>
<td>complete graph K_n</td>
<td>1</td>
<td>$n - 1$ (RS 91)</td>
</tr>
</tbody>
</table>

Theorem (Oum 08)

For a graph G, $\text{rw}(G) \leq \text{tw}(G) + 1$.

In general, tree-width cannot be bounded by a function of rank-width.
Observation

We observe that K_n is a vertex-minor of a path of length $3n$.

Question

If a graph has small rank-width, then it can be a vertex-minor or a pivot-minor of a graph of small tree-width?
Observation

We observe that K_n is a vertex-minor of a path of length $3n$.

Question
If a graph has small rank-width, then it can be a vertex-minor or a pivot-minor of a graph of small tree-width??
Main result

Theorem (K, Oum 12)

\[G \text{ has rank-width } \leq k \quad \Rightarrow \quad G \text{ is a pivot-minor of a graph of tree-width } \leq 2k \]

\[G \text{ has linear rank-width } \leq k \quad \Rightarrow \quad G \text{ is a pivot-minor of a graph of path-width } \leq k + 1 \]

Given a graph \(G \) and a rank-decomposition \((T, L)\) of width \(k \), we explicitly construct a graph \(H \), called a rank-expansion, such that

- tree-width of \(H \) is at most \(2k \)
- \(G \) is a pivot-minor of \(H \)
- \(|V(H)| \leq (2k + 1)|V(G)| - 6k\)
Main result

Theorem (K, Oum 12)

\[G \text{ has rank-width } \leq k \implies G \text{ is a pivot-minor of a graph of tree-width } \leq 2k \]

\[G \text{ has linear rank-width } \leq k \implies G \text{ is a pivot-minor of a graph of path-width } \leq k + 1 \]

Given a graph \(G \) and a rank-decomposition \((T, L)\) of width \(k \), we explicitly construct a graph \(H \), called a rank-expansion, such that

- tree-width of \(H \) is at most \(2k \)
- \(G \) is a pivot-minor of \(H \)
- \(|V(H)| \leq (2k + 1)|V(G)| - 6k \)
First we choose a leaf vertex of T as a root. For an edge e in T, let $A_e = \{e_4, e_5, e_6, e_7\}$, $B_e = \{e_1, e_2, e_3\}$. Choose the basis vertices of the row space of the induced matrix. $A(G)[A_e, B_e] = \begin{pmatrix} a_4 & 1 & 1 & 1 \\ a_5 & 1 & 0 & 0 \\ a_6 & 1 & 0 & 1 \\ a_7 & 0 & 0 & 1 \end{pmatrix}$ basis vertices: $\{a_4, a_5, a_7\}$ Note that $R_{a_6} = R_{a_5} + R_{a_7}$.
First we choose a leaf vertex of T as a root.
First we choose a leaf vertex of T as a root.
First we choose a leaf vertex of T as a root. For an edge e in T, let $A_e = \{e_4, e_5, e_6, e_7\}$, $B_e = \{e_1, e_2, e_3\}$.
Construction

First we choose a leaf vertex of T as a root.
For an edge e in T, let $A_e = \{e_4, e_5, e_6, e_7\}$, $B_e = \{e_1, e_2, e_3\}$.
Choose the basis vertices of the row space of the induced matrix.

$$A(G)[A_e, B_e] = \begin{pmatrix}
a_1 & a_2 & a_3 \\
a_4 & 1 & 1 & 1 \\
a_5 & 1 & 0 & 0 \\
a_6 & 1 & 0 & 1 \\
a_7 & 0 & 0 & 1
\end{pmatrix}$$
First we choose a leaf vertex of \(T \) as a root.

For an edge \(e \) in \(T \), let \(A_e = \{e_4, e_5, e_6, e_7\} \), \(B_e = \{e_1, e_2, e_3\} \).

Choose the basis vertices of the row space of the induced matrix.

\[
A(\Gamma)[A_e, B_e] = \begin{pmatrix}
a_1 & a_2 & a_3 \\
a_4 & 1 & 1 & 1 \\
a_5 & 1 & 0 & 0 \\
a_6 & 1 & 0 & 1 \\
a_7 & 0 & 0 & 1
\end{pmatrix}
\]

basis vertices: \(\{a_4, a_5, a_7\} \)
First we choose a leaf vertex of \(T \) as a root.

