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Abstract--This article presents a design principle of  a neural network using Gaussian activation functions, 
referred to as a Gaussian Potential Function Network (GPFN), and explores the capability of  a GPFN in learning 
a continuous input-output mapping from a given set of  teaching patterns. The design principle is highlighted by 
a Hierarchically Self-Organizing Learning (HSOL) algorithm featuring the automatic recruitment of  hidden 
units under the paradigm of  hierarchical learning. 

A GPFN generates an arbitrary shape of a potential field over the domain of  the input space, as an input- 
output mapping, by synthesizing a number of  Gaussian potential ]'unctions provided by individual hidden units 
referred to as Gaussian Potential Function Units (GPFUs). The construction of  a GPFN is carried out by the 
HSOL algorithm which incrementally recruits the minimum necessary number of" GPFUs based on the control 
of  the effective radii of  individual GPFUs, and trains the locations (mean vectors) and shapes (variances) of  
individual Gaussian potential functions, as well as their summation weights, based on the Backpropagation 
algorithm. 

Simulations were conducted for the demonstration and evaluation of  the GPFNs constructed based on the 
HSOL algorithm for several sets of  teaching patterns. 

Keywords--Mapping neural network, Multilayer feedforward network, Gaussian potential function. Non- 
parametric estimation, Self-organizing learning, Accommodation boundary, Effective radius. 

1. INTRODUCTION 

An artificial neural network can be evaluated in 
terms of its capability of accurately representing 
a desired input-output mapping through efficient 
training of a given set of teaching patterns. An ac- 
curate representation of a mapping depends on the 
proper selection of a network configuration, includ- 
ing the network architecture, the number of neurons 
and the type of activation functions, and the capa- 
bility of a learning algorithm to find the optimal pa- 
rameters for the selected network configuration. 

Most artificial neural networks developed to date 
have focused on training the parameters of a fixed 
network configuration selected by the designer. How- 
ever, it may be an extremely powerful tool for con- 
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structing an optimal network, if a learning algorithm 
has a capability of automatically configuring a neural 
network, in addition to the adjustment of network 
parameters. 

Although attempts have been made to apply the 
idea of self-recruiting neurons to the automatic clus- 
tering of input samples (Carpenter & Grossberg, 
1987), and to the identification of class boundaries 
(Reilly, Cooper,  & Elbaum, 1982), a major effort 
needs to be expended to establish a learning algo- 
rithm capable of automatically configuring a network 
based on the self-determination of network archi- 
tecture and the self-recruitment of neurons with a 
proper type of activation functions. This article ini- 
tiates such an effort by considering a neural network 
with nonsigmoidal activation functions and the ca- 
pability of self-recruiting neurons under the para- 
digm of hierarchical learning. 

Let us first define a Mapping Neural Network 
(MNN) (Hecht-Nielsen, 1987b) as a network per- 
forming a mapping, 6, from a compact set, P (for 
example, an n dimensional Euclidean unit cube) to 
an m dimensional Euclidean space, R m, ~ : 1" ~ R m, 
based on the interconnection of neurons as basic non- 
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linear computational units in a parallel and distrib- 
uted manner. Then, most of the currently existing 
artificial neural networks can be interpreted within 
the framework of a MNN: 

1. An associative memory such as the Autoassocia- 
tive Memory (AM) (Hopfield, 1982, 1984), the Bi- 
directional Associative Memory (BAM) (Kosko, 
1987), or the Boltzmann Machine (Ackley, Hin- 
ton, & Sejnowski, 1985), stores an input-output  
mapping in a content addressable memory where 
the network converges to a stored memory,  based 
on the dynamics imbedded in the network struc- 
ture. 

2. A neural network based on the competitive net- 
work such as the Hamming Network (Lippmann. 
1987), the Self-Organizing Feature Map (Koho- 
nen, 1984), the Art2 (Carpenter & Grossberg, 
1987), the Counterpropagation Network (Hecht- 
Nielsen, 1987a) or the Neural Model for Category 
Learning (Reilly et al., 1982), selects a neuron 
through the winner-takes-all competition based 
on the closeness between the reference patterns 
that individual neurons represent and the given 
input pattern,  and generates an output as the ref- 
erence pattern of the selected neuron. 

3. The multilayer feedforward network such as the 
Backpropagation Network (Rummelhart .  Hin- 
ton, & Williams, 1986), the Neocognitron (Fu- 
kushima, 1980, 1988) or the Athena (Koustogeras 
& Papachritou, 1988), (approximately) realizes 
an arbitrary input-output  mapping or a decision 
boundary by transforming the input domain into 
increasingly complex nonlinear manifolds in the 
spaces of upper layers through a series of inter- 
mediate mappings. 

We are interested in analyzing the capability of 
an MNN in realizing an arbitrary function. The Kol- 
mogorov/Sprecher  theorem (see Appendix A; Kot- 
mogorov, 1957; Spreeher, 1965) indicates that any 
continuous real function can be exactly realized by 
a four-layer neural network composed of an input, 
an output,  and two hidden layers with a finite number 
of neurons (Hecht-Nielsen, 1987b). However,  since 
no constructive method for determining the activa- 
tion function of hidden layers is currently available, 
a direct application of the Kolmogorov/Spreeher  
theorem to the realization of an MNN is not feasible. 
Irie and Miyake (1988) proved that a three-layer net- 
work with an infinite number of hidden units can 
represent an arbitrary function, provided that the 
activation functions of hidden units as well as the 
mapping functions are bounded and absolutely 
integrable. Funahashi (1989) extended the Ir ie-  
Miyake theorem to include sigmoidal activation 
functions, such that any continuous function is ap- 

proximately realizable hv a threc-ia'vc r nciwor~, w~J~ 
hidden units having, monotonically increasing t~ul 
bounded, continuous actwation ftmc~ions. \ ~im~) 
result was obtained by Hech t -Nickm (!ggc)). where 
t was shown that a subset of a back propagatu))) ~c~ 

work can implement a sinusoida! Iunction. cnahhne 
the backpropagation network to perform the Fou.'-'c~ 
series approximation of an arbitrar', funclion ~ ~,,,) 
nik. Stinchcombe. and White (198~) also proved ihat 
a three-layer network with a stt!{l~clcnt]x large num- 
ber of hidden units having an mhnrar~ ~quashin}e 
activation functions can be used . . . .  tmiversal func- 
tion a pproximator. 

] h e  aforementioned theorem,  c(mccrn the capa- 
bility of an MNN as a universai function approx> 
mator .  However .  the fol lowine research i,,s~tcs 
should be raised and investigated; 

. 

What are the effects of the nmnber of layers on 
the realization and training of an MNN? Does an 
increase in the number of hidden layers render 
an MNN more efficient m terms of the number 
of neurons or in terms ol the learning speed m 
training? 
What are the effects of a nonslgmoidal activation 
function on the realization and training of an 
MNN? Note that any absolutely integrable acti- 
vation function, such as ~, Gaussian function, i ,  
capable of approximating an arbitrary function. 
and that a sinusoidal actwation function can 
be used for approximating an arbitrary funcuon 
based on the Fourier series expansion. (?an mm- 
sigmoidal acnvation functions such as Gaussian 
and sinusoidal functions provide a better alter- 
native to the sigmoidal actp~ation function in 
terms of realizing and training an MNN due to 
their nonlinear mapping capabilities'? 

In what follows, we will shot, that nonsigmoidal 
activation functions provide the network with the 
capability of forming more complex nonlinear man- 
ifolds of the input domain, which is equivalent to 
what multiple hidden layers can provide through in- 
termediate mappings. 

