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Abstract

We consider the problem of learning in multi-
layer feed-forward networks of linear threshold
units. We show that the Vapnik-Chervonenkis
dimension of the class of functions that can
be computed by a two-layer threshold network
with real inputs is at least proportional to
the number of weights in the network. This
result also holds for a large class of two-
layer networks with binary inputs, and a large
class of three-layer networks with real inputs.
In Valiant's probably approximately correct
learning framework, this implies that the num-
ber of examples necessary for learning in these
networks is at least linear in the number of
weights. This bound is within a log factor of
the upper bound.

1 INTRODUCTION

Neural networks have been widely used for pattern clas-
si�cation problems. This paper addresses the ques-
tion, `How many training examples are necessary for
satisfactory learning performance in a multi-layer feed-
forward neural network used for classi�cation?' We con-
sider only single-output networks, and therefore two-
class classi�cation problems. We assume that the exam-
ples are generated randomly, and say that the trained
network is approximately correct if it correctly classi�es
a random example with high probability. We require
that, for almost all sequences of training examples, the
trained network will be approximately correct, for any
desired target function and any probability distribution
of examples. This is known as `probably approximately
correct' (or pac) learning [1]. In this framework, the
problem of learning consists of choosing an accurate hy-
pothesis from some hypothesis class, such as the class

of functions that can be computed on a particular net-
work architecture. In [2], Blumer et al. show that the
number of examples necessary and su�cient for learn-
ing is proportional to a combinatorial dimension of the
hypothesis class known as the Vapnik-Chervonenkis di-
mension.

De�nition 1 Suppose X is a set and H is a class of

functions from X to f0; 1g.

We say that H shatters a �nite subset S � X if, for

each of the 2jSj possible classi�cations of the points in

S there is a function in H that can perform the classi-

�cation,

jffx 2 S : h(x) = 1g : h 2 Hgj = 2jSj:

The Vapnik-Chervonenkis (VC-) dimension of H
is the size of the largest shattered subset of X,

VCdim(H) =

maxfm : 9S � X jSj = m and H shatters Sg :

If this set has no largest element, we say that

VCdim(H) =1.

The VC-dimension of the class of functions that can be
computed in a feed-forward network is not known pre-
cisely. In [3], Baum and Haussler give upper and lower
bounds for particular network architectures. They show
that, for an arbitrary feed-forward network consisting
of N linear threshold units and W weights, the VC-
dimension is no more than 2W log2 eN , where e is the
base of the natural logarithm. This and Blumer et al.'s
result show that O(W logN ) training examples provide
enough information for pac learning in a feed-forward
network.

Baum and Haussler also give a lower bound on the VC-
dimension for completely connected two-layer threshold
networks. (A completely connected feed-forward net-
work has connections between every pair of units in ad-
jacent layers.) They show that for a network of this
kind with k0 real-valued inputs and k1 �rst-layer units,
the VC-dimension is at least 2bk1=2ck0 (see also [4]).
For a completely connected two-layer network with bi-
nary inputs, they show that the VC-dimension is again

(W ).



In this paper, we give lower bounds on the VC-
dimension for a number of two- and three-layer archi-
tectures. In particular, we extend Baum and Haussler's
lower bound to arbitrary two-layer networks with real
inputs, we improve on their lower bound for binary-
input two-layer networks, and we present lower bounds
for some completely connected three-layer networks. In
all cases, the VC-dimension is 
(W ).

The remainder of this section de�nes multi-layer thresh-
old networks, and presents some notation. Section 2 in-
troduces de�ning sets, which simplify the construction
of a shattered set for a class of network functions. In
Section 3 and 4, we give results for two- and three-layer
networks respectively. Section 5 discusses some exten-
sions to this work. Some of the results in this paper
were announced (without proofs) in a note [5].

1.1 NOTATION

We consider networks of processing units in layered,
feed-forward architectures.

De�nition 2 A feed-forward network architec-
ture is a directed graph (U;C), where U is a set,

C � U � U , and U and C satisfy the following con-

straints.

