Neural Networks, Vol. 4, pp. 207-224, 1991
Printed in the USA. All rights reserved.

ORIGINAL CONTRIBUTION

0893-6080/91 $3.00 + .00
Copyright © 1991 Pergamon Press plc

A Gaussian Potential Function Network With
Hierarchically Self-Organizing Learning

SUKHAN LEE AND RHEE M. KIL

University of Southern California. Los Angeles
(Received 29 June 1988; revised and accepted 25 October 1990)

Abstract—This article presents a design principle of a neural network using Gaussian activation functions,
referred to as a Gaussian Potential Function Network (GPFN), and explores the capability of a GPFN in learning
a continuous input-output mapping from a given set of teaching patterns. The design principle is highlighted by
a Hierarchically Self-Organizing Learning (HSOL) algorithm featuring the automatic recruitment of hidden
units under the paradigm of hierarchical learning.

A GPFN generates an arbitrary shape of a potential field over the domain of the input space, as an input-
output mapping, by synthesizing a number of Gaussian potential functions provided by individual hidden units
referred to as Gaussian Potential Function Units (GPFUs). The construction of a GPFN is carried out by the
HSOL algorithm which incrementally recruits the minimum necessary number of GPFUs based on the conirol
of the effective radii of individual GPFUs, and trains the locations (mean vectors) and shapes (variances) of
individual Gaussian potential functions, as well as their summation weights, based on the Backpropagation

algorithm.

Simulations were conducted for the demonstration and evaluation of the GPFNs constructed based on the
HSOL algorithm for several sets of teaching patterns.

Keywords—Mapping neural network, Multilayer feedforward network, Gaussian potential function. Non-
parametric estimation, Self-organizing learning, Accommodation boundary, Effective radius.

1. INTRODUCTION

An artificial neural network can be evaluated in
terms of its capability of accurately representing
a desired input-output mapping through efficient
training of a given set of teaching patterns. An ac-
curate representation of a mapping depends on the
proper selection of a network configuration, includ-
ing the network architecture, the number of neurons
and the type of activation functions, and the capa-
bility of a learning algorithm to find the optimal pa-
rameters for the selected network configuration.
Most artificial neural networks developed to date
have focused on training the parameters of a fixed
network configuration selected by the designer. How-
ever, it may be an extremely powerful tool for con-

This work is supported by the Faculty Research and Innovation
Fund of University of Southern California. Stimulation and en-
couragement by Dr. Kosko of University of Southern California
is appreciated.

Requests for reprints should be sent to S. Lee, Department
of Electrical Engincering—Systems, University of Southern Cal-
ifornia, Los Angeles, CA 90089.

207

structing an optimal network, if a learning algorithm
has a capability of automatically configuring a neural
network, in addition to the adjustment of network
parameters.

Although attempts have been made to apply the
idea of self-recruiting neurons to the automatic clus-
tering of input samples (Carpenter & Grossberg,
1987), and to the identification of class boundaries
(Reilly, Cooper, & Elbaum, 1982), a major effort
needs to be expended to establish a learning algo-
rithm capable of automatically configuring a network
based on the self-determination of network archi-
tecture and the self-recruitment of neurons with a
proper type of activation functions. This article ini-
tiates such an effort by considering a neural network
with nonsigmoidal activation functions and the ca-
pability of self-recruiting neurons under the para-
digm of hierarchical learning.

Let us first define a Mapping Neural Network
(MNN) (Hecht-Nielsen, 1987b) as a network per-
forming a mapping, ¢, from a compact set, I" (for
example, an n dimensional Euclidean unit cube) to
an m dimensional Euclidean space. R™, ¢:I" — R™,
based on the interconnection of neurons as basic non-

208

linear computational units in a parallel and distrib-
uted manner. Then, most of the currently existing
artificial neural networks can be interpreted within
the framework of a MNN:

1. An associative memory such as the Autoassocia-
tive Memory (AM) (Hopfield, 1982, 1984), the Bi-
directional Associative Memory (BAM) (Kosko,
1987), or the Boltzmann Machine (Ackley, Hin-
ton, & Sejnowski, 1985), stores an input-output
mapping in a content addressable memory where
the network converges to a stored memory, based
on the dynamics imbedded in the network struc-
ture.

2. A neural network based on the competitive net-
work such as the Hamming Network (Lippmann.
1987), the Self-Organizing Feature Map (Koho-
nen, 1984), the Art2 (Carpenter & Grossberg,
1987), the Counterpropagation Network (Hecht-
Nielsen, 1987a) or the Neural Model for Category
Learning (Reilly et al., 1982}, selects a neuron
through the winner-takes-all competition based
on the closeness between the reference patterns
that individual neurons represent and the given
input pattern, and generates an output as the ref-
erence pattern of the selected neuron.

3. The multilayer feedforward network such as the
Backpropagation Network (Rummelhart, Hin-
ton, & Williams, 1986), the Neocognitron (Fu-
kushima, 1980, 1988) or the Athena (Koustogeras
& Papachritou, 1988). (approximately) realizes
an arbitrary input-output mapping or a decision
boundary by transforming the input domain into
increasingly complex nonlinear manifolds in the
spaces of upper layers through a series of inter-
mediate mappings.

We are interested in analyzing the capability of
an MNN in realizing an arbitrary function. The Kol-
mogorov/Sprecher theorem (see Appendix A; Kol-
mogorov, 1957; Sprecher, 1965) indicates that any
continuous real function can be exactly realized by
a four-layer neural network composed of an input,
an output, and two hidden layers with a finite number
of neurons (Hecht-Nielsen, 1987b). However, since
no constructive method for determining the activa-
tion function of hidden layers is currently available,
a direct application of the Kolmogorov/Sprecher
theorem to the realization of an MNN is not feasible.
Irie and Miyake (1988) proved that a three-layer net-
work with an infinite number of hidden units can
represent an arbitrary function, provided that the
activation functions of hidden units as well as the
mapping functions are bounded and absolutely
integrable. Funahashi (1989) extended the Irie-
Miyake theorem to include sigmoidal activation
functions, such that any continuous function is ap-

PP [T S
RS T AN A Y R S R

proximately realizable by a three-faver network with
hidden units having. monotonically increasing but
bounded, continuous activation functtons. A simila
result was obtained by Hecht-Nielsen {1989}, where
it was shown that a subset of i backpropagation net-
work can implement a sinusoidat tunction. epubling
the backpropagation network to perform the Founa
series approximation of an arbitrary function. Hor-
nik, Stinchcombe, and White (1989} also proved that
a three-layer network with a sufficiently large num-
ber of hidden units having an arbitrary squashing
activation functions can be uscd s~ ¢ universal func-
tion approximator.

The aforementioned theorems voncern the capa-
bility of an MNN as a universai function approxi-
mator. However. the following research issues
should be raised and investigated:

1. What are the effects of the number of layers on
the realization and training of an MNN? Dees an
increase in the number of hidden layers render
an MNN more efficient in terms of the number
of neurons or in terms of the learning speed in
training?

What are the effects of a nonsigmoidal activation
function on the realization and training of an
MNN? Note that any absolutely integrable acti-
vation function, such as a Gaussian function. is
capable of approximating an arbitrary function,
and that a sinusoidal activation function can
be used for approximating an arbitrary function
based on the Fourier series expansion. Can non-
sigmoidal activation functions such as Gaussian
and sinusoidal functions provide a better alter-
native to the sigmoidal activation function in
terms of realizing and training an MNN due to
their nonlinear mapping capabilities?

|3

In what follows, we will show that nonsigmoidal
activation functions provide the network with the
capability of forming more complex nonlinear man-
ifolds of the input domain, which is equivalent to
what multiple hidden layers can provide through in-
termediate mappings.