For an edge \(e \) in \(T \), let \(A_e = \{ e_4, e_5, e_6, e_7 \} \), \(B_e = \{ e_1, e_2, e_3 \} \).

Choose the basis vertices of the row space of the induced matrix.

\[
A(G)[A_e, B_e] = \begin{pmatrix}
 a_1 & a_2 & a_3 \\
 a_4 & 1 & 1 & 1 \\
 a_5 & 1 & 0 & 0 \\
 a_6 & 1 & 0 & 1 \\
 a_7 & 0 & 0 & 1
\end{pmatrix}
\]

basis vertices: \(\{ a_4, a_5, a_7 \} \)
In the matrix corresponding to a_4 and a_5 are adjacent to a_6.

\[x = a_2 \]
$R_{a_6} = R_{a_5} + R_{a_7}$
in the matrix corresponding to e
a_4 and a_5 are adjacent to a_6
1. After pivoting every blue edges and delete them with vertices, we get the graph G.

2. The tree-width of this rank-expansion is at most $2k$.
Sketch of proof

1. After pivoting every blue edges and delete them with vertices, we get the graph G.

2. The tree-width of this rank-expansion is at most $2k$.

\[
U_d = \{a_4, a_5\} \quad U_e = \{a_4, a_5, a_7\} \\
U_{f_1} = \{a_4, a_5\} \quad U_{f_2} = \{a_6, a_7\}
\]
Sketch of proof

1. After pivoting every blue edges and delete them with vertices, we get the graph G.

2. The tree-width of this rank-expansion is at most $2k$.
Sketch of proof

1. After pivoting every blue edges and delete them with vertices, we get the graph G.

2. The tree-width of this rank-expansion is at most $2k$.

\[U_d = \{a_4, a_5\} \]
\[U_e = \{a_4, a_5, a_7\} \]
\[U_{f_1} = \{a_4, a_5\} \]
\[U_{f_2} = \{a_6, a_7\} \]
Key lemma

Lemma
For a given graph G, we make a graph as follows. (left adjacency follows $A(G)$, and right adjacency follows basis) Then we obtain the adjacency between partitions exactly same as the adjancency in the graph G by pivoting matching edges (blue).
Rank-width 1, linear rank-width 1

Theorem (K, Oum 12)

\(G \) has rank-width \(\leq 1 \)
Rank-width 1, linear rank-width 1

Theorem (K, Oum 12)

\[G \text{ has rank-width } \leq 1 \iff G \text{ is a pivot-minor of a graph of tree-width } \leq 2 \]
Rank-width 1, linear rank-width 1

Theorem (K, Oum 12)

\[G \text{ has rank-width } \leq 1 \]

\[\iff G \text{ is a vertex-minor of a tree} \]
Rank-width 1, linear rank-width 1

Theorem (K, Oum 12)

\[G \text{ has rank-width } \leq 1 \iff G \text{ is a vertex-minor of a tree} \]

\[G \text{ has linear rank-width } \leq 1 \iff G \text{ is a vertex-minor of a path} \]
Rank-width 1, linear rank-width 1

Theorem (K, Oum 12)

\begin{align*}
G \text{ has rank-width } & \leq 1 \\
G \text{ has linear rank-width } & \leq 1 \iff G \text{ is a vertex-minor of a tree} \\
G \text{ is a vertex-minor of a path} \\
\end{align*}

When \(G \) is bipartite,

\begin{align*}
G \text{ has rank-width } & \leq 1 \\
G \text{ has linear rank-width } & \leq 1 \iff G \text{ is a pivot-minor of a tree} \\
G \text{ is a pivot-minor of a path} \\
\end{align*}
To make a rank-expansion of a given graph, we need a rank-decomposition of the graph.

Question. Can we construct a graph satisfying the theorem without rank-decomposition?
To make a rank-expansion of a given graph, we need a rank-decomposition of the graph.

Question. Can we construct a graph satisfying the theorem without rank-decomposition?

Thank you.