1. The set U can be partitioned into L+ 1 nonempty,

disjoint sets Ui, U =
SL

i=0 Ui, where L is a positive

integer.

2. If (u; v) 2 C, where u 2 Ui and v 2 Uj, then i < j.

3. For all u in U � UL, there is a v 2 U such that

(u; v) 2 C.

4. For all u in Ui (where i > 0), there is a v in Ui�1
with (v; u) 2 C.

We say that (U;C) is an L-layer network architecture.

The function I : U ! 2U is de�ned by I(u) =
fv 2 U : (v; u) 2 Cg. A completely connected feed-

forward architecture is a feed-forward architecture that

also satis�es I(u) = Ui�1 for all u 2 Ui and all

i 2 f1; 2; : : : ; Lg.

In this de�nition, U is the set of units in the network,
U0 is the set of network input units (the other units
are called processing units), Ul is the set of units in
the l-th layer from the inputs (0 � l � L), and L is
the number of layers of processing units. We write Ul =�
ul1; u

l
2; : : : ; u

l
kl

	
for 0 � l � L, where kl is the number

of units in layer l. The processing units in layer L are
called output units. In this paper, we are interested
in networks with a single output unit, kL = 1.

The set C describes the connections between units in
the network. Condition 2 describes the feed-forward re-
quirement. Condition 3 forbids redundant units. Con-
dition 4 requires every non-input unit to have some con-
nection from another unit, and ensures that we cannot

shift a unit into a lower layer. It can be shown that
there is a unique partition fUlg of U that satis�es these
four conditions. Because of this, we can refer to the
number of layers L, the sets Ui of units in a layer, and
the sizes ki of a layer (i = 0; 1; : : :; L) without explicitly
de�ning them, since they are uniquely determined by
the architecture (U;C).

De�nition 3 A feed-forward threshold network
N = (U;C;w; �) is a feed-forward architecture (U;C),
together with weights w : C ! R and thresholds
� : U � U0 ! R. Given an input vector, x =
(x1; x2; : : : ; xk0) 2 R

k0, the function o : Rk0 � U ! R

expresses the values computed by each unit as follows.

Each input unit u0i is associated with a real value xi, and
each processing unit computes a thresholded weighted

sum of its inputs. That is,

o(x; u0i ) = xi;

and, if u 2 U � U0,

o(x; u) = H

0
@ X

v2I(u)

o(x; v)w(v; u) � �(u)

1
A

where H is the Heaviside function (H(�) is 1 if � � 0
and 0 otherwise). The output of the network is the value
computed by the output unit uL1 , so the network func-
tion, FN : Rk0 ! R, is FN (x) = o(x; uL1 ). Let TR(A)
( respectively TB(A)) be the class of functions that a feed-
forward threshold network with architecture A = (U;C)
and real-valued (f0; 1g-valued) inputs can implement.

In this paper, we are interested in lower bounds on the
Vapnik-Chervonenkis dimension of TR(A) and TB(A),
for various architectures A.

We often need to refer to the weights and threshold of a
unit as a vector. Let wu be the real vector consisting of
the threshold �(u) and weights w(v; u) associated with
the unit u (where some suitable ordering is maintained).
Let w�u be a vector consisting of the concatenation of
the vectors fwv : v 2 U � U0 � fugg (again with some
suitable ordering on the elements). Let the function
Fu(w

0
u; w

0
�u; �) : R

k0 ! R be the network function when
the weight vectors wu and w�u are replaced by w0

u and
w0
�u respectively.

For a positive integer m, vector y 2 R
m, and � > 0,

de�ne
B�(y) = fz 2 Rm : kz � yk < �g;

where kxk =
pPm

i=1 x
2
i for x = (x1; x2; : : : ; xm) 2 R

m.

2 DEFINING SETS AND THE

VC-DIMENSION

Let N = (U;C;w; �) be a feed-forward threshold net-
work with k0 input units.