This article presents a nonsigmoidal MNN. called 
the Gaussian Potential Function Network (GPFN) 
(Lee & Kil, 1988) and investigates the capability of 
the GPFN in realizing an arbitarv mapping. The 
GPFN is capable of approximating a many-to-one 
continuous function by a potential field synthesized 
over the donrain of the input space by a number of 
Gaussian computational units called Gaussian Po- 
tential Function Units ( G P F U s )  The emphasis is 
given to the synthesis of a potential field based on a 
new type of learning called the Hierarchically Self- 
Organizing Learning (HSOL).  The distinctive fea- 
ture of HSOL is its capability of automatically re- 
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cruiting necessary GPFUs under the paradigm of 
hierarchical learning, implemented through the suc- 
cessive adjustment of the accommodation bounda- 
ries or the effective radii of individual GPFUs in the 
input domain. 

2. POTENTIAL FUNCTION N E T W O R K  

2.1. Design Concept 

It has been proposed that a discriminant function, 
<b(x), can be represented by the weighted summation 
of a finite number of potential functions (Aizerman, 
Braverman. & Rozonoer. 1964) as follows: 

M 

~(x) = ~ c,K(x, x,) /1) 

where K(x, x,) is the ith potential function of x, ob- 
tained by shifting K(x, 0) by x~, and c~ is a real con- 
stant. For instance, the potential function K(x, x~) 
of classical physics varies inversely with [Ix - x~ll, that 
is, K(x, xi) has the maximum value at x = x~ and 
decreases monotonically to zero as IIx - x~ll ap- 
proaches infinity. 

A learning algorithm similar to that of the Per- 
ceptron (Minsky & Papert, 1969) has been proposed 
for applying eqn (1) to binary classification: 

On"W(X) 

{ &"d(X) + K(x, xk) 

= 4'~"d(x) -- K(X, X~) 

4~"'d(x) 

if the sample, x, is labelled 
+ 1 and qS"Jd(Xk) --< 0 

if the sample, xk is labelled 
- 1 and ~'"d(x~) --> 0 
otherwise (2) 

It has been shown that eqn (2) converges within finite 
steps. 

The potential function approach to binary classi- 
fication described by eqns (1) and (2) has a similar 
flavor to the nonparametric estimation of a proba- 
bility density function based on the Parzen window 
(Parzen, 1962). In the Parzen window approach, a 
probability density function, p (x), is estimated from 
the observed input samples, x~s, i = 1, ... , n, by 

p,,(x) = 1 ~ 1 x -  x, 

where qJ represents a bounded nonnegative ker- 
nel function of the d dimensional input vector, x, and 
h,, is a sequence of positive numbers such that 
l imn~ h,, = 0 and limn_~ nh~ = :~. It can be shown 
from eqn (3) that p,,(x) converges to p(x) as n ap- 
proaches ~c. 

The problem associated with eqn (1) or (3) is that 
the number of potential functions or kernel functions 
required for implementing an unknown function be- 

comes potentially very large proportional to the num- 
ber of input samples. This is due to the fact that eqn 
(1) or (3) are based on the shifted summation of 
prespecified shape (variance) of the potential or ker- 
nel functions assigned to individual input samples. 
This problem may be resolved by relaxing the fun- 
damental constraints associated with eqn (1) or (3): 
the position shift of a potential function should cor- 
respond to the coordinate of input samples and the 
shape of a potential function should be fixed, and by 
introducing a methodology of self-recruiting a min- 
imum necessary number of potential functions with 
the capability of adjusting both the position shift and 
the shape parameters of individual potential func- 
tions. 

A generalized form of eqn (1) or (3), incorporat- 
ing the adjustment of shape parameters and the self- 
recruitment of potential functions, can be expressed 
a s  

M 

~ b ( x ) ~  c~(x, p,) (4) 

where M represents the number of potential func- 
tions to be recruited, c, represents the summation 
weight, and Pi represents a new parameter vector 
including both the position shift and the shape pa- 
rameters of the ith potential function. In eqn (4), M, 
ci, and Pi, i = 1, . . . ,  M, are subject to the adjustment 
through learning. Eqn (4) may be able to achieve a 
desirable error level in function approximation with 
a smaller number of potential functions, but may 
require a more complicated learning algorithm. 
Thus, this article focuses on developing a learning 
algorithm for self-recruiting a minimum necessary 
number of potential functions, M, and for training 
the shape parameters as well as summation weights, 
p, and c/, i = 1, ... , M. 

Prior to the exploitation of such a learning algo- 
rithm, let us first investigate the effect of selecting a 
different type of activation functions (among sigmoi- 
dal, Gaussian, and sinusoidal) on the power of func- 
tion approximation based on eqn (4). Note that, in 
eqn (4), an output vector of the input layer, x, is 
directly used as an input vector to a hidden unit. This 
can be compared with conventional three-layer feed- 
forward network in which the weighted summation 
of individual input elements, Z~ ~2,ix i, is fed into a 
hidden unit: 

/ =  

Equation (4) represents a more general form of a 
multilayer feedforward network, where a multidi- 
mensional output vector from the layer i - 1 is di- 
rectly used as an input vector to the layer i, assuming 
that a neuron is capable of processing a vector. This 
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implies that  the ne twork  has addi t ional  f r e e d o m  of  
selecting how to process  a mul t id imens iona l  input  
vec tor  inside a neuron .  In this sense,  eqn (5) is con- 
s idered as a special  case of  eqn  (4). 

Accord ing  to Funahash i  (1989) and H o r n i k  et al. 
(1989), eqn  (4) can a p p r o x i m a t e  an a rb i t ra ry  funct ion 
with a desi rable  degree  of  accuracy  based  on a suf- 
ficiently large n u m b e r  of  h idden units,  p rov ided  ~, 
is an absolu te ly  in tegrable  or  a bounded  mono ton ic  
(squashing) function.  To  fur ther  invest igate  the ca- 
pabil i ty of  eqn  (4) in realizing an arb i t ra ry  funct ion 
in relat ion to the n u m b e r  as well as the shape  of  
PFUs ,  let us r ep resen t  ~,(x) based  on N discrete sam-  
pie points:  ~b(x~), ~b(x2), - " ,  q~(x,~,). Then ,  with the 
fol lowing defini t ions,  

Z ~ [ ~ b ( X l ) ,  ( / ) ( X 2 ) ,  ' ' "  , ff)(X~,,)] t ( (3)  

c --- [c,, c:, "" . c,,]' and (7) 

y, =- [~u(x,, P3, ~u(x2, p,), "" . ~u(x,.. p,)]' for i = 1. -" . :14 

we can obta in  the discrete fo rm of  eqn  (4), as follows: 

z = Yc (9) 

where  Y ~- [y~, Y2, "'" , y ~ ] : N  x M matr ix .  
The  ques t ion  is whe the r  and how,  for a given z, 

we can adjust  Y to find an exact  solut ion for  c sat- 
isfying eqn (9) or  an op t imal  solut ion minimizing the 

e r ror ,  E,  

E ~= I/z - Yclt-" (10)  

In case M -> N, there  always exists one  or m o r e  exact  
solut ions for  c that  satisfy eqn (9). H o w e v e r ,  the 
condi t ion M -> N is unrealist ic since N should be 
selected very large for  the minimiza t ion  of  inter- 
pola t ion  errors .  In case M < N, eqn (4) represents  
an o v e r d e t e r m i n e d  set of  equat ions ,  and thus,  the 
exis tence of  the exact  solut ion for  ¢ depends  on 
the special  condi t ion  imposed  on Y, that  is, rank  
[Y: z] = M. W h e t h e r  Y can be set to satisfy the condi-  
t ion, r a n k l Y : z ]  = M, by adjust ing the p a r a m e t e r s  
of  individual  P F U s ,  is a p r o b l e m  which needs  to be 

explored .  
T h e  condi t ion,  r a n k [ Y : z ]  = M,  is equivalent  to 

the condi t ion  tha t  z is e m b e d d e d  in the subspace ,  Sv. 
spanned  by yt, "" , yM, where  z, yi, i = 1, "-' , M 
are def ined  in the N d imens iona l  sample  space,  S~. 
Note  tha t  with fixed y~, i = l ,  -." , M, z @ Sv implies  
that  no exact  solut ion for  e exists; instead,  the op- 
t imal  solut ion,  e*, which minimizes  the e r ror ,  eqn 
(10), can be ob ta ined  by pro jec t ing  z on to  Sr  such 

that  

c* = Y~z (11) 