This article presents a nonsigmoidal MNN, called
the Gaussian Potential Function-Network (GPFN)
(Lee & Kil, 1988) and investigates the capability of
the GPFN in realizing an arbitary mapping. The
GPFN is capable of approximating a many-to-one
continuous function by a potential field synthesized
over the domain of the input space by a number of
Gaussian computational units called Gaussian Po-
tential Function Units (GPFUs). The emphasis is
given to the synthesis of a potential field based on-a
new type of learning called the Hierarchically Self-
Organizing Learning (HSOL). The distinctive fea-
ture of HSOL is its capability of automatically re-

Gaussian Potential Function Network

cruiting necessary GPFUs under the paradigm of
hierarchical learning, implemented through the suc-
cessive adjustment of the accommodation bounda-
ries or the effective radii of individual GPFUs in the
input domain.

2. POTENTIAL FUNCTION NETWORK

2.1. Design Concept

It has been proposed that a discriminant function,
¢(x). can be represented by the weighted summation
of a finite number of potential functions (Aizerman,
Braverman, & Rozonoer. 1964) as follows:

M

d(x) = D, ¢, K(x.) (1)
where K(x, x,) is the ith potential function of x, ob-
tained by shifting K(x, 0) by x,, and ¢, is a real con-
stant. For instance, the potential function K(x, x;)
of classical physics varies inversely with [|x — x|, that
is, K(x, x;) has the maximum value at x = x; and
decreases monotonically to zero as |x — x| ap-
proaches infinity.

A learning algorithm similar to that of the Per-
ceptron (Minsky & Papert, 1969) has been proposed
tor applying eqn (1) to binary classification:

$">(x)
¢M(x) + K(x, x;) if the sample, x, is labelled
+1 and ¢"¥(x,) = 0
=< ¢™(x) — K(x.x;) if the sample, x, is labelled
-1 and ¢"™(x,) = 0
$™(x) otherwise (2)

It has been shown that eqn (2) converges within finite
steps.

The potential function approach to binary classi-
fication described by eqns (1) and (2) has a similar
flavor to the nonparametric estimation of a proba-
bility density function based on the Parzen window
(Parzen, 1962). In the Parzen window approach, a
probability density function, p(x), is estimated from
the observed input samples, x,s, i = 1, - , n, by

141 X — X
pax) = . ,Z| I v (—h,,) (3)

where y represents a bounded nonnegative ker-
nel function of the d dimensional input vector, x, and
h, is a sequence of positive numbers such that
lim,_. A, = 0 and lim,_,,. nh¢ = =, It can be shown
from eqn (3) that p,(x) converges to p(x) as n ap-
proaches .

The problem associated with eqn (1) or (3) is that
the number of potential functions or kernel functions
required for implementing an unknown function be-

209

comes potentially very large proportional to the num-
ber of input samples. This is due to the fact that eqn
(1) or (3) are based on the shifted summation of
prespecified shape (variance) of the potential or ker-
nel functions assigned to individual input samples.
This problem may be resolved by relaxing the fun-
damental constraints associated with eqn (1) or (3):
the position shift of a potential function should cor-
respond to the coordinate of input samples and the
shape of a potential function should be fixed, and by
introducing a methodology of self-recruiting a min-
imum necessary number of potential functions with
the capability of adjusting both the position shift and
the shape parameters of individual potential func-
tions.

A generalized form of eqn (1) or (3). incorporat-
ing the adjustment of shape parameters and the self-
recruitment of potential functions. can be expressed
as

M

P)=2, cy(x. p) (4)
i1

where M represents the number of potential func-
tions to be recruited, ¢, represents the summation
weight, and p; represents a new parameter vector
including both the position shift and the shape pa-
rameters of the ith potential function. In eqn (4), M,
¢.andp;, i =1,--, M, are subject to the adjustment
through learning. Eqn (4) may be able to achieve a
desirable error level in function approximation with
a smaller number of potential functions, but may
require a more complicated learning algorithm.
Thus, this article focuses on developing a learning
algorithm for self-recruiting a minimum necessary
number of potential functions, M, and for training
the shape parameters as well as summation weights,
pand¢,i =1, M.

Prior to the exploitation of such a learning algo-
rithm, let us first investigate the effect of selecting a
different type of activation functions (among sigmoi-
dal, Gaussian, and sinusoidal) on the power of func-
tion approximation based on eqn (4). Note that, in
eqn (4), an output vector of the input layer, x, is
directly used as an input vector to a hidden unit. This
can be compared with conventional three-layer feed-
forward network in which the weighted summation
of individual input elements, I/, is fed into a
hidden unit:

=1

P(x) = Z 1914 <z /.L’/X/" pl/)~ (5)

Equation (4) represents a more general form of a
multilayer feedforward network. where a multidi-
mensional output vector from the layer i — 1 is di-
rectly used as an input vector to the layer i, assuming
that a neuron is capable of processing a vector. This

210

implies that the network has additional freedom of
selecting how to process a multidimensional input
vector inside a neuron. In this sense. eqn (5) is con-
sidered as a special case of eqn (4).

According to Funahashi (1989) and Hornik et al.
(1989), eqn (4) can approximate an arbitrary function
with a desirable degree of accuracy based on a suf-
ficiently large number of hidden units, provided
is an absolutely integrable or a bounded monotonic
(squashing) function. To further investigate the ca-
pability of eqn (4) in realizing an arbitrary function
in relation to the number as well as the shape of
PFUs, let us represent y(x) based on N discrete sam-
ple points: ¢(x;), ¢(x,), -, $(xy). Then, with the
following definitions,

2= [p(x)), $(x.), - . p(xN)] (6)

¢ = ¢, &, .yl and (7}

¥ = [w(xi, p). w(x, p). o w(xy p)l fori = 1o M
(8)

we can obtain the discrete form of eqn (4), as follows:

z=Ye¢ (%)

where Y = [y;, y2. =+ . yuJ: N X M matrix.

The question is whether and how, for a given z.
we can adjust Y to find an exact solution for ¢ sat-
isfying eqn (9) or an optimal solution minimizing the
error, E,

E=lz - Y (19)

In case M = N, there always exists one or more exact
solutions for ¢ that satisfy eqn (9). However, the
condition M = N is unrealistic since N should be
selected very large for the minimization of inter-
polation errors. In case M < N, eqn (4) represents
an overdetermined set of equations, and thus, the
existence of the exact solution for ¢ depends on
the special condition imposed on Y, that is, rank
[Y:z] = M. Whether Y can be set to satisfy the condi-
tion, rank[Y:z] = M, by adjusting the parameters
of individual PFUs, is a problem which needs to be
explored.

The condition, rank[Y:z] = M, is equivalent to
the condition that z is embedded in the subspace. Sy.
spanned by y,, -+ , yu, Where z, y,. i = 1, -, M
are defined in the N dimensional sample space, Sx-
Note that with fixedy,, i = 1, -+, M, z € Sy implies
that no exact solution for e exists; instead, the op-
timal solution, ¢*, which minimizes the error, eqn
(10), can be obtained by projecting z onto Sy such
that

¢t =Y'z (11)

Emm = ”(l - P)Z”: (12)

“obeeand ROM. Kil

where Y' represents the generalized inverse of Y,
Y* = (Y'Y) Y, and P presents the projection ma-
trix, P=YY".