De�nition 4 A set S = fx1; x2; : : : ; xng � X (where

X is R
k0 or B

k0 ) is a de�ning set for unit u 2 U �U0
in the network N if



1. We can classify the elements of S arbitrarily by per-

turbing the weights and threshold of unit u,

8� > 0; 8(b1; b2; : : : ; bn) 2 f0; 1g
n; 9w�

u 2 B�(wu);

8i 2 f1; 2; : : : ; ng; Fu(w
�
u; w�u;xi) = bi:

2. Perturbing the weights and threshold of units other

than u will not a�ect the classi�cation of the points

in S,

8x 2 S; 9� > 0; 8w�
u 2 B�(wu); 9b 2 f0; 1g;

8w�
�u 2 B�(w�u); Fu(w

�
u; w

�
�u;x) = b:

To �nd a lower bound on the VC-dimension of a class of
functions, we need to prove the existence of a shattered
set. The following theorem shows that the problem of
constructing such a set for the classes TR(A) and TB(A)
can be decomposed by separately constructing de�ning
sets for units in the architecture A.

Theorem 5 Let A = (U;C) be a feed-forward network

architecture, and N = (U;C;w; �) a threshold network.

If there is a set of processing units V � U � U0 and a

�nite de�ning set Su for each unit u in V , then

VCdim(T (A)) �
X
u2V

jSuj;

where T (A) is TR(A) or TB(A), if the de�ning sets Su
are subsets of B

k0 or R
k0 respectively.

Proof Since Su is a de�ning set for each u in V , for every
x 2

S
u2V Su there is an � that satis�es the criterion

given in Condition 2 of De�nition 4. Since the Su are
�nite, we can always choose a � > 0 smaller than all of
these �'s.

Suppose we choose a desired classi�cation for each x 2S
u2V Su. For each unit u 2 V , choose w�

u 2 B�(wu) so

that Fu(w
�
u; w�u;x) is the desired classi�cation for each x

in Su. Condition 1 of the de�nition of a de�ning set en-
sures that this is always possible. By Condition 2, when
we apply these changes simultaneously to the weights of
all units, the classi�cation of a point x 2 Su is not af-
fected by the modi�cation of weights of units other than
u, so all points are classi�ed as desired. Since we can
use this argument for any desired classi�cations of the
points in

S
u2V Su, this set is shattered by T (A). �

Theorem 5 can be improved slightly using the idea of
an oblivious point.

De�nition 6 Let N = (U;C;w; �) be a feed-forward

threshold network that computes a mapping from X to

f0; 1g, where X is a set. A point x 2 X is an oblivi-
ous point for N if the classi�cation of x is una�ected

by su�ciently small perturbations of the weights of N .

Corollary 7 Let A = (U;C) be a feed-forward network

architecture, and N = (U;C;w; �) a threshold network

with an oblivious point. If there is a set of processing

units V � U � U0 and a �nite de�ning set Su for each

u in V , then

VCdim(T (A)) �
X
u2V

jSuj+ 1:

Proof As in the proof of Theorem 5, we can produce
any desired classi�cation of the points in

S
u2V Su by

perturbing the weights of the units in V .

Consider the network �N = (U;C; �w; ��), where �w and ��
are identical to w and �, but the weights and thresholds
of the output unit, uL1 , are negated, so �wuL

1

= �wuL
1

.

Each set Su is also a de�ning set for u in �N . Let y be an
oblivious point for N . It must be classi�ed di�erently
by the networks N and �N . Therefore

S
u2V Su [ fyg is

shattered by T (A). �

Consider a network N with real-valued inputs. If N has
a �rst-layer unit u 2 U1 with a nonempty de�ning set
and wu 6= 0, then N has an oblivious point: choose a
point close to an element of the de�ning set and not on
u's separating hyperplane.

3 TWO LAYER NETWORKS

The following theorem improves the lower bound given
in [3] for two-layer completely connected networks with
binary inputs.