E~,, = It(n - P)zll 2 (12) 

where  Y-  represents  the genera l ized  mverse  of Y. 
y +  = ( y , y ) -  ty~  and P p re sen t s  the projec t ion  ma-  
trix. P ~- YY~ 

The  ad jus tmen t  of  p, may  provide  the setting ot 
y~, t - 1 . . . . .  M tha t  makes  z e m b e d  in S~.. The 
ad jus tmen t  of  p~ of  tu(x, pg) genera tes  the t ra jec tory  
or the range  of y~, ,'~ (y~) in 3~ according to y 
[~,(x~, pi), ~u(x2, pi), " - ~'(xN, Pi)[ with fixed sample  
points  xk, k - 1. --- _ N. Note  that  the t ra jec tory  of 
y,, .,J; (y~). is the same  for  all i. ~ , - _ M,  assuming 
that  the activation functions.  ~dx. p,). t = t . M. 
are of the same mathemat ica l  form.  With M PFUs.  
we can arbi t rar i ly  select M points  f rom ~h' (yet to fo rm 
M v e c t o r s .  y ) . i  = 1 . - -  . M o f Y ~ . T h e l i n e a r c o m -  
binat ion of t h e  selected M vectors  defines a l inear 
manifold. .~ '  (Y~), in S,.. Then  the following t h e o r e m  
holds: 

T h e o r e m  1: z =- [O(xl), $(xz ) ,  . O(x:,.)]' ts exacth" 

realizable i f f  z E Uke~ v (Y~). where  K is a f in i te  or  
inf inite index  set represent ing all the poss ib le  selections 

oJ M po in t s  f r o m  ;J? (y,). 
P r o o f :  z C u k ~ .  s ~ (yk)  implies  that  there  exists 

1 C  K s u c h  t h a t z  = Y~e Q . E . D  

The  implicat ion of  the above  t h e o r e m  is as fol- 
lows: 

t. J , ~  ~"(Y~) provides  a measure  indicating the 
mapping  capabi l i ty  of  a neural  ne twork  in real- 
izing an arbi t rary  funct ion with a finite n u m b e r  
of  hidden units, since it specifies the range of an 
exact ly realizable z. or  the collection o f  funct ions 
cor responding  to such an exact ly real izable z. 
u ~  ~' (yk)  = S~. implies that  any arbi t rary  z can 

be realizable.  
2 Given  z. or the range of z, we may select the type 

of an act ivat ion funct ion (or possibly,  a combi-  
nat ion of different  types  of  acuvat ion  functions}, 
for example ,  a m o n g  s igmoid.  Gauss ian  and si- 
nusoidal  functions,  that  is mos t  sui table for  the 
exact real izat ion of z : z  C U ~  ~" (yk),  

Figure l i l lustrates the above  concepts  based  on 
a s imple  ne twork  with two PFUs.  ~u(x, p~) and q/(x, 
!)2), and three  training samples  O(x0 ,  q~(x:), 4)(x3). 
invest igat ing the real izat ion of  z. z = [~b(xl), ~b(x2). 
~b(x3)]', with Yl, Y~ = [~,(xl, p, ) ,  ~u(x2, Pl), ~(x3, P0] ' .  
and Y2, Y: = [~(xl ,  P2), q/(x2, P2), ~u(x3, P2)]'- based 
on z = [y~, y2]c. T h e  m e a s u r e  of  m a p p i n g  capabil i ty,  
Uke~"-~' (Y~), is ob ta ined  by s imulat ion for  the case 
of  s igmoidal .  Gauss i an  and  sinusoidal  P F U s  (with 
single shape  p a r a m e t e r ) ,  and i l lustrated respect ively  
in Figures  l (b ) ,  (c).  and  (d). In each figure,  the dot-  
ted a rea  represen ts  Uk~K L~ ~ (yk ) .  The  s imulat ion re- 
sults indicate that  the sinusoidal  act ivat ion funct ion 
provides  the best  mapp ing  capabi l i ty  a m o n g  the 
three,  while the Gauss ian  act ivat ion function pro-  
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Sigmoidal i S i n u s d l ~  

FIGURE 1. An example to illustrate ~(y,) and Uk~K £(Y*) for sigmoidal ((1 - e-'")/(1 + e-x")), Gaussian (e - :  ~2), and sinusoidal 
(sin(ax)) PFUs. (a) Represents an example with 2 PFUs, #(x, p,) and #(x, P2), and 3 samples, d)(Xl), ~f)(x2) and ~(x3). In (b), (c) 
and (d), ~.(y~) is represented by a thick line contour on the cube, [0, 1] 3 of sample space, while t-Jk~K £(Y*) is represented by 
the dotted area on the surface of the sphere fitted inside the cube. The volume defined by the dotted area and the origin 
through a solid angle represents Uk~K £(yk) inside the '~ sphere. The dotted areas were obtained by the trajectories of great 
circles formed by the intersections between all the £(Yk)'s and the surface of the ~ sphere. 

vides better mapping capability than the sigmoidal 
activation function. Note, however, that in case the 
number of sample points is not large enough for the 
interpolation errors between samples to be ignored, 
the selection of an activation function should account 
for its capability of accurately interpolating the map- 
ping between samples or its power of generalization 
But the generalization power of an activation func- 
tion may be highly dependent on the local charac- 
teristics of a particular mapping. This implies that 
the interpolation accuracy needs to be ensured adap- 
tively through the self-recruitment of PFUs based on 
training. In this case, an activation function which is 
not only powerful in generalizing a global mapping 
but also effective in refining local features without 
much altering the already learned mapping is de- 
sired. This makes a Gaussian activation function a 
good candidate for an MNN with self-recruitment. 

A different analysis on the realization of eqn (9), 
based on interpreting eqn (9) in the PFU space in- 
stead of sample space, can be found in Appendix B. 

2 .2 .  G a u s s i a n  P o t e n t i a l  F u n c t i o n  N e t w o r k  

A Gaussian potential (activation) function, an un- 
normalized form of Gaussian density function, is se- 
lected for the construction of a Potential Function 
Network (PFN), since the function is highly nonlin- 

ear, provides good locality for incremental learning, 
and has many well-defined mathematical features. A 
Gaussian potential function ~'i is defined by 

~ui = ~,(x, p,) = e ,,,p,,~2 (13) 

d(x,p~) = d(x,m',K') = ( x -  mg'K'(x - m ~) (14) 

where x represents an input pattern, m i and K i rep- 
resent respectively the mean vector and the shape 
matrix (defined by the inverse of the covariance ma- 
trix) of the ith potential function. 

d(x, m i, K i) can be rewritten as an expanded form: 

d(x, m', K ~) = ~ ' ~  k i~ (x  i - rn'~)(x~ - m'~) (15) 
I k 

where xj is the jth element of x, m~ is the jth element 
of In/, and k}k is the (j,  k)th element of K ~ 

Without loss of generality, k}k can be represented 
based on the marginal standard deviations a} and 
a~, and the correlation coefficient hlk: 

h;k (16) k',~ = ai:a,k 

where a}is positive real and hik = 1 i f j  = k a n d  

]h}~ I -< 1 otherwise. 1 

'h~k is assumed to satisfy the condition, Zk:ilh'~k] ~ 1 Vj, for the 
positive semidefiniteness of shape matrix, K ~. 
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Instead of using the general form of k'.k given by 
eqn (16), it is possible to use a simpler but a more 
restricted form of klk given by: 

1' k;~ cr~ i f /  = k 
* = {t7) 

tl otherwise 

Equation (17) implies that the principle axes of the 
Gaussian potential should be aligned with the ref- 
erence axes of the input space, t towever ,  the amount 
of flexibility loss due to the use of eqn (17) can be 
compensated by increasing the number of PFUs. 

