
Bounds on the GeneralizationBounds on the GeneralizationBounds on the Generalization

- Risk Functions- Risk Functions- Risk Functions

 . Let  . Let  . Let 

  be an input-output sample pair and be an input-output sample pair and be an input-output sample pair and

  Training samples   Training samples   Training samples  ⋯  be generated from  be generated from  be generated from 

  the probability density function   the probability density function   the probability density function .  Then, the risk function is.  Then, the risk function is.  Then, the risk function is

  defined by  defined by  defined by

             
  where   where   where  is a parameter in  is a parameter in  is a parameter in  (parameter set) and (parameter set) and (parameter set) and

             is a loss function. is a loss function. is a loss function.

 . Examples of loss functions: . Examples of loss functions: . Examples of loss functions:

  (1) classification  (1) classification  (1) classification

                 ≠ 

    where     where     where  is an estimation function. is an estimation function. is an estimation function.

  (2) regression  (2) regression  (2) regression

              

 . Empirical Risk . Empirical Risk . Empirical Risk

  Empirical risk is defined by  Empirical risk is defined by  Empirical risk is defined by

              


 



...

  What is the relationship between   What is the relationship between   What is the relationship between  and  and  and ???



- Empirical Risk Minimization (ERM) Principle- Empirical Risk Minimization (ERM) Principle- Empirical Risk Minimization (ERM) Principle

 . Let . Let . Let

            
 be the optimal value provided by  be the optimal value provided by  be the optimal value provided by  minimizing minimizing minimizing

  the empirical risk for   the empirical risk for   the empirical risk for    i. i. d.i. i. d.i. i. d. samples and samples and samples and

             be the true risk for  be the true risk for  be the true risk for ...

 . The ERM principle is consistent if the true risk  . The ERM principle is consistent if the true risk  . The ERM principle is consistent if the true risk  and  and  and 

  the empirical risk   the empirical risk   the empirical risk 
 converge to the same limit, converge to the same limit, converge to the same limit,

              as  as  as  goes to infinity, that is, goes to infinity, that is, goes to infinity, that is,

            lim
→∞


  and and and

            lim
→∞
 ...

 . For the bounded loss functions, the ERM principle is consistent  . For the bounded loss functions, the ERM principle is consistent  . For the bounded loss functions, the ERM principle is consistent 

  if and only if the empirical risk converges uniformly to   if and only if the empirical risk converges uniformly to   if and only if the empirical risk converges uniformly to 

  the true risk in the following sense:  the true risk in the following sense:  the true risk in the following sense:

            lim
→∞
 

     ,  ,  ,  ∀...

            



 . The asymptotic rate of convergence is called fast  . The asymptotic rate of convergence is called fast  . The asymptotic rate of convergence is called fast 

   if for any    if for any    if for any   ,,,

                 


  where   where   where  is a positive constant. is a positive constant. is a positive constant.

 . A distribution independent condition (both necessary and . A distribution independent condition (both necessary and . A distribution independent condition (both necessary and

  sufficient) for the consistency of ERM and fast convergence  sufficient) for the consistency of ERM and fast convergence  sufficient) for the consistency of ERM and fast convergence

  (Vapnik and Chervonenkis, 1989):  (Vapnik and Chervonenkis, 1989):  (Vapnik and Chervonenkis, 1989):

            lim
→∞



 

  where   where   where   ≦ 

...

- The Simple Model- The Simple Model- The Simple Model

 . Let us assume that  . Let us assume that  . Let us assume that  is finite, that is, is finite, that is, is finite, that is,

            ,  ,  ,     ⋯. . . 

  For example, each parameter has discrete values within   For example, each parameter has discrete values within   For example, each parameter has discrete values within 

  a certain range.  a certain range.  a certain range.

  Then,  Then,  Then,

             
≦≦ 



 



  

≦
 



  


 



  

≦




  cf. additive Chernoff bound:  cf. additive Chernoff bound:  cf. additive Chernoff bound:

                
  or  or  or

                
...

 . Let  . Let  . Let 
  .  Then,  .  Then,  .  Then,  

             




...

  Therefore, with the probability at least   Therefore, with the probability at least   Therefore, with the probability at least  for all  for all  for all  functions  functions  functions 

  in the set   in the set   in the set , , ,    ⋯,,,

             


 



≦





      

  This implies that  This implies that  This implies that

            ≦




,  ,  ,  ∀ ∊.  ...  (1).  ...  (1).  ...  (1)

 . Let  . Let  . Let  be the best parameter for  be the best parameter for  be the best parameter for .  Then,.  Then,.  Then,

              


 



  ≦ 
...