Theorem 8 Let k0 and k1 be positive integers, and let

Ak0;k1 be the two-layer completely connected architec-

ture with k0 input units, k1 �rst layer units, and a single

output unit. For the class TB(Ak0;k1) de�ned in De�ni-

tion 3, we have

VCdim(TB(Ak0;k1)) � k0min

�
k1;

2k0

k20=2 + k0=2 + 1

�
+1:

Notice that the number of weights W in these networks
is (k0 + 2)k1 + 1, so the VC-dimension is 
(W ).

A d-packing of the k0-cube, f0; 1g
k0, is a subset of the

k0-cube in which every pair of vertices is at least Ham-
ming distance d apart. We will use the following lower
bound on the size of a maximal d-packing (see, for ex-
ample, [6]).

Lemma 9 If P (n; d) is the largest integer i such that

there is a d-packing of the n-cube that contains i vectors,

then P (n; d) � 2n=
�Pd�1

j=0

�
n

j

��
. In particular,

P (k0; 3) �
2k0

k20=2 + k0=2 + 1
:

Proof We can construct a suitable d-packing as fol-
lows. Begin with an empty set T , and a set L = f0; 1gn

of `legal' vertices. At each step, add to T any vertex v
from L, and remove from L all vertices that are within

Hamming distance d of v. There are
Pd�1

j=0

�
n

j

�
vertices



at Hamming distance less than d from v (including v),

so at each step there are no more than
Pd�1

j=0

�
n
j

�
ver-

tices removed from L. Continuing in this way until L
is empty, we construct a d-packing T , of size at least

2n=
�Pd�1

j=0

�
n

j

��
. �

Proof (of Theorem 8) If k1 � P (k0; 3), there is a
3-packing T � f0; 1gk0, with jT j = k1. Suppose T =
ft1; : : : ; tk1g. For each ti, i = 1; : : : ; k1, consider the
set Si of all k0 vertices at Hamming distance 1 from ti.
Choose the weights and threshold of the �rst-layer unit
u1i so that its hyperplane passes through all points in
the set Si. Since T is a 3-packing, these k1 hyperplanes
do not intersect inside [0; 1]k0. Choose the signs of the
weights and threshold of the �rst-layer units so that the
output of u1i is 0 for the point ti. If the output unit
implements the AND function, then each set Si is a
de�ning set for u1i . Clearly, the point t1 is an oblivious
point, so we have

VCdim(TB(Ak0;k1)) � k0k1 + 1:

If k1 > P (k0; 3), we can use only P (k0; 3) of the k1
planes in this way. Using the same argument, we
can construct P (k0; 3) de�ning sets, each containing k0
points, and we can �nd an oblivious point. This gives
the second term in the minimum. �

Notice that this bound on VCdim(TB(Ak0;k1)) is 
(W )
if k1 is su�ciently small.

The following lemma gives a lower bound for two-layer
networks with real inputs and arbitrary connectivity.

Lemma 10 Consider a two-layer feed-forward archi-

tecture A = (U;C) with k1 > 0 �rst layer units,

u11; u
1
2; : : : ; u

1
k1
, all connected to a single output unit.

Suppose the unit u1i is connected to ni > 0 input units,

for i = 1; 2; : : : ; k1. For this architecture,

VCdim(TR(A)) �

k1X
i=1

ni + 1:

Proof Suppose there are k0 input units. Label the input
and �rst-layer units as U0 = fu01; u

0
2; : : : ; u

0
k0
g and U1 =

fu11; u
1
2; : : : ; u

1
k1
g respectively. For the �rst-layer unit u1i ,

consider the set I(u1i ) of input units connected to u1i ,

I(u1i ) = fv 2 U : (v; u) 2 Cg :

We will consider separately those units that are con-
nected only to a single input unit (jI(u1i )j = 1). De�ne
V1 = fu1i : jI(u

1
i )j = 1g and V>1 = fu1i : jI(u

1
i )j > 1g.