The network model proposed here is composed 
of three types of layers: the input layer, the hidden 
layer, and the output layer. The input and output 
layers are composed of linear units, and the hidden 
layer is composed of Gaussian potential function 
units (GPFUs),  which produce Gaussian potential 
functions. The weighted output values of the GPFUs 
are summed by the connection between the hidden 
layer and the output layer in order to synthesize 
the required potential fields. The three-layered PFN 
with the GPFUs configured at the hidden layer is 
called as the Gaussian Potential Function Network 
(GPFN).  

Figure 2(a) illustrates the schematic diagram of a 
GPFN and Figure 2(b) shows a detailed structure of 
the ith GPFU.  The calculation of eqn (15) starts with 
the subtraction of the mean vector of the ith GPFU 
from the input vector at the subtraction nodes. Then 
the components  of the vector obtained at the sub- 
traction nodes are cross-correlated among them- 
selves (i.e., outer product of the two same vectors) 
by the cross-correlator to obtain N ~ cross-correlated 
terms. Each cross-correlated term is multiplied by 
the corresponding k}k of the shape matrix K; at the 
multiplication nodes and summed for d;. The output 
of the GPFU is then generated by exponentiating d;. 
Note that, for a GPFN producing multiple outputs, 
we opt for each output being generated indepen- 
dently by its own set of hidden units (GPFUs).  This 
makes learning simpler. 

3. HIERARCHICALLY SELF-ORGANIZING 
LEARNING 

3.1. Motivation and Description 

It may not be possible to train a neural network to 
reach a desired level of performance if the network 
does not have enough computational units, or the 
learning algorithm fails to find the optimal network 
parameters.  It is thus quite attractive to develop a 
new type of learning algorithm capable of automat- 
ically recruiting new computational units whenever 

necessary for improving network pertormance, l-ter~ 
we propose such type of learning algorithm called 
the Hierarchically Self-Organizin e Learning I HSOL i 
algorithm 

In the HSOL algorithm, a (oPFU ~s assocmted 
with (a) the accommodat ion  boutMar~ defined in the 
input space and (b) the class relJreserztation defined 
in the output space. The accommodation boundary 
of a GPFU defines a region of input space upon 
which the corresponding G P F t  .an have an influ- 
ence. and plays a role similar to !Ire vigilance factor- 
used in the ART2 (Carpenter 0;- (irossberg, 19~7~ 
an automatic clustering algorithm based on adaptive 
resonance theory. If a new sample lalls within the 
accommodation boundary of m~c of the currentl~ 
existing GPFUs. which has the same class represen 
ration as that of the new sample, then. the network 
will not generate a new GPFU but accommodate ~.hc 
new sample by updating the parameters of existing 
GPFUs, Otherwise. the lmtwork will recrmt a ne~ 
GPFU. Most importantly, n HSOI... the accom-~ 
modation boundaries of individual GPFUs are uot 
fixed but adjusted dynamical ly  ,.~~ ~uch a w,a~ a~ to 
achieve hierarchical learning: imtiallv, the accom- 
modation boundaries are set large for achieving 
rough but global learning, but gradually reduce ro ,~ 
smaller size for fine learning, Note that. as indicated 
previously, a Gaussian potential function serves bet-- 
ter for implementing hierarchical learning due to its 
locality property. In general, thc }tSOL has the fol- 
lowing implications on learning 

. 

It starts with learning global mapping features 
based on a small number of computational units 
with larger size of accommodation boundaries and 
then proceeds to learning finer mapping details 
and increasmg the number of computational units 
accordingly by reducing the size of accommoda- 
tion boundaries. 
It changes the dimension and shape of the error 
surface, that is. the surface of the error function 
defined m terms of the network parameters by 
increasing the number of computational units, 
when the performance ol err~,,r convergence is 
considerably degraded. This helps to avoid the 
risk of sticking on a flat or a w r y  mildly sloping 
surface which might cause trouble in backprop- 
agation or steepest descent learning. 

To describe an accommodation boundary, we in- 
troduce an effective radius or a Mahalanobis  distance 
(Duda & Hart. 1973), r;, of the ith GPFU in the form 
of a hypersphere.  Hi, defined in the input space: 

tl,(r.) = {xidtx. m'. Kq - r.'-~ t l~) 

A GPFU is assigned to its class representation, at 
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FIGURE 2. The schematic diagram of a GPFN. 

the time when it is recruited, by the same class as 
the class of teaching pattern that invoked its recruit- 
ment. Note that a set of classes can be predefined in 
the output space, which may be the pattern classes 
when the network is engaged in pattern classification, 
or the signs of the output (more generally a set of 
the subranges of the output space) when the network 
is engaged in function approximation. 

The criteria for determining when to recruit new 

GPFU is summarized in the following Accommo- 
dat ion/Generat ion rules: 

• If the input sample, xp of a teaching pattern 2 is 
located within the hypersphere,  Hi(ri), of the ith 

ZA teaching pattern. (x~. l~,), consists of a pair of input sample 
xp and output sample, lp. 
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GPFU of the current network, which belongs to 
the same class representation as that of output 
sample, tp, then a new GPFU will not be invoked. 
In this case, the teaching pattern is accommodated 
by the ith GPFU, and the network simply updates 
and parameters. 

• If the input sample, xp of a teaching pattern, is not 
located within the hypersphere of any GPFU which 
has the same class representation as that of the 
output sample, tp, a new GPFU is generated at the 
position of the input sample, x~, of a teaching pat- 
tern. 
To check whether a teaching pattern falls inside 

the hypersphere H~ of the ith GPFU, the output value 
of the ith GPFU for the given teaching pattern is 
compared with the following reference value of the 
ith GPFU, G~, defined by its effective radius, r~: 

Gi = e-~';"2i (19) 

If the output of the ith GPFU is greater than G~, it 
is considerd that a teaching pattern falls inside the 
hypersphere H~ of the ith GPFU. 

As mentioned previously, the automatic adjust- 
ment of the accommodation boundary or the effec- 
tive radius r~ provides the network with the capability 
of hierarchical learning. This can be carried out 
by either of the following two methods. The first 
method is based on reducing the effective radius of 
each GPFU gradually, starting from a large radius, 
according to the predetermined monotonously de- 
creasing function. This method is simple and easily 
implementable but sensitive to the selected function 
in terms of the number of total GPFUs generated. 
For instance, if the effective radii of GPFUs are re- 
duced too rapidly, the network generates more 
GPFUs than the minimum required because individ- 
ual GPFUs may not have enough time to converge 
to their optimal shapes. On the other hand, if the 
effective radii of GPFUs are reduced too slowly, the 
network consumes a large number of learning cycles, 
although it eventually generates the minimum nec- 
essary number of GPFUs. Accordingly, the selection 
of a proper rate for the reduction of the effective 
radii is essential to successfully generate the mini- 
mum necessary number of GPFUs, and achieve a 
desirable learning speed. 

The second method is based on reducing the radii 
of individual GPFUs according to the progress of 
learning. The reduction of the radii of individual 
GPFUs invokes the generation of more GPFUs, and 
so enables the network to learn the details. There- 
fore, the best time for a GPFU to reduce its radius 
is when the network performance to further learn- 
ing becomes saturated with the currently available 
GPFUs. Figure 3 illustrates the procedure of HSOL 
by a flow chart, where the adjustment of accom- 

modation boundary is based on the saturation of net- 
work performance. 