  This implies that  This implies that  This implies that

            ≦




...



 . multiplicative Chernoff bound: . multiplicative Chernoff bound: . multiplicative Chernoff bound:

                




  or  or  or

                




...

  Let   Let   Let 


.  Then,.  Then,.  Then,

             


   





  or  or  or

             


   





...

  If we apply the multiplicative Chernoff bound,  If we apply the multiplicative Chernoff bound,  If we apply the multiplicative Chernoff bound,

             
≦≦



 

≦
 



 


 

≦




      

  Let   Let   Let 




 .  Then,.  Then,.  Then,

             




...

      



  Therefore, with the probability at least   Therefore, with the probability at least   Therefore, with the probability at least  for all  for all  for all  functions  functions  functions 

  in the set   in the set   in the set , , ,    ⋯,,,

            


≦ 

  where  where  where

             




.  .  .  

  That is,  That is,  That is,

            ≦ ,  ,  ,  ∀ ∊.  This implies that.  This implies that.  This implies that

            ≦








,  ,  ,  ∀ ∊.  ...  (2).  ...  (2).  ...  (2)

      

  Note the second term in the righthand side of   Note the second term in the righthand side of   Note the second term in the righthand side of 

  the above inequality depends on   the above inequality depends on   the above inequality depends on .  .  .  

  If   If   If   , the second term becomes , the second term becomes , the second term becomes 

             


...

  This gives more tight bound than (1).  This gives more tight bound than (1).  This gives more tight bound than (1).

            

            



- Generalization Bounds for the Finite VC Dimension- Generalization Bounds for the Finite VC Dimension- Generalization Bounds for the Finite VC Dimension

If If If   is infinite, we need to consider generalization bounds using is infinite, we need to consider generalization bounds using is infinite, we need to consider generalization bounds using

the VC dimension of the VC dimension of the VC dimension of ...

Lemma:Lemma:Lemma:

  For the finite   For the finite   For the finite    and  and  and  ≧ , the following inequality, the following inequality, the following inequality

  holds:  holds:  holds:

     
∊  ≦ 

 



.

Theorem:Theorem:Theorem:

      For the finite For the finite For the finite    and  and  and  ≧ ,,,

  with the probability at least   with the probability at least   with the probability at least 

            ≦,  ,  ,  ∀∊

  where  where  where

             





  



...

(proof)(proof)(proof)

  From the previous lemma,  From the previous lemma,  From the previous lemma,

             
∊  ≦ 

 



...



  For PAC learning, let  For PAC learning, let  For PAC learning, let

            
 



 .  .  .  

  Then,  Then,  Then,

            
 




 



 

  ->   ->   -> 
 


  



  ->   ->   ->  





  



  Therefore, with the probability at least   Therefore, with the probability at least   Therefore, with the probability at least 

            ≦,  ,  ,  ∀∊...

 . An alternative bound (Vapnik, 1998) . An alternative bound (Vapnik, 1998) . An alternative bound (Vapnik, 1998)

  The following inequality is derived using   The following inequality is derived using   The following inequality is derived using 

  the multiplicative Chernoff bound:  the multiplicative Chernoff bound:  the multiplicative Chernoff bound:

             
∊



   





...

  With the probability at least   With the probability at least   With the probability at least ,,,

            ≦








,  ,  ,  ∀∊

  where  where  where

              




 



...



 . Example: linear discriminant function . Example: linear discriminant function . Example: linear discriminant function

            

  

 





  Let   Let   Let   , , ,   , and , and , and   ...

  Then,   Then,   Then,   , and, and, and

             




 
⋅  

 ≈...
  If we use Vapnik's bound,  If we use Vapnik's bound,  If we use Vapnik's bound,

             

 
⋅ 

 ≈...
            