Consider the �rst-layer units u1i 2 V>1. Place their

weight vectors on the unit hypersphere in Rk0 so that
they are all distinct, and set their thresholds to �1. The
decision boundary of each unit is a hyperplane in Rk0

that touches the unit hypersphere at some point. For

each unit u1i , choose ni points in general position1 close
to this point and on the unit's hyperplane. Choose the
signs of the weights and thresholds of these units so that
each unit classi�es the origin as 0. To ensure that each
set of ni points forms a de�ning set for the unit u1i ,
we will need to choose the weights of the output unit
appropriately.

Consider the remaining �rst-layer units, those in V1. Let
Sj be the set of �rst-layer units that have connections

only from input unit u0j , Sj =
�
u1i : I(u

1
i ) = fu0jg

	
. For

each input unit u0j with jSj j > 0, place jSjj distinct
points on the axis

aj =
�
x = (x1; x2; : : : ; xk0) 2 R

k0 : xi = 0; i 6= j
	
:

Ensure that these points are classi�ed as 1 by all but
one of the units in V>1 (this is always possible, since we
can always choose the hyperplanes of the units in V>1
so that their intersections do not intersect the axis a on
which these points lie). For each of these points, use one
of the jSjj units to de�ne a hyperplane perpendicular to
the axis a and passing through that point. Choose the
signs of the weight and threshold so that the origin is
classi�ed as 0 by all of the units in Sj .

We now have two requirements for the place-
ment of the output unit's hyperplane in the k1-
cube. It must separate the origin of the k1-
cube from all vertices with only bit i set, where
jI(u1i )j > 1, and it must separate some pair of vec-
tors of the form (b1; b2; : : : ; bi�1; 0; bi+1; : : : ; bk1) and
(b1; b2; : : : ; bi�1; 1; bi+1; : : : ; bk1), where jI(u

1
i )j = 1. So

we need a hyperplane to pass through k1 mutually or-
thogonal edges of the k1-cube. We can always choose k1
linearly independent points, each on one of these edges,
and pass our second layer plane through these points.
Then we have a de�ning set of size ni for each �rst-layer
unit u1i . The origin is an oblivious point, so Corollary 7

implies VCdim(TR(A)) �
Pk1

i=1 ni + 1. �

We can improve this bound for two-layer networks with
direct connections from input units to the output unit.

Lemma 11 Let A = (U;C) be a feed-forward network

architecture with a single output unit, uLi , and no con-

nections from input units to uLi . Let N = (U;C;w; �) be
a threshold network with k0 real-valued inputs. Suppose

there is a set S of nonempty subsets of R
k0, and each

set in S is a de�ning set for a non-output processing

unit u 2 U � U0 � fuL1 g. Suppose that there is an open

region R � R
k0 that satis�es

1. For all a 2 R, if a > 1 then x 2 R) ax 2 R.

2. There is a b 2 f0; 1g so that, for all su�ciently

small perturbations of the weights of units in the

network, each point x in R has FN (x) = b.

1A set S of points in Rn is in general position if no subset
of S containing k + 1 points lies on a (k � 1)-dimensional
hyperplane, for k 2 f1; 2; : : : ; ng.



3. R has non-zero content (Lebesgue measure).

Now, consider an architecture A0 = (U;C0), with C0 =
C [ D, where D � (U0 � fuL1 g) is a set of direct con-

nections from the input units to the output unit.

There is a threshold network N 0 = (U;C0; w0; �0) and a

set S0 � R, so that each set in S remains a de�ning set

for a unit u 2 U � U0, and S0 is a de�ning set for uL1 .
Furthermore, jS0j = jDj.

Proof Sketch Leave the weights and thresholds of N 0

the same as those in N , and choose the weights of the
direct connections so that the network's output changes
on a hyperplane in the region R. Provided these direct
weights are su�ciently small (and Condition 1 allows us
to choose them as small as desired), the classi�cations
of the points in de�ning sets will not be changed. A set
of jDj points in general position on that hyperplane in
R will constitute a de�ning set for uL1 in N . �

For the network described in the proof of Lemma 10,
we can choose a set that satis�es the conditions of
Lemma 11 (any unbounded cell with nonparallel bound-
ing hyperplanes contains such a set), so we have

Theorem 12 If A = (U;C) is a two-layer feed-forward

architecture with m connections from the input units to

other units, then VCdim(TR(A)) � m + 1.