Now, let us investigate a method of detecting the 
saturation of network performance A simple way oi 
measuring the progress of learning is by defining the 
performance index, P as follows 

with E~,,.~ representing the root  mean square error for 
N teaching patterns. E .... can be calculated by 

q l v t l v  

E,, ~ g ~ (tr,, - -  ~/,,,(n:))' i2.2) 

where M represents the number of output units, t:,, 
represents the/th element of the desired output vec- 
tor defined by the pth teaching pattern, 4~pj represents 
the / th  element of the actual outpUt vector for the 
pth teaching pattern and n/represents a column vec- 
tor which is the collection of all parameters associ- 
ated with the jth output unit. 

To measure the saturation of network perform- 
ance, we need to monitor the variation of P with 
respect to time or alternatively, we define the pa- 
rameter saturation vector, s: for the jth output unit 
based on the following difference equation: 

si(p) = ce ~ + (1 .... ~)s.(p 1) (23) 
c?n~ 

where a is a positive constant between 0 and 1, rep- 
resenting the decaying factor of c?Ep/0nj, and p rep- 
resents the pth teaching pattern presented to the 
network. 

The purpose of defining s t is to monitor OE/Onp 
to see whether the network parameters have been 
sufficiently adjusted for E~, to reach its extremum 
with the currently available number of GPFUs. Note 
that eqn (23) results in the following solution of s i at 
the mth presentation of teaching pattern with the 
assumption that sj(0) = 0: 

si(rn ) = a ~  (I - ~1'" ~-~-C(l - I) (24) 

where l and m represent respectively the/th and the 
ruth iteration (m > l). Based on eqn (24); eqn (23) 
can be interpreted as follows: (a ) s  t provides the 
weighted average of OEp/On~ over the horizon of 
learning iterations, filtering out the~high frequency 
components of OE/Onj, where the weights decays 
exponentially in the backward :direction toward the 
initial iteration. (b) If; for a considerable number of 
iterations, the network parametersremain stationary 
at a point, OEp/On i = 0 ,  or:wander around a point 
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FIGURE 3. The procedure of Hierarchically Self-Organizing Learning in which the adjustment of accommodation boundary is 
based on the saturation of network performance: M, H, and r~ represent respectively the number of GPFUs, effective radius 
and the hypersphere of the ith GPFU. 

in the parameter  space such that the average of OEp/ 
an/becomes close to zero, the magnitude of sj grad- 
ually decreases toward zero. Therefore,  by monitor- 
ing the value of Hs/{[, the saturation of the network 
performance to further learning can be detected. 

The necessity of using the weighted average of 
OEp/Onj, instead of directly using aEp/Onj, comes 
from the fact that c~Ep/ On/ not only varies with fluc- 
tuations but also generates spurious data frequently. 
In fact, Ils/{{ may not converge to zero but rather to 
a small value near zero, since OEp/Onj may drift near 

or around zero during saturation. Such a small sat- 
urated value of Hsj[[ is not known apriori and may vary 
according to the different sets and orders of teaching 
patterns. This implies that the use of a constant 
threshold for ]Is/{{ for the detection of performance 
saturation may result in such a situation that it may 
need to go through an extremely long but unneces- 
sary learning iterations to reach the termination con- 
dition, or the network may never be able to reach 
the termination condition at all. To resolve this 
problem, we adopt an adaptive saturation detec- 
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tion scheme which detects the saturation based on 
whether the integration of the inverse of Ils/ll exceeds 
the vaue of/Isjll. This scheme adaptively controls the 
termination threshold according to the convergence 
envelope of IIs/ll and enforces the proper  termination. 

To be more precise, let us define p j as the sa tu-  

ra t i on  cr i ter ia  defined by the integration of the in- 
verse of Ilssll for the j th output, p s can be calculated 
based on the following difference equation: 

p , ( p )  = i (P - 1) + / 7 ~  ifp > p ,  (25) 
otherwise 

where dj is the dimension of ss, fl is a small positive 
constant representing the increment rate of p,  and 
p~) is the delay factor which will be explained shortly. 
Then the decision whether the network performance 
is saturated or not, is made by comparing p j with 
Ilsill/V~j. p / i s  increased slowly (rapidly), should lisjti 
converges to a larger (smaller) value, so as to provide 
a proper  time for the network parameters to be sat- 
urated. Note that the integration should start only 
after a certain number of teaching patterns are pre- 
sented, in order  to avoid the situation that the small 
values of tlsslls during the initial periods of iterations 
due to the initial assignment of zero to IIs, tt disturb 
the adaptive detection scheme. We let the integration 
start after 1 /a  iterations (refer to eqn (23)), that is, 
p(, = [1/a],  since it is seen from eqn (24) that [1 la, I 
iterations makes sj reach approximately ~ 63(~ of 
OEp/0n s, assuming small a and constant OE, / i )n i .  The 
simulation results indicate that eqn (23) and eqn (25) 
provide a robust scheme for determining when to 
reduce the effective radii of individual GPFUs. 

3 . 2 .  L e a r n i n g  A l g o r i t h m  

The learning algorithm is composed of two parts: the 
first part is concerned with the adjustment of the 
network parameters and the second part is concerned 
with the recruitment of the minimum necessary num- 
ber of GPFUs based on adjusting the accommoda- 
tion boundaries of individual GPFUs.  

3.2.1. P a r a m e t e r  U p d a t e .  The network parameters 
are updated based on the Backpropagation learning 
algorithm (Rumelhart  et al., 1986). 

P a r a m e t e r  U p d a t e  R u l e s .  The parameter  vector of 
~- ' ' ' h~]' is updated the j th output unit, n s, nj [w j, m s, a i, 

by 

n~' . . . .  = n~la + qAn, (26) 

3 F r o m  e q n  ( 2 4 ) ,  l e t  c = £)~<', ~ ( 1  - a ) "  < = 1 (1 - 

a )  ~'~. T h e n ,  

l i m c  = 1 - l i m ( 1  - a) I" 
,, .o  ~ + u  

= 1 e I''<, " o i ' " i  . . . .  = I e ~ I ) . 6 3  

where q is the positive constant called the l e a r n i n g  
rate. 

The directional vector, An i ]Aw~, ~lm';, ,.%crL 
zih~]', along which n i should be updated, can be de- 
rived from the gradient descent of E;, defined in eqn 
(22), as listed in the following set of equations. No te  
that in the following equations, N ,~md M respectivel~ 
represent the dimensions of input and output vectors 
and the subscript p representing the pth teaching 
pattern is omitted from the equations for notatiomd 
convenience 

• The weight between the ith output and the ith 
GPFU: 

Aw,, = -aE~ __ it. o.)~/J, (27) 
c7 W,~ 

• The jth element of the mean vector, m': 

A, , , I ,  ~ .... a/z,, ~ am; = k',,r(.r., - m:.)lu (to - (bDw~,.. 
l I 

( 28 t 

• The marginal standard deviation, cs;: 

A e s  - -  3 E ,  
,-7c~ 

~ k Ix mj)(x, - m$) 
(T 

• The correlation coefficient, h', : 

aE, 
Ah'.~ = - 

i&'.~ 

l Ix, -- m:)(xk tn'k) 

? ¢7;CI 'L  
~. ~ qt, - q)~)w,. (30) 

For more details on the derivation of the abovc 
equations, see Appendix C. 

3.2.2. H S O L  A l g o r i t h m .  Initiatlv, there is no GPFU 
assigned to the network, and the output of the net- 
work is set to zero. The following H S O L algorithm 
is then applied to the network to automatically create 
and shape GPFUs and adjust weight vectors for the 
kth output. 