- Generalization Bounds for Regression- Generalization Bounds for Regression- Generalization Bounds for Regression

 . An indicator function for the set of real-valued functions is  . An indicator function for the set of real-valued functions is  . An indicator function for the set of real-valued functions is 

  defined:  defined:  defined:

    consider a set of real-valued loss functions such that    consider a set of real-valued loss functions such that    consider a set of real-valued loss functions such that

                  ≦≦...

    an indicator function is defined by    an indicator function is defined by    an indicator function is defined by

                    

    where    where    where

                  ≦≦  and  and  and

                          



 . An indicator function  . An indicator function  . An indicator function :::

      

 . Theorem: VC dimension of loss functions (Vapnik, 1995) . Theorem: VC dimension of loss functions (Vapnik, 1995) . Theorem: VC dimension of loss functions (Vapnik, 1995)

  Let   Let   Let   .  Then,.  Then,.  Then,

  the VC dimension   the VC dimension   the VC dimension  of  of  of  is bounded by is bounded by is bounded by

             ≦≦

  where   where   where  is a positive constant and  is a positive constant and  is a positive constant and  is the VC dimension of is the VC dimension of is the VC dimension of

      ...

 . The VC dimension of  . The VC dimension of  . The VC dimension of  is by definition equal to  is by definition equal to  is by definition equal to 

  the VC dimension of the set of indicator functions with  the VC dimension of the set of indicator functions with  the VC dimension of the set of indicator functions with

  parameters   parameters   parameters  and  and  and ...



 . Lemma: For the bounded loss function  . Lemma: For the bounded loss function  . Lemma: For the bounded loss function , , , 

  the following inequality holds:  the following inequality holds:  the following inequality holds:

             
∊



   




...

 . Theorem (Vapnik, 1998): With the probability at least  . Theorem (Vapnik, 1998): With the probability at least  . Theorem (Vapnik, 1998): With the probability at least , , , 

  the following inequality holds:  the following inequality holds:  the following inequality holds:

            ≦










  where  where  where

              




 



...

 . generalization bounds for non-negative  . generalization bounds for non-negative  . generalization bounds for non-negative 

  (not necessarily bounded) loss functions  (not necessarily bounded) loss functions  (not necessarily bounded) loss functions

  Theorem (Vapnik, 1998):  Suppose we non-negative   Theorem (Vapnik, 1998):  Suppose we non-negative   Theorem (Vapnik, 1998):  Suppose we non-negative 

  (not necessarily bounded) loss function   (not necessarily bounded) loss function   (not necessarily bounded) loss function  and  and  and  .  .  .  

  Then, with the probability at least   Then, with the probability at least   Then, with the probability at least ,,,

            ≦



  where  where  where

            ,,,



             




 
 



, , ,  




 


, and, and, and

             ...

 . Estimating the bounds of VC dimension from samples . Estimating the bounds of VC dimension from samples . Estimating the bounds of VC dimension from samples

  Let  Let  Let

              ...

  Then, for most practical regression, we can safely assume that   Then, for most practical regression, we can safely assume that   Then, for most practical regression, we can safely assume that 

              

  and   and   and  should be less than 1. should be less than 1. should be less than 1.

  One way is to estimate   One way is to estimate   One way is to estimate  from samples after learning, that is, from samples after learning, that is, from samples after learning, that is,

  estimating parameters   estimating parameters   estimating parameters  and  and  and  in in in

              




 



...

      



  For example,   For example,   For example,  ≧  with  with  with    and  and  and   ...

            

  If   If   If    and  and  and   , , ,   ...

- Summary of Generalization Bounds- Summary of Generalization Bounds- Summary of Generalization Bounds

(1) classification:(1) classification:(1) classification:

  For all   For all   For all ∊, the following inequality holds:, the following inequality holds:, the following inequality holds:

            ≦

  where  where  where

             


 and  and  and   

...

(2) regression with bounded loss functions:(2) regression with bounded loss functions:(2) regression with bounded loss functions:

  For all   For all   For all ∊, the following inequality holds:, the following inequality holds:, the following inequality holds:

            ≦...



(3) regression with unbounded loss functions:(3) regression with unbounded loss functions:(3) regression with unbounded loss functions:

  For all   For all   For all ∊, the following inequality holds:, the following inequality holds:, the following inequality holds:

            ≦ 


...

- Structural Risk Minimization (SRM) Principle- Structural Risk Minimization (SRM) Principle- Structural Risk Minimization (SRM) Principle

 . The structure  . The structure  . The structure  on a set  on a set  on a set  of loss functions  of loss functions  of loss functions  is defined  is defined  is defined 

  by the set of nested subset of functions  by the set of nested subset of functions  by the set of nested subset of functions

             ⊂ ⊂⋯⊂ ⊂⋯

  where  where  where

              ∊...