The adjustment of p; may provide the setting ot
yi. i = 1., M that makes z embed in Sy. The
adjustment of p; of w(x, p,) generates the frajectory
or the range of y. % {(y;) in 5, according to y, =
[w(xi, p), w(Xo, P), - - w(xy, pi)| with fixed sample
points x,, kK = 1. --- . N. Note that the trajectory of
yi. # (y;),is the same foralli.¢ = - . M, assuming
that the activation functions, y{x. p).1 = 1.~ .M,
are of the same mathematical form. With M PFUs.
we can arbitrarily select M points from & (y,) to form

bination of the selected M vectors defines a-linear
manifold. ¢ (Y¥), in §y. Then the following theorem
holds:

Theorem 1: z = [¢(X,), ¢(x2). -~ . d(XN)] is exactly
realizable iff z € U,k ¥ (Y*). where K is a finite or
infinite index set representing all the possible selections
of M points from R (y;).

Proof: z € U« £ (Y¥) implies that there exists
[€ K such thatz = Y'e. Q.E.I>:

The implication of the above theorem is-as fol-
lows:

1. Ugex £ (YY) provides a measure indicating the
mapping capability of a neural network in real-
izing an arbitrary function with a finite number
of hidden units, since it specifies the range of an
exactly realizable z, or the collection of functions
corresponding to such an cxactly realizable 2.
Uex £ (YY) = Sy implies that.any arbitrary z can
be realizable.

Given z, or the range of z. we may select the type
of an activation function (or possibly, a combi-
nation of different types of activation functions),
for example, among sigmoid. Gaussian and si-
nusoidal functions, that is most suitable for the
exact realization of z:z € Uy £ (Y¥).

o

Figure 1 illustrates the above concepts based on
a simple network with two PFUs, w(x, p;) and (X,
p-). and three training samples ¢(x;), ¢(x,), P(x).
investigating the realization of z. z = [@(x;), d(xy).
$(x;)], with y,, y, = [w(xi, p1). 4/’(",2» PI)- w (%3, p)l
and y, ¥: = [w(X;, P2), WX, o). w(X;, P2)]', based
onz = [y,, y.]¢. The measure of mapping capability,
Uier £ (YY), is obtained by simulation for the case
of sigmoidal, Gaussian and sinusoidal PFUs (with
single shape parameter), and illustrated respectively
in Figures 1(b), (c), and (d). Im each figure, the dot-
ted area represents Uiex £ (Y*). The simulation re--
sults indicate that the sinusoidal activation function
provides the best mapping capability among the
three, while the Gaussian activation function pro-

Gaussian Potential Function Network

»
,,.»"'f ¢(X1)

211

z = [6x)) 8(xp), ST
¥y = [Wi Py, wixg Py, wixg P

¥, = [Wi Py, Wiy Py, Wixg Pl

Sigmoidal

Gaussian

Y= D]o YZ]

FIGURE 1. An example to illustrate (y) and U,c« £(Y*) for sigmoidal {(1 - e~*<)/(1 + e~**)), Gaussian (e ****), and sinusoidal
(sin(ax)) PFUs. (a) Represents an example with 2 PFUs, y(x, p,) and (x, p.), and 3 samples, &(x,), &(x;) and &(x;). In (b), (c)
and (d), (y)) is represented by a thick line contour on the cube, [0, 1]* of sample space, while U, £(Y*) is represented by
the dotted area on the surface of the sphere fitted inside the cube. The volume defined by the dotted area and the origin
through a solid angle represents U, £(Y*) inside the | sphere. The dotted areas were obtained by the trajectories of great
circles formed by the intersections between all the £(Y*)’s and the surface of the i sphere.

vides better mapping capability than the sigmoidal
activation function. Note, however, that in case the
number of sample points is not large enough for the
interpolation errors between samples to be ignored,
the selection of an activation function should account
tor its capability of accurately interpolating the map-
ping between samples or its power of generalization.
But the generalization power of an activation func-
tion may be highly dependent on the local charac-
teristics of a particular mapping. This implies that
the interpolation accuracy needs to be ensured adap-
tively through the self-recruitment of PFUs based on
training. In this case, an activation function which is
not only powerful in generalizing a global mapping
but also effective in refining local features without
much altering the already learned mapping is de-
sired. This makes a Gaussian activation function a
good candidate for an MNN with self-recruitment.
A different analysis on the realization of eqn (9),
based on interpreting eqn (9) in the PFU space in-
stead of sample space, can be found in Appendix B.

2.2. Gaussian Potential Function Network

A Gaussian potential (activation) function, an un-
normalized form of Gaussian density function, is se-
lected for the construction of a Potential Function
Network (PFN), since the function is highly nonlin-

ear, provides good locality for incremental learning,
and has many well-defined mathematical features. A
Gaussian potential function y; is defined by

wi = wx,p) = e o (13)

dix,p) = dx,m', K) = (x - m)K(x — m') (14)
where x represents an input pattern, m’ and K’ rep-
resent respectively the mean vector and the shape

matrix (defined by the inverse of the covariance ma-
trix) of the ith potential function.

d{x, m', K) can be rewritten as an expanded form:
dx, m'. K) = 35 ki(x; = m)(x, = mi) (15
ik

where x; is the jth element of x, m! is the jth element
of m', and k}, is the (j, k)th element of K'.

Without loss of generality, &/, can be represented
based on the marginal standard deviations ¢} and
o}, and the correlation coefficient /i

"= ,_]k, (16)
0,0y
where o} is positive real and k) = 1ifj = k and
|hi| = 1 otherwise.!

'h is assumed to satisfy the condition, Z,.hi| = 1 Vj, for the
positive semidefiniteness of shape matrix, K'.

212

Instead of using the general form of kj given by
eqn (16), it is possible to use a simpler but a more
restricted form of ki given by:

Loty

ki = 9 (17)

0 otherwise

Equation (17) implies that the principle axes of the
Gaussian potential should be aligned with the ref-
erence axes of the input space. However. the amount
of flexibility loss due to the use of eqn (17) can be
compensated by increasing the number of PFUs.

The network model proposed here is composed
of three types of layers: the input layer, the hidden
layer, and the output layer. The input and output
layers are composed of linear units, and the hidden
layer is composed of Gaussian potential function
units (GPFUs), which produce Gaussian potential
functions. The weighted output values of the GPFUs
are summed by the connection between the hidden
layer and the output layer in order to synthesize
the required potential fields. The three-layered PEN
with the GPFUs configured at the hidden layer is
cailed as the Gaussian Potential Function Network
(GPFN).

Figure 2(a) illustrates the schematic diagram of a
GPFN and Figure 2(b) shows a detailed structure of
the ith GPFU. The calculation of eqn (15) starts with
the subtraction of the mean vector of the ith GPFU
from the input vector at the subtraction nodes. Then
the components of the vector obtained at the sub-
traction nodes are cross-correlated among them-
selves (i.e., outer product of the two same vectors)
by the cross-correlator to obtain N? cross-correlated
terms. Each cross-correlated term is multiplied by
the corresponding ki of the shape matrix K' at the
multiplication nodes and summed for d;. The output
of the GPFU is then generated by exponentiating d..
Note that, for a GPFN producing multiple outputs,
we opt for each output being generated indepen-
dently by its own set of hidden units (GPFUs). This
makes learning simpler.

3. HIERARCHICALLY SELF-ORGANIZING
LEARNING

3.1. Motivation and Description

It may not be possible to train a neural network to
reach a desired level of performance if the network
does not have enough computational units, or the
learning algorithm fails to find the optimal network
parameters. It is thus quite attractive to develop a
new type of learning algorithm capable of automat-
ically recruiting new computational units whenever

foeand BoOM. Ki

necessary for improving network pertormance. Here.
we propose such type of learning algorithm called
the Hierarchically Self-Organizing Learning (HSOL.
algorithm.