Again, the VC-dimension is 
(W ).

4 THREE LAYER NETWORKS

De�ne the k0{k1{k2 architecture as the three-layer,
completely connected architecture with k0 input units,
k1 �rst-layer units, k2 second-layer units, and a single
output unit.

Theorem 13 Let k0, k1, and k2 be positive integers. If
Ak0;k1;k2 is the k0{k1{k2 architecture, we have

(a) If k0 � k1,

VCdim(TR(Ak0;k1;k2)) �

k0k1 + k1

�
min

�
k2;

2k1

k21=2 + k1=2 + 1

�
� 1

�
+ 1:

(b) If 1 < k0 < k1 � k2,

VCdim(TR(Ak0;k1;k2)) �

k0k1 +
k1(k2 � 1)

2
+ 1:

(c) If 1 < k0 < k1 < k2,

VCdim(TR(Ak0;k1;k2)) �

k0k1 + k0

"
min

 
k2;

Pk0
i=0

�
k1
i

�
k21=2 + k1=2 + 1

!
� 1

#
+ 1:

The VC-dimension is 
(W ) in cases (a) and (b), pro-
vided k2 is not too large. In particular, if we �x the num-
ber of second layer units in a three-layer completely con-
nected architecture, and increase the number of input
and/or �rst-layer units, then asymptotically the VC-
dimension increases at least linearly with the number of
weights. There can be no analogous result if we increase
the number of second-layer units only, since there is a
bounded number of boolean functions of k1 variables.

Proof (a) If k0 = 1, the bound is trivially true, so
suppose k0 > 1. Place the k1 �rst-layer hyperplanes
around the unit hypersphere and choose k0 points near
the hypersphere on each hyperplane, as in the proof
of Lemma 10. These points will form de�ning sets for
the �rst layer units. Choose the signs of the �rst layer
weights so that the output of all �rst-layer units is 0
when the input is the origin of Rk0. Consider the out-
puts of the �rst layer units. We need to ensure that the
origin of the k1-cube is classi�ed di�erently from the k1
neighbouring vertices, so we choose the weights of a sec-
ond layer unit so that it classi�es the origin as 0 and all
other vertices of the k1-cube as 1.

Now, since k1 � k0, the hyperplanes divide Rk0 into
2k1 distinct cells. Find a maximal 3-packing T of the
k1-cube that includes the origin. From Lemma 9, jT j �
2k1=(k21=2 + k1=2 + 1). If k2 � jT j, we can �nd de�ning
sets for k2�1 second layer units as follows. Each vertex
of the k1-cube corresponds to a cell in Rk0. For every
t in T (except the origin), place a point in each of the
k1 cells adjacent to the cell correponding to t. Choose
the weights of a second layer unit so that its hyperplane
passes through these k1 vertices adjacent to t, and the
output of the unit in response to t is 0. Let the output
unit implement the AND function. Clearly, we have k1
de�ning sets of size k0, and k2 � 1 de�ning sets of size
k1, so Corollary 7 implies the VC-dimension is at least
k0k1 + k1(k2 � 1) + 1.

If k2 > jT j, we can �nd de�ning sets in this way for only
jT j � 1 second layer units. This gives the second term
in the minimum.