H i e r a r c h i c a l l y  S e l f - O r g a n i z i n g  L e a r n i n g  A l g o -  

r i t h m .  Step 1. Initialization: 

• S e t i  = 1. j = 0 a n d p  - 0. where i represents 
the number of learning cycles, j represents the 
number of GPFUs.  and p represents the number 
of patterns presented to the network, 

• Set sk = 0 and & = 0 (refer to eqn (23) and eqn 
(25)). 

Step 2. Invoke the ith learning cycle, where one- 
learning cycle implies the random presentation of all 
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the teaching patterns in the pool to the network. The 
procedure of one learning cycle is as follows: 

Step 2.1. Get the next teaching pattern. 
Step 2.2. Set p = p + 1 
Step 2.3. Apply the following kernel procedure: 

CI. if nt,,  - > ,:  .... where tr, k and 4)pk re- 
spectively represent the desired and actual val- 
ues of the kth output unit for the pth teaching 
pattern, and ~:,, represents the error margin, then 
do the following: 

• If there is a GPFU having the same class rep- 
resentation as that of the pth teaching pattern 
and the pth teaching pattern falls inside the 
hypersphere of the GPFU,  apply the param- 
eter update rules. 

• If there is no such GPFU,  then generate a 
new GPFU: 
- - S e t j  = j + 1 a n d p  = 0. 
- -Se t  sk = 0 and Pk = O. 
- - T h e  following parameter values are as- 

signed to the new GPFU: 
• The Mean Vector, m i = the input sample, 
xp of the pth teaching pattern. 

• The Weight Value, cj = output sample, tz, 
of the pth teaching pattern. 

• The Shape Matrix, K ~ = 1 / ~ I ,  where a~) 
is the predefined nominal variance. 

• The effective radius, rj = r{~, where r, is 
the predefined initial effective radius. 

- - G o  to Step 2.1. 

C2. If[tpk -- qSr,,[ <-- C,,, then apply the parameter 
update rules. 
C3. Calculate Ilsall/Vdk based on eqn (23). 
C4. Calculate & based on eqn (25). 
C5. If ItsklP/Vdk < Pk, then reduce the radius the 
effective radius of individual GPFUs: 

..... = ~'r) 'ld* rj for l  = 1, "" , j ,  if r /> r/ 
r~ (r/j d for l = 1, "" , j, otherwise 

where rL is the lower bound of radius and r,~ is 
the radius decrement rate. 

Step 2.4. If all the teaching patterns are presented, 
go to the next step. Otherwise, go to Step 2.1. 
Step 3. Se t i  = i + 1 
Step 4. If the network shows satisfactory perform- 

ance, then stop. If not, go to Step 2. 

4. SIMULATION 

Simulations were conducted for the six sets of teach- 
ing patterns shown in Figure 4. The first four sets of 
teaching patterns, (a), (b), (c) and (d) represent bi- 
nary functions of two output classes + 1 and - 1 ,  
whereas the last two sets of teaching patterns, (e) 
and (f) represent continuous functions, sin(nx0 
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cos(0.5nx2) and c o s ( 4 n x O c o s ( 4 n x 2 ) e  10(xi + xi) re- 
spectively, defined over 2 dimensional input space. 
At each learning cycle, all the teaching patterns of 
a set were presented to the network in a random 
order. The teaching patterns of the last two sets were 
generated respectively from the given continuous 
functions, such that at each learning cycle, 10 teach- 
ing patterns are randomly selected from the corre- 
sponding function and presented to the network. 

It was considered that the network reached a sat- 
isfactory level of performance through training, 
when the following condition was met: (a) the ab- 
solute error It,,k - 4~,,ki is less than the predetermined 
error margin, am for every teaching patterns for the 
first four sets of teaching patterns, (a), (b), (c) and 
(d), and (b) the rms error Erm~ defined by eqn (22) 
is less than c,,, for the last two sets of teaching pat- 
terns, (e) and (f). 

The learning rate was chosen carefully because 
(a) an excessive learning rate can cause the algorithm 
to fluctuate and eventually diverge, and (b) a small 
learning rate can cause slow convergence, although 
no fluctuation occurs. 

The error margin % was set according to the na- 
ture of the desired output. For example, if the de- 
sired output is represented by binary value, the error 
margin need not be set to a very small value, because 
it is satisfactory as long as the signs of the desired 
and the actual output values agree. In this case, the 
desired output can be realized by thresholding the 
actual output after learning is completed. If the de- 
sired output has a continuous value, the error margin 
r,,,, should be set to a value small enough for the 
network to map the given function accurately. How- 
ever, the decrease of c,,, causes the increase of the 
number of GPFUs to be generated. Therefore,  the 
selection of e,,, should consider the trade-off between 
accuracy and complexity in network realization. 

The initial assignment of the marginal standard 
deviation c7(, also affects the performance of learning. 
If a~ is set too high, it is difficult to train the net- 
work to accurately represent those teaching patterns 
densely distributed in the input space. If a(~ is set too 
low, it takes too long to train the network to accu- 
rately represent the teaching patterns coarsely 
distributed in the input space. Therefore,  it is 
recommended that a proper  value of a,, be set ac- 
cording to the distribution of teaching patterns in the 
input space. This can be done based on the prean- 
alysis of input samples in terms of local density 
distribution or minimum distance between input sam- 
pies. 

The initial effective radius of a GPFU,  ro, was 
chosen large enough to cover most of the input space 
or almost all the input samples, so that initially the 
GPFN could carry out learning with a small number 
of GPFUs. The lower bound of the effective radius, 
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FIGURE 4. (a), (b), (c), (d), (e) and (f) repreesnt the six sets of teaching patterns used for training the GPFN: The teaching 
patterns (e), (b), (¢) and (d) repreeent binary functions of two output classes, + 1 and - 1, (which are ~ ~ h ~ e l y  by 
o and x) defined over the ~ mmtple points. The teaching patterns, (e) and (f) represent cont inuous functions, 
sin(nxl)cos(O.Snx=) and cos(4.n'x,)co$(4~'x=)e-l°~x~*x~ ) f eq : l e~ l v~ f ,  ¢icfhlled over two-Wmemdonai  Input space. 

rL, was used to curtail the number of GPFUs gen- 
erated for a continuous mapping. Setting rL tow 
allows the accurate realization of a continuous 
function, but only at the expense of increased num- 
ber of GPFUs.  

The recruitment of new GPFUs was controlled by 

the three parameters: r , ,  a and/J, rd. the radius dec- 
rement rate. was chosen small enough to reduce the 
radii of GPFUs  slowly, so that the most troublesome 
positions, which have large errors between the de- 
sired and the actual outputs but are not properly 
covered by existing GPFUs.  can be found and cov- 

TABLE 1 
Actual Parameter Values AeslgBed for Filch Set of Teaching Patterns 

Teaching Pattern Set (a) (b) (c) (d) (e) (f) 

Learning Rate, r/ 0.02 0.02 0.002 0.002 0.002 0.002 
Error Margin, ~,~ 1 1 1 1 0,1 O. 1 
Initial Standard Deviat ion. ~o 2 2 0.2 0.2 0.1 0.1 
Initial Effect ive Radius.  ro 3 3 30 30 60 60 
Lower  Bound of Radius,  r,  0 0 0 0 2 2 
Radius Decrement  Rate, ra 0.9986 0.9986 0.9986 0.9986 0.9986 0.9986 
Decay ing Factor, ~ 10- 3 10 - ~ 10-  3 10 - 3 10 ~ 3 10- 3 
Increment  Rate, ,8 10 =1° 10 -1° 10- lo 10-~o 10  ~ 10 to 
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TABLE 2 
A Summary of Simulation Results 

Teaching Pattern Set (a) (b) (c) (d) (e) (f) 