In the HSOL algorithm. « GPEU is associated
with (a) the accommodation boundary defined in the
input space and (b) the class representation defined
in the output space. The accommodation boundary
of a GPFU defines a region of input space upon
which the corresponding GPFU! van have an influ-
ence, and plays a role similar to the vigitance factor
used in the ART2 (Carpenter & (rossberg. 1987).
an automatic clustering algorithm based on adaptive
resonance theory. If a new sampie falls within the
accommodation boundary of one of the currently
existing GPFUs, which has the same class represen-
tation as that of the new sample. then, the network
will not generate a new GPFU but accommodate the
new sample by updating the paranteters of existing
GPFUs. Otherwise, the network will recruit a new
GPFU. Most importantly, in HSOL.. the accom-
modation boundaries of individual GPFUs are not
fixed but adjusted dynamicallv i such a way as 1o
achieve hierarchical learning: tnmally. the accom-
modation boundaries are set large for achieving
rough but global learning, but gradually reduce to a
smaller size for fine learning. Note that, as indicated
previously, a Gaussian potential function serves bet-
ter for implementing hierarchical learning due to its
locality property. In general, the HSOL has the fol-
lowing implications on learning:

1. It starts with learning globat mapping features
based on a small number of computational units
with larger size of accommodation boundaries and
then proceeds to learning finer mapping details
and increasing the number of computational units
accordingly by reducing the size of accommoda-
tion boundaries.

It changes the dimension and shape of the error
surface, that is, the surface of the error function
defined in terms of the network parameters by
increasing the number of computational units.
when the performance of error convergence 1s
considerably degraded. This helps to avoid the
risk of sticking on a flat or a very mildly sloping
surface which might cause trouble in backprop-
agation or steepest descent learning.

(o]

To describe an accommodation boundary, we in-
troduce an effective radius or a Mahalanobis distance
(Duda & Hart, 1973), r;, of the ith GPFU in the form
of a hypersphere, H;, defined in the input space:

Hir) = {x|d(x, m'. K} = i} (18)

A GPFU is assigned to its class representation, at

Gaussian Potential Function Network
QOutput Layer
M
% =Zi-1 Vi

Hidden Layer

X X2 N Input Layer

(a) The connection between the output layer and the hidden layer of GPFUs.

Output of the ith GPFU

N2 Multiplication Nodes

N Subtraction Nodes

N Input Layer

(b) The connection between the input layer and the ith GPFU.
FIGURE 2. The schematic diagram of a GPFN.

the time when it is recruited, by the same class as GPFU is summarized in the following Accommo-
the class of teaching pattern that invoked its recruit- dation/Generation rules:

ment. Note that a set of classes can be predefined in

the output space, which may be the pattern classes e If the input sample, x, of a teaching pattern” is
when the network is engaged in pattern classification, located within the hypersphere, H,(r;), of the ith

or the signs of the output (more generally a set of
the subranges of the output space) when the network T T T T T T T e e

is engaged in function approximation. *A teaching pattern, (x,, t,}, consists of a pair of input sample
The criteria for determining when to recruit new x, and output sample, t,.

214

GPFU of the current network, which belongs to

the same class representation as that of output

sample, t,, then a new GPFU will not be invoked.

In this case, the teaching pattern is accommodated

by the ith GPFU, and the network simply updates

and parameters.

o If the input sample, X, of a teaching pattern, is not
located within the hypersphere of any GPFU which
has the same class representation as that of the
output sample, t,, a new GPFU is generated at the
position of the input sample, x, of a teaching pat-
tern.

To check whether a teaching pattern falls inside
the hypersphere H, of the ith GPFU, the output value
of the ith GPFU for the given teaching pattern is
compared with the following reference value of the
ith GPFU, G, defined by its effective radius, r;:

G, = e i, (19)

If the output of the ith GPFU is greater than G, it
is considerd that a teaching pattern falls inside the
hypersphere H; of the ith GPFU.

As mentioned previously, the automatic adjust-
ment of the accommodation boundary or the effec-
tive radius r; provides the network with the capability
of hierarchical learning. This can be carried out
by either of the following two methods. The first
method is based on reducing the effective radius of
each GPFU gradually, starting from a large radius.
according to the predetermined monotonously de-
creasing function. This method is simple and easily
implementable but sensitive to the selected function
in terms of the number of total GPFUs generated.
For instance, if the effective radii of GPFUs are re-
duced too rapidly, the network generates more
GPFUs than the minimum required because individ-
ual GPFUs may not have enough time to converge
to their optimal shapes. On the other hand, if the
effective radii of GPFUs are reduced too slowly, the
network consumes a large number of learning cycles.
although it eventually generates the minimum nec-
essary number of GPFUs. Accordingly, the selection
of a proper rate for the reduction of the effective
radii is essential to successfully generate the mini-
mum necessary number of GPFUs, and achieve a
desirable learning speed.

The second method is based on reducing the radii
of individual GPFUs according to the progress of
learning. The reduction of the radii of individual
GPFUs invokes the generation of more GPFUs, and
so enables the network to learn the details. There-
fore, the best time for a GPFU to reduce its radius
is when the network performance to further learn-
ing becomes saturated with the currently available
GPFUs. Figure 3 illustrates the procedure of HSOL
by a flow chart, where the adjustment of accom-

S o heeand R M. Kil

modation boundary is based on the saturation of net-
work-performance.

Now, let us investigate a method of detecting the
saturation of network performance. A simple way of
measuring the progress of learning is by defining the
performance index, P as follows:

P e (20)

with E,,, representing the root mean square error tor
N teaching patterns. E,,, can be calculated by

"oa

il

E... V VN E E, with 20

E,

Il

14 . -
3 2 (1~ dpm)y (22)
o

where M represents the number.of output units, /7,
represents the jth element of the desired output vec-
tor defined by the pth teaching pattern, ¢, represents
the jth element of the actual output vector for the
pth teaching pattern and n; represents a column vec-
tor which is the collection of all parameters associ-
ated with the jth output unit.

To measure the saturation of network perform-
ance, we need to monitor the variation of P with
respect to time or alternatively, we define the pa-
rameter saturation vector, s; for the jth eutput unit
based on the following difference equation:

s{p) = agf‘.!i + {1 —

on ajsip — D {23)

where « is a positive constant between 0 and 1, rep-
resenting the decaying factor of 4E,/dn;, and p rep-
resents the pth teaching pattern presented to the
network.