      



 . admissible structures: the structures satisfying  . admissible structures: the structures satisfying  . admissible structures: the structures satisfying 

  the following properties:  the following properties:  the following properties:

  (1) any element   (1) any element   (1) any element  of structure  of structure  of structure  has a finite VCD  has a finite VCD  has a finite VCD ...

  (2) any element   (2) any element   (2) any element  of structure  of structure  of structure  contains either contains either contains either

    (a) a set of totally bounded functions    (a) a set of totally bounded functions    (a) a set of totally bounded functions

                        ≦≦, , , ∊ or or or

    (b) a set of non-negative functions     (b) a set of non-negative functions     (b) a set of non-negative functions , , , ∊ satisfying satisfying satisfying

      the inequality      the inequality      the inequality

                        ...

 . Example: . Example: . Example:

  (1) the sequence of VCD   (1) the sequence of VCD   (1) the sequence of VCD  for the element  for the element  for the element 

                         ≦ ≦ ⋯ ≦ ≦ ⋯

  (2)-a the sequence of the bound   (2)-a the sequence of the bound   (2)-a the sequence of the bound  for the element  for the element  for the element 

                         ≦ ≦ ⋯ ≦ ≦ ⋯

  (2)-b the sequence of the bound   (2)-b the sequence of the bound   (2)-b the sequence of the bound  for the element  for the element  for the element 

                         ≦  ≦ ⋯ ≦ ≦ ⋯



 . Example: . Example: . Example:

  (1) bounded loss functions:   (1) bounded loss functions:   (1) bounded loss functions: ≦≦,  ,  ,  ∊

            
≦











 



  (2) non-negative loss functions:   (2) non-negative loss functions:   (2) non-negative loss functions: ≦,  ,  ,  ∊

            
≦ 




  where  where  where

              




 



...

 . For a given set of samples  . For a given set of samples  . For a given set of samples ⋯ , the SRM method chooses, the SRM method chooses, the SRM method chooses

  the element   the element   the element  of the structure for which the smallest bound on of the structure for which the smallest bound on of the structure for which the smallest bound on

  the risk is achieved.  the risk is achieved.  the risk is achieved.

      



 . Asymptotic analysis of the SRM principle . Asymptotic analysis of the SRM principle . Asymptotic analysis of the SRM principle

  A law determining, for any given   A law determining, for any given   A law determining, for any given , the number , the number , the number  of  of  of 

  the elements   the elements   the elements  of the structure  of the structure  of the structure  in which we will minimize  in which we will minimize  in which we will minimize 

  the empirical risk.  the empirical risk.  the empirical risk.

  Theorem (Vapnik, 1998):  The SRM method provides   Theorem (Vapnik, 1998):  The SRM method provides   Theorem (Vapnik, 1998):  The SRM method provides 

  approximations   approximations   approximations 
 for which the sequence of risks  for which the sequence of risks  for which the sequence of risks 

   

  converges to the smallest risk  converges to the smallest risk  converges to the smallest risk

              ∊
      

  with the asymptotic rate of convergence  with the asymptotic rate of convergence  with the asymptotic rate of convergence

               




 
  and    and    and   

 

  if the law   if the law   if the law   satisfies satisfies satisfies

            lim
→∞



  

 

  where  where  where

    (a)     (a)     (a)   for a structure with totally bounded functions and for a structure with totally bounded functions and for a structure with totally bounded functions and

    (b)     (b)     (b)    for a structure with non-negative functions. for a structure with non-negative functions. for a structure with non-negative functions.

            



 . Example: . Example: . Example:

  Let   Let   Let , , , ∊ be non-negative loss function be non-negative loss function be non-negative loss function

  for   for   for    and  and  and   
 ∞...

  Consider a structure for which   Consider a structure for which   Consider a structure for which   and let and let and let

              
 


...

  Determine   Determine   Determine  such that the asymptotic rate of convergence such that the asymptotic rate of convergence such that the asymptotic rate of convergence

  reaches its maximum.  reaches its maximum.  reaches its maximum.

  Here, the asymptotic rate of convergence is given by  Here, the asymptotic rate of convergence is given by  Here, the asymptotic rate of convergence is given by

               





 
 







...

  Find   Find   Find  such that  such that  such that 


.  That is,.  That is,.  That is,

             

 
 






 ...

    ->      ->      ->    
 




 



    ->      ->      ->  ∝






 





    where     where     where    is the integer part of  is the integer part of  is the integer part of ...