The No. of Learning Cycles 400 1500 4500 4500 5000 10000 
The Estimated No. of Minimum GPFUs 2 2 4 6 NA NA 
The No. of GPFUs Generated 2 2 5 8 2 14 
Erms a after Learning 0.0001 0.2866 0.3634 0.2916 0.1048 0.0458 

a The ErmsS of the teaching pattern set e and f, are calculated based on 1000 randomly generated patterns from the given function. 

ered first, a, the decaying factor for OEplc)n~, 
affects st as follows: If a is small, IIs~ll/V~n~ has small 
fluctuations in spite of a large fluctuations of OEp/ 
c)nk; on the other hand, if a is large, tls~ll/X/~n~ has 
large fluctuations following the fluctuations of 
OEp/c?nk's. For the detection of the saturation of net- 
work performance, a was set small enough to have 
small fluctuations in IIs~ll/X/~n~ but large enough to 

follow the current trend of the variations of OEp/ 
Orig. In practice, a can be chosen inversely propor- 
tional to the number of teaching patterns, fl, the 
increment rate of Pk, affects the detection of network 
saturation as follows: Iffl is large, Pk increases rapidly 
and the network prematurely determines the occur- 
rence of saturation; on the other hand, if fl is small, 
the network determines the occurrence of saturation 

(a) 
(b~ 

(c) (d) 

FIGURE 5. 3D representation of potential fields synthesized over 2D Input space as a result of learning: The potential fields, 
(a), (b), (c), (d), (e), and (f) shown in this figure correspond respectively to the individual teaching patterns, (a), (b), (c), (d), (e) 
and (f) of Figure 4. 



a long time after the actual saturation occurred. 
Therefore, the selection of fl should consider the 
above trade-off. 

Table 1 illustrates the actual parameter values 
used in the simulations for the six sets of teaching 
patterns. Table 2 presents a brief summary of sim- 
ulation results, including the number of learning 
cycles required and the number of GPFUs generated, 
for individual sets of teaching patterns. Figure 5 il- 
lustrates the 3D representation of the potential fields 
synthesized over the 2D input space as a result of 
learning. The potential fields, (a), (b), (c), (d), (e) 
and (f) of Figure 5 corresponds respectively to the 
individual sets of learning patterns, (a), (b), (c), (d). 
(e) and (f) of Figure 4. Figure 6 shows decision 
boundaries obtained by thresholding the potential 
fields, (a), (b), (c) and (d) of Figure 5 with the zero 
threshold. Figure 7 shows the learning curves for the 
six sets of teaching patterns where the variations o! 
curves represent e~m~ and the number of GPFUs with 
respect to the number of learning cycles. The sin> 
ulation results indicate the following: (i) The deci- 
sion boundaries for the first four sets of teaching 
patterns, (a), (b), (c) and (d) with binary output 

values provide the perfect binar} classification wnh 
optimal or near optimal number  of GPFUs ~ii~ :r~ 
good approximation (around 5c4 error or tessi ~; 
continuous functions were obtained with a small 
number of GPFUs  for the last :wo sets of teaching 
patterns (c) and (f). 

Finally, to show the effecuveness oI t, GPFN 
based on HSOL for pattern classification, a com- 
parison is made for the first four ~ets ot teaching 
patterns, between the GPFNs generate~l b~ the 
H S O L  algorithm and the Backpropagat ion networks 
optimized by trial-and-error in terms of the number  
of hidden units (using slgmoidal activation func- 
tions). Table 3 describes the rc,~ult of such ~ conb. 
parison: For the teaching patter11 sels. (ai and (b'~ 
the GPFNs have the total number  of parameters  
larger than that of the optimal Backpropagat ion net- 
works. However .  for the teaching pattern set,, I,.'~ 
and (d). the GPFNs have the ~ota[ number  of pa- 
rameters less than those of the optimal Backpropa- 
gation networks. Note that, ex,~'~ for the teaching 
pattern sets_ (a) and (b}, in order to obtain tl~e de- 
cision boundaries similar to what !.he GPFNs could 
provide, the optimal Backpropagat ion networks re- 
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Figure 5 with the zero threshold valUe. 



Gaussian Potential Function Network 

1.4 

I.I 

1.4 

I.I 

- i 

m m 

(a) 

l.B 

•.I 

A 

B[ 1 

(c) 

1.4 , ,. 

"i f 

L,4  

1,3 

I. 

I,| 

1.4 

1.2 

B " ' - - - - - -  

Co) 

1.,I 

I . I  

| . 4  

| . =  

(d) 

B 

A 

221 

(e) (0 

FIGURE 7. The learning curve A represents the variation of E~.. with respect to the number of learning cycles, whereas the 
learning curve B represents the increase of GPFUs along learning cycles, for the six sets of teaching patterns: E... is calculated 
based on the entire teaching patterns presented at each learning cycle. Note: The scales associated with y axis represents 
the actual value of Err... TO obtain the number of GPFUs, multiply the scales shown in the figure by 10. 

TABLE 3 
Comparison between the GPFN Generated by HSOL and the Optimal Backpropagation Network 

Teaching Pattern Set (a) (b) (c) (d) 

GPFN 

Optimal 
Backpropagation Network 

The No. of GPFUs Generated 2 2 5 8 
The No. of Total Parameters 12 12 30 48 
The estimated No. of 2 2 9 13 

Minimum Sigmoidal Functions a 
The No. of Total Parameters 8 8 33 50 

a For teaching pattern set 3 and 4, two layers of hidden units are used. 
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quire more parameters than those of the GPFNs. 
This illustrates the power of a GPFN based on the 
HSOL algorithm. 

5. CONCLUSION 

This article has presented the following: 

1. The design principle of a MNN using a nonsig- 
moidal activation function, such as a Gaussian 
function. 

2. The HSOL algorithm which explores the incre- 
mental recruitment of hidden units based on the 
hierarchical learning of teaching patterns which 
is achieved by the control of the accommodation 
boundaries of individual hidden units. 

The design principle developed for a MNN based 
on a nonsigmoidal activation function contributes to 
the advancement of a new methodology for designing 
a more general form of a MNN with powerful map- 
ping capability. The presented HSOL algorithm is 
applicable to any MNN by properly defining its own 
accommodation boundaries. The HSOL algorithm 
contributes to the development of a new learning 
methodology based on self-organization and hier- 
archical learning, which may provide a solution to 
the problems encountered in conventional learning 
techniques due to the existence of local minima, flat 
surface error curvature, as well as structural inflex- 
ibility. 
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A P P E N D I X  A 

KolmogorovlSprecher  Theorem 

For each integer n -> 2, there exists a real monotonic increasing 
function ~u(X), ~u([0, 1]) = [0, 1], dependent on nandhav ing  the 
following property: 

For each preassigned number 6 > 0, there is a rational n u m ~ r  
~, 0 < e -- 6, such that every real continuous function ofn variables, 
~(x), defined on I", can be exactly represented by 

~(x) = z ,~'~(x~ + ~(/ - 1)) + /  - 1 ] 
) = l  • 

where X is a real and continuous function dependent upon •, and 
;.' is a constant independent of ~. 

A P P E N D I X  B 

From eqn (9), 

z = YC 
= [r,, r2, ' "  • r~] ~c 
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where z = [z,, z2, "" . z~.]' and r, is the ith row of Y, r~ ~ [~,(x,  
p~), ~,(x.  P2), "'" , ~u(x, PM)]' for  i = 1, '.. , N. Note that r .  
i = 1, . - . ,  N are M x 1 vectors represented in the M dimensional  
P F U  space. 

The above equat ion can be rewrit ten as 

[r~c - z , ,  r~c - z2. " " .  r 'xc  - zN] ' =  0 .  