The purpose of defining s; is to monitor Jk,/dn,
to see whether the network parameters have been
sufficiently adjusted for £, to reach its extremum
with the currently available number of GPFUs. Note
that eqn (23) results in the following solution of s; at
the mth presentation of teaching pattern with the
assumption that s,(0) = 0:

, >~ ok,

s{im) = a X (I = o) ~‘~5; (-1 (24}
where [and m represent respectively the /th and the
mth iteration (m > [). Based on eqn (24), eqn (23)
can be interpreted as follows: (a)s; provides the
weighted average of JE,/dm; over the horizon of
learning iterations, filtering out the high frequency
components of JE,/dn;, where the weights decays
exponentially in the backward direction toward the
initial iteration. (b) If, for a considerable number of
iterations, the network parameters remain stationary
at a point, 9E,/om; = 0, or wander around a point

Gaussian Potential Function Network

pth Teaching Pattern (xp,tp)

215

Generation Procedure of a New GPFU

FIGURE 3. The procedure of Hierarchically Self-Organizing Learning in which the adjustment of accommodation boundary is
based on the saturation of network performance: M, H, and r, represent respectively the number of GPFUs, effective radius

and the hypersphere of the ith GPFU.

in the parameter space such that the average of JE,/
dn; becomes close to zero, the magnitude of s; grad-
ually decreases toward zero. Therefore, by monitor-
ing the value of |is], the saturation of the network
performance to further learning can be detected.
The necessity of using the weighted average of
oE,/dm;, instead of directly using JE,/dm;, comes
from the fact that §E,/dn; not only varies with fluc-
tuations but also generates spurious data frequently.
In fact, ||sfl may not converge to zero but rather to
a small value near zero, since JE,/dn; may drift near

or around zero during saturation. Such a small sat-
urated value of [)s| is not known apriori and may vary
according to the different sets and orders of teaching
patterns. This implies that the use of a constant
threshold for ||sj for the detection of performance
saturation may result in such a situation that it may
need to go through an extremely long but unneces-
sary learning iterations to reach the termination con-
dition, or the network may never be able to reach
the termination condition at all. To resolve this
problem, we adopt an adaptive saturation detec-

216

tion scheme which detects the saturation based on
whether the integration of the inverse of ||sj| exceeds
the vaue of |is]|. This scheme adaptively controls the
termination threshold according to the convergence
envelope of |ls]| and enforces the proper termination.

To be more precise, let us define p; as the saru-
ration criteria defined by the integration of the in-
verse of |is] for the jth output. p, can be calculated
based on the following difference equation:

‘\'/’&/ .
i) m ifp>p, (25)

pAp) =3rp — /
0 otherwise

where d; is the dimension of s;, f§ is a small positive
constant representing the increment rate of p, and
Pois the delay factor which will be explained shortly.
Then the decision whether the network performance
1s saturated or not, is made by comparing p, with
||s,-”/\/z,. p; is increased slowly (rapidly), should ||s i
converges to a larger (smaller) value, so as to provide
a proper time for the network parameters to be sat-
urated. Note that the integration should start only
after a certain number of teaching patterns are pre-
sented, in order to avoid the situation that the small
values of [s{ls during the initial periods of iterations
due to the initial assignment of zero to ||s]| disturb
the adaptive detection scheme. We let the integration
start after 1/« iterations (refer to eqn (23)), that is.
po = [1/a], since it is seen from eqn (24) that [1/«]
iterations makes s; reach approximately’ 63% of
dk,/ dn;, assuming small & and constant 9E,/dn;. The
simulation results indicate that eqn (23) and eqn (25)
provide a robust scheme for determining when to
reduce the effective radii of individual GPFUs.

3.2. Learning Algorithm

The learning algorithm is composed of two parts: the
first part is concerned with the adjustment of the
network parameters and the second part is concerned
with the recruitment of the minimum necessary num-
ber of GPFUs based on adjusting the accommoda-
tion boundaries of individual GPFUs.

3.2.1. Parameter Update. The network parameters
are updated based on the Backpropagation learning
algorithm (Rumelhart et al., 1986).

Parameter Update Rules. The parameter vector of
the jth output unit, n;, n; = [w!, m}, ¢}, h{J'is updated
by

= = n + 7An, (26)

‘Fromeqn (24), let ¢ = 2 a(l - a)" ' =
a)'"*. Then,

lime =1 - lim(1 —)"

[l a-lt

i
—_
i

=] — eMmeattming o o | o ()63

s Lee and R M. Ki

where # is the positive constant called the learning
rate.

The directional vector, Am; = |Aw/, Am!, Ao
Ak(J', along which n; should be updated, can be de-
rived from the gradient descent of £, defined in eyn
(22), as listed in the following set of equations. Note
that in the following equations, & and M respectively
represent the dimensions of input and output vectors
and the subscript p representing the pth teaching
pattern is omitted from the equations for notational
convenience.

e The weight between the jth output and the ith

GPFU:

Aw, = —iéﬂ = (I, ~ P)w. (273

aw,

¢ The jth element of the mean vector, my:

Aml = - &, = Z ki{x, — miy > (e — Py,

r/m e

e The marginal standard deviation, ¢

) oF
Ag) = ——+
; e’

> , = - m ,
= ZJ k;l & mjzf({XI I) ”A - dwe. (29)

e The correlation coefficient. /.:

ok,
Aby = — =
* ah
_ _% (x; — m,-)l(xlk — my) W, ‘}; (t, — dwe. (30)
FA T 0% [

For more details on the derivation of the above
equations. see Appendix C.

3.2.2. HSOL Algorithm. Initially. there is no GPFU
assigned to the network, and the output of the net-
work is set to zero. The following HSOL algorithm
is then applied to the network to automatically create
and shape GPFUs and adjust weight vectors for the
kth output.

Hierarchically Self-Organizing Learning Algo-
rithm. Step 1. Initialization:

e Seti = = 0 and p = 0. where i represents
the number of learning cycles, j represents- the
number of GPFUs, and p represents the number
of patterns presented to the network:

e Sets, = 0 and p, = 0 (refer to eqn (23) and eqn
(25)).

Step 2. Invoke the ith learning cycle, where one-
learning cycle implies the random presentation of all

Gaussian Potential Function Network

the teaching patterns in the pool to the network. The
procedure of one learning cycle is as follows:
Step 2.1. Get the next teaching pattern.
Step 2.2. Setp = p + 1
Step 2.3. Apply the following kernel procedure:
Cl. If [ty — ¢l > &, Where £, and ¢, re-
spectively represent the desired and actual val-
ues of the kth output unit for the pth teaching
pattern, and ¢,, represents the error margin, then
do the following:

e If there is a GPFU having the same class rep-
resentation as that of the pth teaching pattern
and the pth teaching pattern falls inside the
hypersphere of the GPFU, apply the param-
eter update rules.

o If there is no such GPFU, then generate a
new GPFU:

—Setj=j+ land p = 0.
—Set s, = 0and p, = 0.
—The following parameter values are as-
signed to the new GPFU:
“The Mean Vector, m’ = the input sample,
x, of the pth teaching pattern.
*The Weight Value. ¢, = output sample, t,
of the pth teaching pattern.
*The Shape Matrix, K/ = 1/g}l, where a,
is the predefined nominal variance.
“The effective radius, r, = ry, where r, is
the predefined initial effective radius.
—Go to Step 2.1.

C2. Ht,x — ¢4l = ¢, then apply the parameter
update rules. -

C3. Calculate |si]l/ V d, based on eqn (23).

C4. Calculate p, based on eqn (25).

CS5. If |Isil/ Vdy < py., then reduce the radius the
effective radius of individual GPFUs:

ew ris o, forfl =
! ryM for ! =

. 1o g ifr >
1, ,j, otherwise
where r; is the lower bound of radius and r, is
the radius decrement rate.
Step 2.4. If all the teaching patterns are presented,
go to the next step. Otherwise, go to Step 2.1.
Step 3. Seti =i + 1
Step 4. If the network shows satisfactory perform-
ance, then stop. If not, go to Step 2.

4. SIMULATION

Simulations were conducted for the six sets of teach-
ing patterns shown in Figure 4. The first four sets of
teaching patterns, (a), (b), (c) and (d) represent bi-
nary functions of two output classes +1 and —1,
whereas the last two sets of teaching patterns, (e)
and (f) represent continuous functions, sin(zx,)

217

cos(0.57x,) and cos(4nx,)cos(47tx3)e’“"-‘f +) re-
spectively, defined over 2 dimensional input space.
At each learning cycle, all the teaching patterns of
a set were presented to the network in a random
order. The teaching patterns of the last two sets were
generated respectively from the given continuous
functions, such that at each learning cycle, 10 teach-
ing patterns are randomly selected from the corre-
sponding function and presented to the network.