(b) Consider the intersection of R
k0 and a two-

dimensional plane P through the origin. Let x1 and
x2 be two perpendicular axes in this plane. Place the
weight vectors of the k1 �rst-layer units on the unit cir-
cle in P so that they are all distinct and all have a pos-
itive component in the x2 direction. Set the thresholds
of these units to 1, so that each unit classi�es the origin
as 0. These units each de�ne a hyperplane in Rk0 that
is perpendicular to P . For each of these hyperplanes,
choose k0 points in general position on the hyperplane
near its intersection with the unit hypersphere. Each
of these sets of k0 points will form a de�ning set for a
�rst-layer unit. We need to ensure that the origin of the
k1-cube is classi�ed di�erently from the k1 neighbouring
vertices, so choose the weights of a second-layer unit so
that it classi�es the origin as 0, and all other vertices of
the k1-cube as 1.



Now, consider the open subsets of P that are bounded
by segments of the �rst-layer hyperplanes. We refer
to these subsets as `cells'. Each cell corresponds to a
vertex of the k1-cube. Order the k1 �rst-layer units
so that the x1 component of wu1

i
is less than that of

wu1
j
if and only if i < j. If we de�ne movement in the

positive x1 direction as left-to-right, this means that
the lines are ordered from left to right by the location
of their intersections with the unit circle, wu1

i
. De�ne

the vector of �rst-layer unit outputs using this ordering.
Each of these vectors corresponds to a cell in P . Let
Di(k1) � f0; 1gk1 be the set of �rst-layer unit output
vectors that contain exactly i 1's. That is, a vector
y = (y1; y2; : : : ; yk1) 2 Di(k1) has jfj : yj = 1; 1 � j �
k1gj = i. We say that y = (y1; : : : ; yk1) has i contiguous
1's if there is an n 2 f1; : : : ; k1� i+1g such that yj = 1
if and only if n � j � n+ i� 1.

Claim 1 For any positive integer k1 and any 0 � i �
k1,

Di(k1) =
�
v 2 f0; 1gk1 : v has i contiguous 1's

	
and so

jDi(k1)j =

(
1 i = 0

k1 � i+ 1 1 � i � k1
0 k1 < i:

(1)

The proof of the claim is by induction on k1. For all
k1, D0(k1) contains only the origin of the k1-cube, and
Di(k1) is empty for i > k1. If k1 = 1, D0(k1) = f0g,
D1(k1) = f1g, and Di(k1) is empty for i > 1. Suppose
the claim is true for k1 = 1; 2; : : :;m. Add another �rst-
layer unit to the network with threshold 1 and weight
vector w that lies on the unit circle in P , to the left
of wu1

1

; wu1
2

; : : :wu1m
. The addition of this line will add

m + 1 cells to the arrangement, because the new line
intersects all of the old lines. Label these cells by the
vector of �rst-layer unit outputs. If we move to the right
along the line from w, we pass through one cell from
D0(m), one from D1(m), : : :, and one from Dm(m). A
new cell is created to the left of the line in each of these
cells, so jDi(m+1)j = jDi(m)j+1 for i = 1; 2; : : : ;m+1.
Equation (1) is therefore true for k1 = m+1, and hence
for any k1.

Notice that the �rst line we cross in moving to the right
from w is the line corresponding to unit u1m. So all cells
through which we passed, except for the cell containing
w, are labelled with a vector with bit m set to 1. That
is, all new cells created by the addition of the line are
labelled with vectors consisting of a contiguous string of
1's, so

Di(m+ 1) �
�
v 2 f0; 1gm+1 : v has i contiguous 1's

	
:

This and Equation (1) prove the claim.

We construct a de�ning set for a second-layer unit by
choosing a point in each cell corresponding to an ele-
ment of Di(k1) (for i = 2; 3; : : : ; k2). Each second-layer
hyperplane (except one) is made to pass through all ele-
ments of some set Di(k1), and the output unit's weights

are chosen so that the cells in the k1-cube bounded by
these hyperplanes are classi�ed distinctly. By the claim
above, the elements of Di(k1) (where i = 1; 2; : : : ; k1)
can be written as the rows of an upper triangular ma-
trix with diagonal elements all nonzero, so the vectors
in Di(k1) are linearly independent. This means we
have k2�1 de�ning sets for second-layer units, contain-
ing jD2(k1)j; jD3(k1)j; : : : ; jDk2(k1)j points respectively.
Now,

k2X
i=2

jDi(k1)j =

k2X
i=2

(k1 � i + 1)