  In this case, the asymptotic rate of convergence is given by  In this case, the asymptotic rate of convergence is given by  In this case, the asymptotic rate of convergence is given by

            ∝
 



.  .  .  



- Optimization of Regression Models (Model Selection Methods)- Optimization of Regression Models (Model Selection Methods)- Optimization of Regression Models (Model Selection Methods)

   . The form of the estimate of risk functions:. The form of the estimate of risk functions:. The form of the estimate of risk functions:

             

  where   where   where  represents the complexity term associated with represents the complexity term associated with represents the complexity term associated with

  the hypothesis space with   the hypothesis space with   the hypothesis space with  parameters and  parameters and  parameters and  samples. samples. samples.

 . Akaike Information Criteria (AIC) and  . Akaike Information Criteria (AIC) and  . Akaike Information Criteria (AIC) and 

  Bayesian Information Criteria (BIC) are given as follows:  Bayesian Information Criteria (BIC) are given as follows:  Bayesian Information Criteria (BIC) are given as follows:

             


              




  Here, AIC and BIC model selection criteria come from   Here, AIC and BIC model selection criteria come from   Here, AIC and BIC model selection criteria come from 

  the asymptotic analysis for linear models using   the asymptotic analysis for linear models using   the asymptotic analysis for linear models using 

  mean square error.  That is, AIC and BIC are good when we use  mean square error.  That is, AIC and BIC are good when we use  mean square error.  That is, AIC and BIC are good when we use

  linear regression models with large number of samples.  linear regression models with large number of samples.  linear regression models with large number of samples.

  What if we use nonlinear models with small number of samples?  What if we use nonlinear models with small number of samples?  What if we use nonlinear models with small number of samples?

  -> one of candidates is using the model selection criteria   -> one of candidates is using the model selection criteria   -> one of candidates is using the model selection criteria 

     based on VC dimension.     based on VC dimension.     based on VC dimension.



 . VC dimension based information criteria (Cherkassky et al., 1999) . VC dimension based information criteria (Cherkassky et al., 1999) . VC dimension based information criteria (Cherkassky et al., 1999)

  The risk estimate is bounded by  The risk estimate is bounded by  The risk estimate is bounded by

             












 







  where   where   where  is a constant dependent upon norm and tails of  is a constant dependent upon norm and tails of  is a constant dependent upon norm and tails of 

  the loss function distribution.  the loss function distribution.  the loss function distribution.

  -> applicable to nonlinear models even for small number of  -> applicable to nonlinear models even for small number of  -> applicable to nonlinear models even for small number of

     samples.     samples.     samples.

  -> hard to estimate the VC dimension of nonlinear models   -> hard to estimate the VC dimension of nonlinear models   -> hard to estimate the VC dimension of nonlinear models 

      

 . Comments on model selection methods . Comments on model selection methods . Comments on model selection methods

  1) AIC and BIC are good model selection criteria when we use  1) AIC and BIC are good model selection criteria when we use  1) AIC and BIC are good model selection criteria when we use

    linear regression models for large number of samples.    linear regression models for large number of samples.    linear regression models for large number of samples.

  2) VC dimension based model selection criteria are good for  2) VC dimension based model selection criteria are good for  2) VC dimension based model selection criteria are good for

    nonlinear models even for small number of samples.    nonlinear models even for small number of samples.    nonlinear models even for small number of samples.

  3) In practice, if target functions are of simple forms and   3) In practice, if target functions are of simple forms and   3) In practice, if target functions are of simple forms and 

    the regression models are trained for small number of samples,     the regression models are trained for small number of samples,     the regression models are trained for small number of samples, 

    VC dimension based model selection criteria shows     VC dimension based model selection criteria shows     VC dimension based model selection criteria shows 

    better performance than AIC or BIC.    better performance than AIC or BIC.    better performance than AIC or BIC.



  4) However, the accurate estimation of VC dimension for  4) However, the accurate estimation of VC dimension for  4) However, the accurate estimation of VC dimension for

    nonlinear models is difficult.  An alternative criteria which can    nonlinear models is difficult.  An alternative criteria which can    nonlinear models is difficult.  An alternative criteria which can

    be estimated from samples such as the modulus of continuity    be estimated from samples such as the modulus of continuity    be estimated from samples such as the modulus of continuity

    information criteria (MCIC) is required.    information criteria (MCIC) is required.    information criteria (MCIC) is required.
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