It was considered that the network reached a sat-
istactory level of performance through training,
when the following condition was met: (a) the ab-
solute error |t,, — ¢, is less than the predetermined
error margin. &, for every teaching patterns for the
first four sets of teaching patterns. (a). (b), (c) and
(d). and (b) the rms error £, defined by eqn (22)
is less than ¢, for the last two sets of teaching pat-
terns, (e) and (f).

The learning rate was chosen carefully because
(a) an excessive learning rate can cause the algorithm
to fluctuate and eventually diverge, and (b) a small
learning rate can cause slow convergence, although
no fluctuation occurs.

The error margin ¢, was set according to the na-
ture of the desired output. For example, if the de-
sired output is represented by binary value, the error
margin need not be set to a very small value. because
it is satisfactory as long as the signs of the desired
and the actual output values agree. In this case, the
desired output can be realized by thresholding the
actual output after learning is completed. If the de-
sired output has a continuous value, the error margin
¢, should be set to a value small enough for the
network to map the given function accurately. How-
ever, the decrease of ¢, causes the increase of the
number of GPFUs to be generated. Therefore, the
selection of ¢, should consider the trade-off between
accuracy and complexity in network realization.

The initial assignment of the marginal standard
deviation g, also affects the performance of learning.
If o, is set too high, it is difficult to train the net-
work to accurately represent those teaching patterns
densely distributed in the input space. If g, is set too
low, it takes too long to train the network to accu-
rately represent the teaching patterns coarsely
distributed in the input space. Therefore, it is
recommended that a proper value of g, be set ac-
cording to the distribution of teaching patterns in the
input space. This can be done based on the prean-
alysis of input samples in terms of local density
distribution or minimum distance between input sam-
ples.

The initial effective radius of a GPFU. r,, was
chosen large enough to cover most of the input space
or almost all the input samples, so that initially the
GPFN could carry out learning with a small number
of GPFUs. The lower bound of the effective radius,

218

1
8.5) i
8l .
-8.5} i
_1 L 1 1
~1 -8.5 2] 8.5 1
(a)

1 1 hd IL

B 5 (-] (-] -] o o

-] o -] 0 0
8-— o (-] o x x F

(-] o (-] -] -]
-8.5} i

o o (=] (] Qo

=t

(©)

oLeeand ROM, Kil

1 v v v
4.5} .
2 0 4
-8.5} -
—1 A 2. L
-1 -B.5 8 B.5 1
1 T ¥ T Lol
x x x x x x x x x
X © 0 X X X 0 0 X
8.5} p
X 0 6 06 Xx 6 0 0 %
x x L] o o [+] o x x
By * x x 0o 0 0 x x x -4
X X 0 o 0 6 6 X x
x o o o x -] o (=] L3
-8.5¢ e
x Q (-] x x x L) Q ®
X X X X X X x M x
...1 P | e A
-1 -8.5 2] 8.5 b1

(e

®

FIGURE 4. (a), (b), (c), (d), (¢) and (f) represent the six sets of teaching patterns used for training the GPFN: The teaching
patterns (a), (b), (c) and (d) represent binary functions of two output classes, +1 and -1, (which are denated respectively by

o and x)-defined over the two-dimensional sample pol

nts. The teaching patterns,{e) and (f) represent continuous functions,

sin(mx,)cos(0.57x,) and cos{4sx,)cos(4mx.)e i3 regpectively, defined over two-dimensional Input space.

r., was used to curtail the number of GPFUs gen-
erated for a continuous mapping. Setting r; low
allows the accurate realization of a continuous
function, but only at the expense of increased num-
ber of GPFUs.

The recruitment of new GPFUs was controlled by

the three parameters: r,, o and j. r,, the radius dec-
rement rate, was chosen small enough to reduce the
radii of GPFUs slowly, so that the most troublesomie
positions, which have large errors between the de-
sired and the actual outputs but are not properly
covered by existing GPFUs, can be found and cov-

TABLE 1
Actual Parameter Values Assigned for Each Set of Teaching Patterns

Teaching Pattern Set (a) (b) (c) d) (e) fy
Learning Rate, 5 0.02 0.02 0.002 0.002 0.002 0.002
Error Margin, &, 1 1 1 1 0.1 0.1
Initial Standard Deviation, o, 2 2 0.2 0.2 0.1 0.1
Initial Effective Radius, r, 3 3 30 30 60 60
Lower Bound of Radius, r, 0 0 0 0 2 2
Radius Decrement Rate, r, 0.9986 0.9986 0.9986 0.9986 0.9986 0.9986
Decaying Factor, a 102 10-3 10-? 10-3 10 10
increment Rate, 1010 10 10 10~ 10: % 10-10

Gaussian Potential Function Network

219

TABLE 2
A Summary of Simulation Results
Teaching Pattern Set (a) (b) (c) (d) (e) H
The No. of Learning Cycles 400 1500 4500 4500 5000 10000
The Estimated No. of Minimum GPFUs 2 2 4 6 NA NA
The No. of GPFUs Generated 2 2 5 8 2 14
E..? after Learning 0.0001 0.2866 0.3634 0.2916 0.1048 0.0458

2 The E,.s of the teaching pattern set e and f, are calculated based on 1000 randomly generated patterns from the given function.

ered first. «, the decaying factor for JE,/dn,
affects s, as follows: If « is small, ||sk1|/\/n_k has small
fluctuations in spite of a large fluctuations of JE,/
ang; on the other hand, if « is large, 1|sk||/\/r7k has
large fluctuations following the fluctuations of
dE,/dn;’s. For the detection of the saturation of net-
work performance, o was set small enough to have
small fluctuations in ||/ Va, but large enough to

(a)

0 \ V\'." O
\\...l
f

()

follow the current trend of the variations of JE,/
Jn,. In practice, « can be chosen inversely propor-
tional to the number of teaching patterns. f, the
increment rate of p,, affects the detection of network
saturation as follows: If fis large, p, increases rapidly
and the network prematurely determines the occur-
rence of saturation; on the other hand, if § is small,
the network determines the occurrence of saturation

()

®

FIGURE 5. 3D representation of potential fields synthesized over 2D input space as a result of learning: The potential fields,
(a), (b), (c), (d), (e), and (f) shown in this figure correspond respectively to the individual teaching patterns, (a), (b), (c), (d), (e)

and (f) of Figure 4.

220

a long time after the actual saturation occurred.
Therefore, the selection of f should consider the
above trade-off.

Table 1 illustrates the actual parameter values
used in the simulations for the six sets of teaching
patterns. Table 2 presents a brief summary of sim-
ulation results, including the number of learning
cycles required and the number of GPFUs generated.
for individual sets of teaching patterns. Figure 5 il-
lustrates the 3D representation of the potential fields

synthesized over the 2D input space as a resuit of

learning. The potential fields, (a), (b). (c), (d). (e)
and (f) of Figure 5 corresponds respectively to the
individual sets of learning patterns, (a), (b), (c), (d).
(e) and (f) of Figure 4. Figure 6 shows decision
boundaries obtained by thresholding the potential
fields, (a), (b), (¢) and (d) of Figure 5 with the zero
threshold. Figure 7 shows the learning curves for the

six sets of teaching patterns where the variations of

curves represent ¢, and the number of GPFUs with
respect to the number of learning cycles. The sim-
ulation results indicate the following: (i) The deci-
sion boundaries for the first four sets of teaching
patterns, (a), (b), (c) and (d) with binary output

1 ¥ y T

8.5 ‘ 4
8

-8.5} l i

_1 1 it L
-1 -8.5 8 8.5 1

@
1 T v T

(©

{eeand Ko M. Kl

values provide the perfect binary classification with
optimal or near optimal number-of GPFUs. (it} A
good approximation (around 3% error or less} of
continuous functions were obtamed with a smal
number of GPFUs for the last two sets of teaching
patterns (¢) and (f).