= (k1 � k2=2)(k2 � 1)

� k1(k2 � 1)=2;

so Corollary 7 gives

VCdim(TR(Ak0;k1;k2)) � k0k1 +
k1(k2 � 1)

2
+ 1:

To see that we can choose appropriate second- and
third-layer hyperplanes, recall that each set Di(k1) con-
tains vertices with exactly i 1's. The weights of each
second-layer unit u2i can be chosen so that its hy-
perplane intersects the elements of Di(k1) (for i =
2; : : : ; k2). No second-layer hyperplanes intersect in
[0; 1]k1, and this arrangement of hyperplanes divides the
k1-cube into k2+1 cells. To ensure that each cell is clas-
si�ed distinctly, the output unit's hyperplane must cut
the k2-cube on each of k2 mutually orthogonal edges,
and such a hyperplane can always be found.

(c) Place the k1 �rst-layer hyperplanes around the unit
hypersphere and choose a second-layer unit's weights as
in the proof of (a). The �rst layer hyperplanes divide

R
k1 into N =

Pk0
i=0

�
k1
i

�
cells [7]. Consider the set S of

corresponding vertices of the k1-cube. Since 0 2 S we
can �nd a maximal 3-packing T � S that contains 0.
Since there are no more than k21=2 + k1=2 + 1 vertices
within Hamming distance 3 of any given vertex, jT j �Pk0

i=0

�
k1
i

�
=(k21=2+k1=2+1). Now, for each element of T

except 0, place a point in every neighbouring cell. Since
k1 > k0, there must be at least k0 neighbouring cells.
We can ensure that these are de�ning sets for second-
layer units, so if k2 � jT j, the VC-dimension is at least
k0k1+k0(k2�1)+1. If k2 > jT j, we can only �nd jT j�1
de�ning sets in this way, In this case, the VC-dimension
is at least

k0k1 + k0

 Pk0
i=0

�
k1
i

�
k21=2 + k1=2 + 1

� 1

!
+ 1:

�

For the case of completely connected three-layer thresh-
old networks with binary inputs and few �rst-layer
units, we can use the bound for a two-layer network
(Theorem 8) to show that the VC-dimension is 
(W ).

Proposition 14 Let k0, k1, k2, and k3 be positive in-

tegers. If Ak0;k1;k2 is the k0{k1{k2 architecture, with

k0 > k1 and k2 < 2k1=(k21=2 + k1=2 + 1), then

VCdim(TB(Ak0;k1;k2)) � k1max(k0; k2) + 1:



5 CONCLUSIONS

We have shown that the Vapnik-Chervonenkis dimen-
sion of the class of functions that can be computed by ar-
bitrary two-layer and some completely connected three-
layer networks with real inputs is at least proportional
to the number of weights in the network. This result also
applies to completely connected two-layer networks with
binary inputs, and to completely connected three-layer
networks with binary inputs and few �rst-layer units.
These results, together with the VC-dimension upper
bounds in [3], show that the sample size necessary and
su�cient for pac learning in these networks is 
(W ) and
O(W logN ), where W is the number of weights in the
network and N is the number of processing units.

Notice that these lower bounds apply to feed-forward
networks of processing units with sigmoid transfer func-
tions, since a sigmoid network can compute any func-
tion on a �nite set that can be computed by a threshold
network with the same architecture.

These upper and lower bounds are separated by a fac-
tor of logN , where N is the number of processing units
in the network. Recently, Maass has shown that four-
layer feed-forward threshold network architectures can
be constructed with VC-dimension 
(W logN ) [8]; it
is not known if the logN factor is necessary for par-
ticular classes of multi-layer architectures (for example,
completely connected ones), or for networks with fewer
than four layers.

It seems likely that the VC-dimension bounds for two-
layer networks with binary inputs can be extended to
architectures with limited connectivity.
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