Therefore ,  

R ' c '  ~ [ r ; ,  r~, "'" , r;v]'c' = 0 .  

where r,' = [ r l : - z , ] ' : ( M  + 1) x 1 vector, c' ---- [ c ' : I ] ' : (M + 
1) x 1 vector and R '  = [r~, r~, .-. , r; ,] ' :N × (M + 1) matrix. 

To provide a solution for c ' ,  r,', i = 1, ... , N should reside 
in the manifold of less than or equal to M dimension,  so that c' 
can be perpendicular  to all r,'s. This  can be tested by measur ing 
the quanti ty A,, 

A, = rain 2~ 

where L, i = 1 ..- , M + 1 are the eigenvalues of the cross- 
correlation matrix.  ~,  defined by 

X = -~ r;r,!'. 

Then,  the following theorem holds: 

T h e o r e m  2:  z = [~(x~), 0(x2), "",  0(x~)] ~ is" exactly realizable i f  
A,  = 0 and there exists an eigenvector with zero eigenvalue which 
is not 10, 1]'. 

P r o o f :  A, = 0 implies that r,', i = 1, ..., N are in the manifold 
of M or less than M dimensions.  The latter condition is to guar- 
antee that a vector, c ' ,  perpendicular  to the manifold formed by 
r,', i - 1, --. , N, is nontrivial,  that is, c' ~ [0: 1]'. Q . E . D .  

Theo rem 2 implies that Ap can also be used as a criterion for 
the ad jus tment  of the shape of PFUs.  Note that,  in Theorem 2, 
the eigenvectors with zero eigenvalues can be the solutions of c' :  

e"Xc' = 0 ~ ~ (r,"e') 2 = 0 ~ r,!'e' = 0 Vi. 
, = 1  

A P P E N D I X  C 

T h e  D e r i v a t i o n  o f  P a r a m e t e r  U p d a t e  R u l e s  

The network pa ramete r  update  rules are derived here by taking 
the negative gradient of the er ror  function, eqn (22). For  con- 
venience, the subscript  p which represents  the p th  pat tern is omit- 
ted in the following derivations. 

1. Aw,, 

aE 
",t w , t  - -  

dw, 

aE aE ad), 

(;,w., dO, ,~w,,' 

aE 
- (t, 4~), and 

- -  = [ i f , .  ~w,, 

Therefore ,  

. _ x , , ,  : (t, - 0,)~',. 
2. Am; 

aE 
Am', = - - - ,  

8m', 

d e  d e  dq/~ dd, 

~m', ~q~ dd, am;" 

OE 8E 80~ 
- X~ - - X ~ ( &  - (p~)Wk,, 

a~/, l 
- q/, and 

(?d, 2 

,M, 

d rn ; 
- 2E,k',(x, - mi). 

Therefore ,  

Am'  s = ~ , k } t ( x~ -  mi)~,~(t~ - O~)w~,. 

3. Ak',k 

We have two types of  parameters  for k',~. That  is. a', and h',~. Here ,  
Aa', and Ah}k are derived separately.  

• A ~ ' , f o r j  = k 

OE 
Aa', = - - - a n d  aa', 

c)E dE O~u, Odi 

8a', a~,, Od, Oa'," 

B y  the same derivation as A m } ,  

8E OqJ, _ 1 
~,,Ek(t~ - 0k)Wk, and 

aqJ, ad~ 2 

ad__~, = 2E~hi~ ( x ~ -  m 3 ( x ~ -  ml) 

Therefore ,  

( x, - m~)( x, - mi) 
±G', = Ytk',~ 

• Ah',~ for j ¢ k 

aE 
Ah',~ = - ~  and 

ah',~ aqJ, ad, (~h',k" 

B y  the same derivation as Am',, 

8E c~u, _ l 
~uiV~(tk - ~bk)wk, and 

c;'~u~ dd, 2 

eJd, (x, - m',)(x~ - m~) 
a ',a '~ Oh',k 

Therefore .  

Ah',, = 1 (x, m',)(xk - m9 
2 a',a~ 

~,:L(t, - ~)w,,. 

N O M E N C L A T U R E  

c Weight vector 
c' Augmented  

column vector 
d e f i n e d  by  
[c':d' 

c* O p t i m a l  so lu-  
t i on  of c 

ci Summation 
weight of  the 
ith potential 
function 

d Weighted dis- 
tance of GPFU 

d~ Weighted dis- 
tance of the ith 
GPFU 

hik T h e  ( j ,  k ) t h  
c o r r e l a t i o n  
coefficient of  
the ith GPFU 

k~k The (j, k)th 
e lement of  the 

ith shape ma- 
trix 

m i Mean vector of  
the  i th GPFU 

rn'~ T h e  j t h  e le -  
m e n t  v a l u e  of  
the ith mean 
vector m i 

n, Dimension of sj 
n~ Parameter vec- 

tor for the ]th 
output unit 

p, Parameter vec- 
tor of  the ith 
potential func- 
tion 

r~ Initial effective 
radius of  
GPFU 

r~ Ef fec t ive  r a d i u s  
of  i th GPFU 

r~ C o l u m n  v e c t o r  
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defined by 

[~'(xi, Pl), 
g / ( X i ,  P 2 ) ,  " " " , 

(Xi, PM)It 
r [ Augmented  

column vector 
defined by 
[~: -z,] '  

ra Radius decre- 
ment  rate 

r e Lower bound 
of radius 

sj Parameter  sat- 
uration vector 
for the jth out- 
put unit 

tpj The ]th desired 
output value of 
the pth teach- 
ing pattern 

w~, Summation 
weight between 
the jth output  
unit and the ith 
GPFU 

x Input pattern 
x~ The ith ele- 

ment  value of x 
y~ Column vector 

defined by 
[ q / ( X , ,  p / ) ,  

~u(x2, p,), "'" . 

~II(XN, pi)] t 
z Column vector 

defined by 
[~,(x,), ~,(x,), 
" ,  v,(x~)]' 

z, the ith element 
of z 

E Error function 
Ep Error  function 

for the pth 
teaching pat- 
tern 

E ..... Root  mean 
square error  of 
GPFU 

G, Radius criteria 
of the ith 
GPFU 

H, Hypersphere  of 
the ith G P F U  

K' Shape matrix 
of the ith 
G P F U  

M Number  of out- 
put units or 
number  of 
PFUs 

N Dimension of 
input pat tern 
or number  of 
teaching pat- 
terns 

,J,(p,) 
..<.,(y*) 

,'J~(yi) 

P Perfl~rmance 
index of GPFN 

R' (N × (M + l) 
matrix defined 
by Jr;, r~, ..- 
rq '  

Sx N dimensional 
sample space 

Sr Subspace 
spanned by y~, 

Y:. "" . Yv 
Y N ~ M m a t r i x  

defined by [Y,, 

Ye," ,YM]' 
Domain of p~ 
Linear main- 
fold formed by 
the linear com- 
bination of the 
selected M vec- 
tors. y,~. i = 1. 
-.- , M of Y~ 
Range of y, 
Decaying factor 
for eei,/On/ 

fl Increment  rate 
o f p: 

c m Lrror  margin 
p~ Parameter  sat- 

uration criteria 
for the flh out- 

put Unll 
, ]'hc ith cigcn- 

vahlc of eros, 

correlation 
illairix x 

PotcntiaI mnc- 

cJ Fhc ith poten- 

tim function 

~,, Imtial marginal 

~tandard devia- 

<~ the ith mar- 
gma] standard 
deviation of the 
~th GPFU 

,# Potential field 
o ['he ith poten- 

tial field 
o,. t 'he / th  actual 

output value 
lor the l>th 
)caching pal- 
IQFll 

A Measuring 
quannty de- 
fined bx min 5. 

"2. Cross-correla- 
non matrix de- 
hncd b\ I/N 

x.--~_ r , ' r '  