Finally, to show the effecuveness of a GPEN
based on HSOL for pattern classification, a com-
parison is made for the first four sets of teaching
patterns, between the GPFNs- generated by the
HSOL algorithm and the Backpropagation networks
optimized by trial-and-error in terms of the number
of hidden units (using sigmoidal activation func-
tions). Table 3 describes the result of such a com-
parison: For the teaching pattern sets, (a) and (b},
the GPFNs have the total number of parameters
larger than that of the optimal Backpropagation net-
works. However, for the teaching pattern sets, (v}
and (d), the GPFNs have the total number of pa-
rameters less than those of the optimal Backpropa-
gation networks. Note that, ¢ven for the teaching
pattern sets. (a) and (b), in order to obtdin the de-
cision boundaries similar to what the GPFNs could
provide. the optimal Backpropagation networks re-

1 ¥ i T “}‘
8.5}
B¢ o -ir
-8.5}
!
—1 1 ry 1 _i
-1 -8.5 2] 8.5 1
b
1 T ki 1

3 X X X x x x X X

x x o o-yx
8.5} +

x x Q Q, x

x o o 0 © *
BP- x % o o o {x x o

x X o 0o o x
-a.5% x o o RN\e x k

x{ o X X % x

x x x x x x x x X

_1 i A A
-1 -8.5 %] 8.5 1
@

FIGURE 6. The decision boundaries obteined from the synthesized potential fields: The decision houndaries of the first four
sets of teaching patterna are cbtained reapeciively by thresholding the corresponding potential flekds, tay, ®), () and (d) of

Figure 5 with the zero threshold value.

i 2
Gaussian Potential Function Network 221

1.4 y v 1.4
1.2 4 1.2}

A] i

s 9

ws} 9

Y] B

.z K .

% % i 1z e P ae ‘e Tz wm o s s um iaae ioee

(a) ®

[) & 308 1080 1380 2008 2300 MG 208 4888 4300
B 5O 1080 1506 2006 2300 2000 3500 4008 43N0

(© @

(e) ®

FIGURE 7. The learning curve A represents the variation of E,,. with respect to the number of learning cycles, whereas the
tearning curve B represents the increase of GPFUs along learning cycles, for the six sets of teaching patterns: E,, is calculated
based on the entire teaching patterns presented at each learning cycle. Note: The scales associated with y axis represents
the actual value of E.... To obtain the number of GPFUs, multiply the scales shown in the figure by 10.

TABLE 3
Comparison between the GPFN Generated by HSOL and the Optimal Backpropagation Network

Teaching Pattern Set (a) (b) (c) (d)
GPFN The No. of GPFUs Generated 2 2 5 8
The No. of Total Parameters 12 12 30 48
Optimal The estimated No. of 2 2 9 13

Backpropagation Network Minimum Sigmoidal Functions?
The No. of Total Parameters 8 8 33 50

* For teaching pattern set 3 and 4, two layers of hidden units are used.

222

quire more parameters than those of the GPFNs.
This illustrates the power of a GPFN based on the
HSOL algorithm.

5. CONCLUSION

This article has presented the following:

1. The design principle of a MNN using a nonsig-
moidal activation function, such as a Gaussian
function.

2. The HSOL algorithm which explores the incre-
mental recruitment of hidden units based on the
hierarchical learning of teaching patterns which
is achieved by the control of the accommodation
boundaries of individual hidden units.

The design principle developed for a MNN based
on a nonsigmoidal activation function contributes to
the advancement of a new methodology for designing
a more general form of a MNN with powerful map-
ping capability. The presented HSOL algorithm is
applicable to any MNN by properly defining its own
accommodation boundaries. The HSOL algorithm
contributes to the development of a new learning
methodology based on self-organization and hier-
archical learning, which may provide a solution to
the problems encountered in conventional learning
techniques due to the existence of local minima, flat
surface error curvature, as well as structural inflex-
ibility.

REFERENCES

Ackley, D., Hinton, G., & Sejnowski T. (1985). A learning al-
gorithm for Boltzmann machines. Cognitive Science, 9. 147~
169.

Aizerman, M., Braverman, E., & Rozonoer, L. (1964). Theo-
retical foundations of the potential function method in pattern
recognition learning. Automatika i Telemekhanika, 25, 917-
936.

Carpenter, G., & Grossberg, S. (1987). Art2: stable self-orga-
nization of pattern recognition codes for analog input patterns.
Applied Optics, 26, 4919-4930.

Duda, R., & Hart, P. (1973). Pattern Classification and Scene
Analysis. New York: Wiley.

Funahashi, K. (1989). On the approximate realization of contin-
uous mappings by neural networks. Neural Networks, 2, 183~
192.

Fukushima, K. (1980). Neocognitron: a self-organizing neural net-
work model for a mechanism of pattern recognition unaffected
by shift in position. Biological Cybernetics, 36, 193-202.

Fukushima, K. (1988). A neural network for visual pattern rec-
ognition. IEEE Computer Magazine, Mazch, 65-75.

Hecht-Nielsen, R. (1987a). Counterpropagation networks. Ap-
plied Optics, 26, 4979-4984.

Hecht-Nielsen, R. (1987b). Kolmogorov mapping neural network
existence theorem. IEEE International Conference on Neural
Networks, 3, 11-13.

Hecht-Nielsen, R. (1989). Theory of the backpropagation neural
network. IEEE International Joint Conference on Neural Nei-
works, 1, 593-605.

S heeand R M. Kif

Hopfield, J. (1982). Neural networks and physical systems with
emergent collective computational properties. Proceedings of
National Academy of Sciences (U.S.A.). T9. 2554-2558.

Hopfield,). (1984). Neurons with graded response have collective
computational properties like those of two-state neurons. Pro
ceedings of National Academy of Sciences (U.5.A4.). 81, 3088~
3092.

Hornik, K., Stinchcombe, M., & White. 1 (1989). Muitilayer
feedforward networks are universal approximators. Newural
Networks, 2, 359-366.

Irie, B., & Miyake, S. (1988). Capabilities of three-layered per-
ceptrons. [EEE International Conference on Neural Network:.
1. 641-648.

Kohonen, T. (1984). Self-Organization amd Associaiive Memory.
New York: Springer-Verlag.

Kolmogorov, A. (1957). On the representation of continuous
functions of many variables by superposition of continuous
functions of one variable and addition. Doklady Akademii
Nauk SSSR, 144, 679-681.

Kosko, B. (1987). Adaptive bidirectional associative memories.
Applied Optics, 26, 4947-4960.

Koustougeras, C., & Papachristou, C. {1988), Training of a neural
network model for pattern classification based on an entropy
measure. [EEE International Conference vn Neural Networks
4, 573-582.

Lippmann, R. (1987). An introduction tv computing with neural
nets. IEEE ASSP Magazine, 4, 4-22.

Lee, S.. & Kil, R. M. (1988). Muttilaycr fecdforward potential
function network. JEEE International Conference on’ Neural
Networks. 1, 161-171.

Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge. MA:
MIT Press.

Parzen. E. (1962). On the estimation of a probability density
function and mode. Annals of Mathematical Statistics. 33.
1065-1076.

Reilly, D. L.. Cooper, L. N., & Elbaum. C.. (1982). A neural
model for category learning. Biological Cybernetics, 45. 35~
41,

Rumelhart, D., Hinton, G.. & Williams, R. (1986). Learning
internal representations by error propagation. In D. Rume!-
hart, & J. McClelland (Eds.), Parallel Distributed Processing:
Exploration in the Microstructure of cognition. Cambridge,
MA: MIT Press. '

Sprecher, D. (1965). On the structure of continuous functions of
several variables. Transactions of the. American Mathematical
Society, 115, 340-355.

APPENDIX A

Kolmogorov/Sprecher Theorem

For each integer n = 2, there exists a real monotonic increasing
function w (%), w ([0, 1]) = [0, 1], dependent on # and having the
following property:

For each preassigned number ¢ > 0, there is a rational number
&,0 < ¢ = 8, such that every real continuous function of n variables,
&(x), defined on I, can be exactly represented by

I+l " .
px) = X x[> A (x +a(j - Dy 1
= i=1

x

i=

where y is a real and continuous function dependent upon ¢. and
4 is a constant independent of ¢.

APPENDIX B
The Realizability of Mapping Fanctions
From eqn (9).
z = Ye¢
= [r, r, o LR
= [rie, rig, o0 rief

Gaussian Potential Function Network

where z = [z,, z5, - . zy} and r, is the ith row of Y, r, = [w(x.,

p). wix, po), . w(x, pw)) for i = 1, -, N. Note that r,
i=1,-,Nare M x 1 vectors represented in the M dimensional
PFU space.

The above equation can be rewritten as

[rle =z rtc — 22, Jrve — 2,3} = 0.

Therefore.

Re’ =[r;, i -, rile’ = 0.

where v/ = [r: —zJ:(M + 1) x 1 vector, ¢/ = [e:1]«(M +
1) x L vectorand R = [r{, ri, ==, raJ:N X (M + 1) matrix.

To provide a solution for ¢'. r,. i = 1, --- | N should reside
in the manifold of less than or equal to M dimension, so that ¢’
can be perpendicular to all r/s. This can be tested by measuring
the quantity A,.

A,, = min).,
where 4, i = 1 - M + 1 are the eigenvalues of the cross-
correlation matrix. %, defined by
] A
Y= 2 r/r/
N i-1

Then, the following theorem holds:

Theorem 2: z = [$(x,), ¢(x:). -, ¢(xu)] is exactly realizable if
A, = O and there exists an eigenvector with zero eigenvalue which
is not [0 1].

Proof: A, = O implies thatr/,i = 1, ---, N are in the manifold
of M or less than M dimensions. The latter condition is to guar-
antee that a vector, ¢’, perpendicular to the manifold formed by
r/.i =1, . N, is nontrivial, that is, ¢’ # [0:1]. Q.E.D.

Theorem 2 implies that A, can also be used as a criterion for
the adjustment of the shape of PFUs. Note that, in Theorem 2,
the eigenvectors with zero eigenvalues can be the solutions of ¢’

[
¥ = 0D (1) = 0w/ = 0Vi.
i=1

APPENDIX C
The Derivation of Parameter Update Rules

The network parameter update rules are derived here by taking
the negative gradient of the error function, eqn (22). For con-
venience, the subscript p which represents the pth pattern is omit-
ted in the following derivations.

1. Aw,
Aw, = ‘,d—E,
aw,
E_ OE i,
aw, ap, aw,
GE
(7([), - (lr ¢1)' an
d’¢/
— = y.
aw,
Therefore,
Aw, = (4, — d)y.
2. Am!
Ami = -—(iE—,
am
GE _ JE dv, 3d,
am, dy; dd, omy’
dE oE o,
— =% —— == — ¢
” & e e e DiIWiis
oy, _ 1
d =75 w, and
ad, .)
e =2Zki(x; — m)).

Therefore,
Ami = Zki(x —
3. Ak

my 2ty — bWy

223

We have two types of parameters for k.. That is. o and &j;. Here,

Ao and Ahj are derived separately.
® Agiforj =k
dE
Agi = — and
da
JE OE oy, ad,

By the same derivation as Amj,

JE dy, 1 o

;(;% = Ew,zk(t‘, - ¢ Jwy and

{7_‘1'1 _ 7221”’;1 (X, - m;’)(ﬂxl — m‘l)

! (oY
Therefore.

Aaj = Sy ol —)

® Ahforj# k
dE

—— and

Ak, =
* o,

iy, ad, oy
By the same derivation as Am,
9E oy, _ 1

= - wZ{l — ¢)w, and

oy, ad, 2

ad, _ (x, — m)(x, — my)
A, gig '
Therefore,

_l(x; - m)(x —

2 T0%

ARy =)

Wil —

vt — dIwi,.

b wi

NOMENCLATURE

¢ Weight vector

¢’ Augmented

column vector

defined by

fe: 1)

Optimal solu-

tion of ¢

¢; Summation
weight of the
ith potential
function

d Weighted dis-
tance of GPFU

d; Weighted dis-
tance of the ith
GPFU

% The (j, k)th
correlation
coefficient of
the ith GPFU

% The (j, k)th
element of the

P

Ty

ith shape ma-
trix

Mean vector of
the ith GPFU
The jth ele-
ment value of
the ith mean
vector my'
Dimension of s;
Parameter vec-
tor for the jth
output unit
Parameter vec-
tor of the ith
potential func-
tion

Initial effective
radius of
GPFU
Effective radius
of ith GPFU
Column vector

224

Ya

Fi

M

defined by
[w(x:, p1).
720 3) NERIEI
V/(xi’ PM)]I
Augmented
column vector
defined by
LA
Radius decre-
ment rate
Lower bound
of radius
Parameter sat-
uration vector
for the jth out-
put unit

The jth desired
output value of
the pth teach-
ing pattern
Summation
weight between
the jth output
unit and the ith
GPFU

Input pattern
The ith ele-
ment value of x
Column vector
defined by

[w (x1, p).
'//(Xz, pl’)’ s

N

Erms

G,

K

v (Xn, P
Column vector
defined by

[(%)), w(x,),
cee W(xN)](
the ith element
of z

Error function
Error function
for the pth
teaching pat-
tern

Root mean
square error of
GPFU

Radius criteria
of the ith
GPFU
Hypersphere of
the ith GPFU
Shape matrix
of the ith
GPFU
Number of out-
put units or
number of
PFUs
Dimension of
input pattern
or number of
teaching pat-
terns

2(p)
LYY

R(y:)

a
)]

m

Pi

Performance
index of GPFN
(N x M+ 1)
matrix defined
by frf, rl, -
r)

N dimensional
sample space
Subspace
spanned by y;.
Yoo o Yu

N > M matrix
defined by [y,,
Yoo Yul
Domain of p,
Linear main-
fold formed by
the linear com-
bination of the
selected M vec-
tors. yr. i = 1,
o M of Y
Range of y,
Decaying factor
for 9E,/ om;
Increment rate
of p,

Error margin
Parameter sat-
uration criteria
for the jth out-

[

2]

3

(£

i

.

(bm

£

Leeand KM K

put unit

The ith eigen-
value of cross
correfation
matrix 2
Potential tunc-
non

Yhe ith poten-
tial function
Initial marginal
standard devia-
ton

the jth mar-
vinal standard
deviation of the
ith GPFU
Potential field
The ith poten-
tal field

The jth actual
output.valuc
for the pth
teaching pat-
tern
Measuring
quantity de-
fined by min,4;
Cross-correla-
tion matrix de-
fined by /N
BAN o 3

